Skip to main content

Sodium Calcium Exchange as a Target for Antiarrhythmic Therapy

  • Chapter
Basis and Treatment of Cardiac Arrhythmias

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 171))

Abstract

In search of better antiarrhythmic therapy, targeting the Na/Ca exchanger is an option to be explored. The rationale is that increased activity of the Na/Ca exchanger has been implicated in arrhythmogenesis in a number of conditions. The evidence is strong for triggered arrhythmias related to Ca2+ overload, due to increased Na+ load or during adrenergic stimulation; the Na/Ca exchanger may be important in triggered arrhythmias in heart failure and in atrial fibrillation. There is also evidence for a less direct role of the Na/Ca exchanger in contributing to remodelling processes. In this chapter, we review this evidence and discuss the consequences of inhibition of Na/Ca exchange in the perspective of its physiological role in Ca2+ homeostasis. We summarize the current data on the use of available blockers of Na/Ca exchange and propose a framework for further study and development of such drugs. Very selective agents have great potential as tools for further study of the role the Na/Ca exchanger plays in arrhythmogenesis. For therapy, they may have their specific indications, but they carry the risk of increasing Ca2+ load of the cell. Agentswith a broader action that includes Ca2+ channel blockmay have advantages in other conditions, e.g. with Ca2+ overload. Additional actions such as block of K+ channels, which may be unwanted in e.g. heart failure, may be used to advantage as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen DG, Eisner DA, Lab MJ, Orchard CH (1983) The effects of low sodium solutions on intracellular calcium concentration and tension in ferret ventricular muscle. J Physiol (Lond) 345:391–407

    PubMed  CAS  Google Scholar 

  • Allessie M, Ausma J, Schotten U (2002) Electrical, contractile and structural remodeling during atrial fibrillation. Cardiovasc Res 54:230–246

    Article  PubMed  CAS  Google Scholar 

  • Allessie MA, Boyden PA, Camm AJ, Kleber AG, Lab MJ, Legato MJ, Rosen MR, Schwartz PJ, Spooner PM, Van Wagoner DR, Waldo AL (2001) Pathophysiology and prevention of atrial fibrillation. Circulation 103:769–777

    PubMed  CAS  Google Scholar 

  • Amran MS, Hashimoto K, Homma N (2004) Effects of sodium-calcium exchange inhibitors, KB-R7943 and SEA0400, on aconitine-induced arrhythmias in guinea pigs in vivo, in vitro, and in computer simulation studies. J Pharmacol Exp Ther 310:83–89

    Article  PubMed  CAS  Google Scholar 

  • Antzelevitch C, Sun ZQ, Zhang ZQ, Yan GX (1996) Cellular and ionic mechanisms underlying erythromycin-induced long QT intervals and torsade de pointes. J Am Coll Cardiol 28:1836–1848

    Article  PubMed  CAS  Google Scholar 

  • Armoundas AA, Hobai IA, Tomaselli GF, Winslow RL, O’Rourke B (2003) Role of sodium-calcium exchanger in modulating the action potential of ventricular myocytes from normal and failing hearts. Circ Res 93:46–53

    Article  PubMed  CAS  Google Scholar 

  • Avkiran M, Marber MS (2002) Na(+)/H(+) exchange inhibitors for cardioprotective therapy: progress, problems and prospects. J Am Coll Cardiol 39:747–753

    Article  PubMed  CAS  Google Scholar 

  • Baartscheer A, Schumacher CA, Belterman CN, Coronel R, Fiolet JW (2003a) SR calcium handling and calcium after-transients in a rabbit model of heart failure. Cardiovasc Res 58:99–108

    Article  PubMed  CAS  Google Scholar 

  • Baartscheer A, Schumacher CA, Belterman CN, Coronel R, Fiolet JW (2003b) [Na+]i and the driving force of the Na+/Ca2+-exchanger in heart failure. Cardiovasc Res 57:986–995

    Article  PubMed  CAS  Google Scholar 

  • Baartscheer A, Schumacher CA, van Borren MM, Belterman CN, Coronel R, Fiolet JW (2003c) Increased Na+/H+-exchange activity is the cause of increased [Na+]i and underlies disturbed calcium handling in the rabbit pressure and volume overload heart failure model. Cardiovasc Res 57:1015–1024

    Article  PubMed  CAS  Google Scholar 

  • Baczko I, Giles WR, Light PE (2003) Resting membrane potential regulates Na(+)-Ca2+ exchange-mediated Ca2+ overload during hypoxia-reoxygenation in rat ventricular myocytes. J Physiol 550:889–898

    Article  PubMed  CAS  Google Scholar 

  • Bassani RA, Bassani JWM, Bers DM (1995) Relaxation in ferret ventricular myocytes: role of the sarcolemmal Ca ATPase. Pflugers Arch 430:573–578

    Article  PubMed  CAS  Google Scholar 

  • Benardeau A, Hatem SN, Rucker Martin C, Le Grand B, Mace L, Dervanian P, Mercadier JJ, Coraboeuf E (1996) Contribution of Na+/Ca2+ exchange to action potential of human atrial myocytes. Am J Physiol 271:H1151–H1161

    PubMed  CAS  Google Scholar 

  • Benndorf K, Friedrich M, Hirche H (1991) Reoxygenation-induced arrhythmogenic transient inward currents in isolated cells of the guinea-pig heart. Pflügers Arch 418:248–260

    Article  PubMed  CAS  Google Scholar 

  • Bennett PB, Yazawa K, Makita N, George AL Jr (1995) Molecular mechanism for an inherited cardiac arrhythmia. Nature 376:683–685

    Article  PubMed  CAS  Google Scholar 

  • Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415:198–205

    Article  PubMed  CAS  Google Scholar 

  • Bers DM, Bassani JWM, Bassani RA (1993) Competition and redistribution among calcium transport systems in rabbit cardiac myocytes. Cardiovasc Res 27:1772–1777

    PubMed  CAS  Google Scholar 

  • Beuckelmann DJ, Nabauer M, Erdmann E (1992) Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure. Circulation 85:1046–1055

    PubMed  CAS  Google Scholar 

  • Blaustein MP, Lederer WJ (1999) Sodium/calcium exchange: its physiological implications. Physiol Rev 79:763–854

    PubMed  CAS  Google Scholar 

  • Bokhari F, Newman D, Greene M, Korley V, Mangat I, Dorian P (2004) Long-term comparison of the implantable cardioverter defibrillator versus amiodarone: eleven-year follow-up of a subset of patients in the Canadian Implantable Defibrillator Study (CIDS). Circulation 110:112–116

    Article  PubMed  CAS  Google Scholar 

  • Bouchard R, Omelchenko A, Le HD, Choptiany P, Matsuda T, Baba A, Takahashi K, Nicoll DA, Philipson KD, Hnatowich M, Hryshko LV (2004) Effects of SEA0400 on mutant NCX1.1 Na+-Ca2+ exchangers with altered ionic regulation. Mol Pharmacol 65:802–810

    Article  PubMed  CAS  Google Scholar 

  • Boutjdir M, El-Sherif N, Gough WB (1990) Effects of caffeine and ryanodine on delayed afterdepolarizations and sustained rhythmic activity in 1-day-old myocardial infarction in the dog. Circulation 81:1393–1400

    PubMed  CAS  Google Scholar 

  • Boutjdir M, Restivo M, Wei Y, Stergiopoulos K, el Sherif N (1994) Early afterdepolarization formation in cardiac myocytes: analysis of phase plane patterns, action potential, and membrane currents. J Cardiovasc Electrophysiol 5:609–620

    PubMed  CAS  Google Scholar 

  • Boyden PA, Pu J, Pinto J, Keurs HE (2000) Ca(2+) transients and Ca(2+) waves in Purkinje cells: role in action potential initiation. Circ Res 86:448–455

    PubMed  CAS  Google Scholar 

  • Bridge JHB, Smolley JR, Spitzer KW (1990) The relationship between charge movements associated with ICa and INa-Ca in cardiac myocytes. Science 248:376–378

    PubMed  CAS  Google Scholar 

  • Capogrossi MC, Kort AA, Spurgeon HA, Suárez-Isla BA, Lakatta EG (1984) Spontaneous contractile waves and stimulated contractions exhibit the same Ca2+ and species dependence in isolated cardiac myocytes and papillary muscles. Biophys J 45:94a

    Google Scholar 

  • Carafoli E (1987) Intracellular calcium homeostasis. Annu Rev Biochem 56:395–433

    Article  PubMed  CAS  Google Scholar 

  • The Cardiac Arrhythmia Suppression Trial (CAST) Investigators (1989) Preliminary report: effect of encainide and flecainide on mortality in a randomized trial of arrhythmia suppression after myocardial infarction. N Engl J Med 321:406–412

    Google Scholar 

  • The Cardiac Arrhythmia Suppression Trial II Investigators (1992) Effect of the antiarrhythmic agent moricizine on survival after myocardial infarction. N Engl J Med 327:227–233

    Google Scholar 

  • Carmeliet E(1999) Cardiac ionic currents and acute ischemia: from channels to arrhythmias. Physiol Rev 79:917–1017

    Google Scholar 

  • Caroni P, Carafoli E (1981) The Ca2+-pumping ATPase of heart sarcolemma. J Biol Chem 256:3263–3270

    PubMed  CAS  Google Scholar 

  • Chen SA, Chen YJ, Yeh HI, Tai CT, Chen YC, Lin CI (2003) Pathophysiology of the pulmonary vein as an atrial fibrillation initiator. Pacing Clin Electrophysiol 26:1576–1582

    Article  PubMed  Google Scholar 

  • Chen YJ, Chen SA, Chang MS, Lin CI (2000) Arrhythmogenic activity of cardiac muscle in pulmonary veins of the dog: implication for the genesis of atrial fibrillation. Cardiovasc Res 48:265–273

    Article  PubMed  CAS  Google Scholar 

  • Chen YJ, Chen SA, Chen YC, Yeh HI, Chan P, Chang MS, Lin CI (2001) Effects of rapid atrial pacing on the arrhythmogenic activity of single cardiomyocytes from pulmonary veins: implication in initiation of atrial fibrillation. Circulation 104:2849–2854

    PubMed  CAS  Google Scholar 

  • Chen YJ, Chen YC, Yeh HI, Lin CI, Chen SA (2002) Electrophysiology and arrhythmogenic activity of single cardiomyocytes from canine superior vena cava. Circulation 105:2679–2685

    Article  PubMed  Google Scholar 

  • Cheng H, Lederer MR, Lederer WJ, Cannell MB (1996) Calcium sparks and [Ca2+]i waves in cardiac myocytes. Am J Physiol 270:C148–C159

    PubMed  CAS  Google Scholar 

  • Chin T, Spitzer KW, Philipson KD, Bridge JHB (1993) The effect of exchanger inhibitory peptide (XIP) on sodium-calcium exchange current in guinea pig ventricular cells. Circ Res 72:497–503

    PubMed  CAS  Google Scholar 

  • Choi HS, Eisner DA (1999a) The effects of inhibition of the sarcolemmal Ca-ATPase on systolic calcium fluxes and intracellular calcium concentration in rat ventricular myocytes. Pflugers Arch 437:966–971

    Article  PubMed  CAS  Google Scholar 

  • Choi HS, Eisner DA (1999b) The role of sarcolemmal Ca2+-ATPase in the regulation of resting calcium concentration in rat ventricular myocytes. J Physiol (Lond) 515:109–118

    Article  PubMed  CAS  Google Scholar 

  • Choi HS, Trafford AW, Eisner DA (2000) Measurement of calcium entry and exit in quiescent rat ventricular myocytes. Pflugers Arch 440:600–608

    PubMed  CAS  Google Scholar 

  • Clancy CE, Rudy Y (1999) Linking a genetic defect to its cellular phenotype in a cardiac arrhythmia. Nature 400:566–569

    Article  PubMed  CAS  Google Scholar 

  • Cordeiro JM, Howlett SE, Ferrier GR (1994) Simulated ischaemia and reperfusion in isolated guinea pig ventricular myocytes. Cardiovasc Res 28:1794–1802

    PubMed  CAS  Google Scholar 

  • Cox DA, Conforti L, Sperelakis N, Matlib MA (1993) Selectivity of inhibition of Na(+)-Ca2+ exchange of heart mitochondria by benzothiazepine CGP-37157. J Cardiovasc Pharmacol 21:595–599

    Article  PubMed  CAS  Google Scholar 

  • de Groot SH, Schoenmakers M, Molenschot MM, Leunissen JD, Wellens HJ, Vos MA (2000) Contractile adaptations preserving cardiac output predispose the hypertrophied canine heart to delayed afterdepolarization-dependent ventricular arrhythmias. Circulation 102:2145–2151

    PubMed  Google Scholar 

  • Díaz ME, Trafford AW, O’Neill SC, Eisner DA (1997) Measurement of sarcoplasmic reticulum Ca2+ content and sarcolemmal Ca2+ fluxes in isolated rat ventricular myocytes during spontaneous Ca2+ release. J Physiol (Lond) 501:3–16

    Article  PubMed  Google Scholar 

  • Dipla K, Mattiello JA, Margulies KB, Jeevanandam V, Houser SR (1999) The sarcoplasmic reticulum and the Na+/Ca2+ exchanger both contribute to the Ca2+ transient of failing human ventricular myocytes. Circ Res 84:435–444

    PubMed  CAS  Google Scholar 

  • DiPolo R, Beaugé L (1979) Physiological role of ATP-driven calcium pump in squid axon. Nature 278:271–273

    Article  PubMed  CAS  Google Scholar 

  • Edgell RM, De Souza AI, MacLeod KT (2000) Relative importance of SR load and cytoplasmic calcium concentration in the genesis of aftercontractions in cardiac myocytes. Cardiovasc Res 47:769–777

    Article  Google Scholar 

  • Egan TM, Noble D, Noble SJ, Powell T, Spindler AJ, Twist VW (1989) Sodium-calcium exchange during the action potential in guinea-pig ventricular cells. J Physiol (Lond) 411:639–661

    PubMed  CAS  Google Scholar 

  • Ehara T, Matsuoka S, Noma A (1989) Measurement of reversal potential of Na+-Ca2+ exchange current in single guinea-pig ventricular cells. J Physiol (Lond) 410:227–249

    PubMed  CAS  Google Scholar 

  • Ehrlich JR, Cha TJ, Zhang L, Chartier D, Melnyk P, Hohnloser SH, Nattel S (2003) Cellular electrophysiology of canine pulmonary vein cardiomyocytes: action potential and ionic current properties. J Physiol (Lond) 551:801–813

    Article  PubMed  CAS  Google Scholar 

  • Eigel BN, Hadley RW (2001) Antisense inhibition of Na+/Ca2+ exchange during anoxia/reoxygenation in ventricular myocytes. Am J Physiol Heart Circ Physiol 281:H2184–H2190

    PubMed  CAS  Google Scholar 

  • Eisner DA, Lederer WJ, Vaughan Jones RD (1984) The quantitative relationship between twitch tension and intracellular sodium activity in sheep cardiac Purkinje fibres. J Physiol (Lond) 355:251–266

    PubMed  CAS  Google Scholar 

  • Eisner DA, Trafford AW, Diaz ME, Overend CL, O’Neill SC (1998) The control of Ca release from the cardiac sarcoplasmic reticulum: regulation versus autoregulation. Cardiovasc Res 38:589–604

    Article  PubMed  CAS  Google Scholar 

  • Eisner DA, Choi HS, Diaz ME, O’Neill SC, Trafford AW(2000) Integrative analysis of calcium cycling in cardiac muscle. Circ Res 87:1087–1094

    PubMed  CAS  Google Scholar 

  • el Sherif N, Zeiler RH, Craelius W, Gough WB, Henkin R (1988) QTU prolongation and polymorphic ventricular tachyarrhythmias due to bradycardia-dependent early afterdepolarizations. Afterdepolarizations and ventricular arrhythmias. Circ Res 63:286–305

    PubMed  Google Scholar 

  • Epstein AE (2004) An update on implantable cardioverter-defibrillator guidelines. Curr Opin Cardiol 19:23–25

    Article  PubMed  Google Scholar 

  • Faber GM, Rudy Y (2000) Action potential and contractility changes in [Na(+)](i) overloaded cardiac myocytes: a simulation study. Biophys J 78:2392–2404

    PubMed  CAS  Google Scholar 

  • Fedida D, Noble D, Rankin AC, Spindler AJ (1987) The arrhythmogenic transient inward current ITI and related contraction in isolated guinea-pig ventricular myocytes. J Physiol (Lond) 392:523–542

    PubMed  CAS  Google Scholar 

  • Ferrier GR, Saunders JH, Mendez C (1973) A cellular mechanism for the generation of ventricular arrhythmias by acetylstrophanthidin. Circ Res 32:600–609

    PubMed  CAS  Google Scholar 

  • Fujioka Y, Komeda M, Matsuoka S (2000) Stoichiometry of Na+-Ca2+ exchange in inside-out patches excised from guinea-pig ventricular myocytes. J Physiol (Lond) 523:339–351

    Article  PubMed  CAS  Google Scholar 

  • Gatto C, Milanik MA (1993) Inhibition of red blood cell calcium pump by eosin and other fluorescein analogues. Am J Physiol 264:C1577–C1586

    PubMed  CAS  Google Scholar 

  • Goldhaber JI, Lamp ST, Walter DO, Garfinkel A, Fukumoto GH, Weiss JN (1999) Local regulation of the threshold for calcium sparks in rat ventricular myocytes: role of sodium-calcium exchange. J Physiol (Lond) 520:431–438

    Article  PubMed  CAS  Google Scholar 

  • Harrison SM, McCall E, Boyett MR (1992) The relationship between contraction and intracellular sodium in rat and guinea-pig ventricular myocytes. J Physiol (Lond) 449:517–550

    PubMed  CAS  Google Scholar 

  • Hasenfuss G, Pieske B (2002) Calcium cycling in congestive heart failure. J Mol Cell Cardiol 34:951–969

    Article  PubMed  CAS  Google Scholar 

  • Henderson SA, Goldhaber JI, So JM, Han T, Motter C, Ngo A, Chantawansri C, Ritter MR, Friedlander M, Nicoll DA, Frank JS, Jordan MC, Roos KP, Ross RS, Philipson KD (2004) Functional adult myocardium in the absence of Na+-Ca2+ exchange: cardiac specific knockout of NCX1. Circ Res 95:604–611

    Article  PubMed  CAS  Google Scholar 

  • Hirano Y, Moscucci A, January CT (1992) Direct measurement of L-type Ca2+ window current in heart cells. Circ Res 70

    Google Scholar 

  • Hobai IA, O’Rourke B(2000) Enhanced Ca2+-activated Na+-Ca2+ exchange activity in canine pacing-induced heart failure. Circ Res 87:690–698

    PubMed  CAS  Google Scholar 

  • Hobai IA, O’Rourke B (2004) The potential of Na+/Ca2+ exchange blockers in the treatment of cardiac disease. Expert Opin Investig Drugs 13:653–664

    Article  PubMed  CAS  Google Scholar 

  • Hobai IA, Maack C, O’Rourke B (2004) Partial inhibition of sodium/calcium exchange restores cellular calcium handling in canine heart failure. Circ Res 95:292–299

    Article  PubMed  CAS  Google Scholar 

  • Iwamoto T, Watano T, Shigekawa M(1996) A novel isothiourea derivative selectively inhibits the reverse mode of Na+/Ca2+ exchange in cells expressing NCX1. J Biol Chem 271:22391–22397

    Article  PubMed  CAS  Google Scholar 

  • Iwamoto T, Inoue Y, Ito K, Sakaue TT, Kita S, Katsuragi T (2004a) The exchanger inhibitory peptide region-dependent inhibition of Na+/Ca2+ exchange by SN-6 [2-[4-(4-nitrobenzyloxy)benzyl]thiazolidine-4-carboxylic acid ethyl ester], a novel benzyloxyphenyl derivative. Mol Pharmacol 66:45–55

    Article  PubMed  CAS  Google Scholar 

  • Iwamoto T, Kita S, Uehara A, Imanaga I, Matsuda T, Baba A, Katsuragi T (2004b) Molecular determinants of Na+/Ca2+ exchange (NCX1) inhibition by SEA0400. J Biol Chem 279:7544–7553

    Article  PubMed  CAS  Google Scholar 

  • Janse MJ (2004) Electrophysiological changes in heart failure and their relationship to arrhythmogenesis. Cardiovasc Res 61:208–217

    Article  PubMed  CAS  Google Scholar 

  • January CT, Riddle JM(1989) Early afterdepolarizations: mechanism of induction and block. A role for L-type Ca2+ current. Circ Res 64:977–990

    PubMed  CAS  Google Scholar 

  • Janvier NC, Boyett MR (1996) The role of Na-Ca exchange current in the cardiac action potential. Cardiovasc Res 32:69–84

    Article  PubMed  CAS  Google Scholar 

  • Janvier NC, Harrison SM, Boyett MR (1997) The role of inward Na+-Ca2+ exchange current in the ferret ventricular action potential. J Physiol (Lond) 498:611–625

    PubMed  CAS  Google Scholar 

  • Kaczorowski GJ, Slaughter RS, King VF, Garcia ML (1989) Inhibitors of sodium-calcium exchange: identification and development of probes of transport activity. Biochim Biophys Acta 988:287–302

    PubMed  CAS  Google Scholar 

  • Kang TM, Hilgemann DW (2004) Multiple transport modes of the cardiac Na+/Ca2+ exchanger. Nature 427:544–548

    Article  PubMed  CAS  Google Scholar 

  • Kass RS, Lederer WJ, Tsien RW, Weingart R (1978) Role of calcium ions in transient inward currents and aftercontractions induced by strophanthidin in cardiac Purkinje fibres. J Physiol (Lond) 281:187–208

    PubMed  CAS  Google Scholar 

  • Kendall MJ (2000) Clinical trial data on the cardioprotective effects of beta-blockade. Basic Res Cardiol 95 Suppl 1:I25–I30

    Article  Google Scholar 

  • Kimura J, Watano T, Kawahara M, Sakai E, Yatabe J (1999) Direction-independent block of bi-directional Na+/Ca2+ exchange current by KB-R7943 in guinea-pig cardiac myocytes. Br J Pharmacol 128:969–974

    Article  PubMed  CAS  Google Scholar 

  • Ladilov Y, Haffner S, Balser-Schafer C, Maxeiner H, Piper HM (1999) Cardioprotective effects of KB-R7943: a novel inhibitor of the reverse mode of Na+/Ca2+ exchanger. Am J Physiol 276:H1868–H1876

    PubMed  CAS  Google Scholar 

  • Lahat H, Pras E, Olender T, Avidan N, Ben Asher E, Man O, Levy-Nissenbaum E, Khoury A, Lorber A, Goldman B, Lancet D, Eldar M (2001) A missense mutation in a highly conserved region of CASQ2 is associated with autosomal recessive catecholamine-induced polymorphic ventricular tachycardia in Bedouin families from Israel. Am J Hum Genet 69:1378–1384

    Article  PubMed  CAS  Google Scholar 

  • Laitinen PJ, Brown KM, Piippo K, Swan H, Devaney JM, Brahmbhatt B, Donarum EA, Marino M, Tiso N, Viitasalo M, Toivonen L, Stephan DA, Kontula K (2001) Mutations of the cardiac ryanodine receptor (RyR2) gene in familial polymorphic ventricular tachycardia. Circulation 103:485–490

    PubMed  CAS  Google Scholar 

  • Lamont C, Eisner DA (1996) The sarcolemmal mechanisms involved in the control of diastolic intracellular calcium in isolated rat cardiac trabeculae. Pflugers Arch 432:961–969

    Article  PubMed  CAS  Google Scholar 

  • Leblanc N, Hume JR (1990) Sodium current-induced release of calcium from cardiac sarcoplasmic reticulum. Science 248:372–376

    PubMed  CAS  Google Scholar 

  • Lederer WJ, Tsien RW (1976) Transient inward current underlying arrhythmogenic effects of cardiotonic steroids in Purkinje fibers. J Physiol (Lond) 263:73–100

    PubMed  CAS  Google Scholar 

  • Lederer WJ, Niggli E, Hadley RW(1990) Sodium-calcium exchange in excitable cells: fuzzy space. Science 248:283

    PubMed  CAS  Google Scholar 

  • Lee C, Visen NS, Dhalla NS, Le HD, Isaac M, Choptiany P, Gross G, Omelchenko A, Matsuda T, Baba A, Takahashi K, Hnatowich M, Hryshko LV (2004) Inhibitory profile of SEA0400 [2-[4-[(2,5-difluorophenyl)methoxy]phenoxy]-5-ethoxyaniline] assessed on the cardiac Na+-Ca2+ exchanger, NCX1.1. J Pharmacol Exp Ther 311:748–757

    Article  PubMed  CAS  Google Scholar 

  • Levi AJ, Spitzer KW, Kohmoto O, Bridge JHB (1994) Depolarization-induced Ca entry via Na-Ca exchange triggers SR release in guinea pig cardiac myocytes. Am J Physiol 266:H1422–H1433

    PubMed  CAS  Google Scholar 

  • Li D, Melnyk P, Feng J, Wang Z, Petrecca K, Shrier A, Nattel S (2000) Effects of experimental heart failure on atrial cellular and ionic electrophysiology. Circulation 101:2631–2638

    PubMed  CAS  Google Scholar 

  • Li Z, Nicoll DA, Collins A, Hilgemann DW, Filoteo AG, Penniston JT, Weiss JN, Tomich JM, Philipson KD (1991) Identification of a peptide inhibitor of the cardiac sarcolemmal Na(+)-Ca2+ exchanger. J Biol Chem 266:1014–1020

    PubMed  CAS  Google Scholar 

  • Lipp P, Pott L, Callewaert G, Carmeliet E (1990) Simultaneous recording of Indo-1 fluorescence and Na+/Ca2+ exchange current reveals two components of Ca2+-release from sarcoplasmic reticulum of cardiac atrial myocytes. FEBS Lett 275:181–184

    Article  PubMed  CAS  Google Scholar 

  • Lipp P, Schwaller B, Niggli E (1995) Specific inhibition of NA-Ca exchange function by antisense oligodeoxynucleotides. FEBS Lett 364:198–202

    Article  PubMed  CAS  Google Scholar 

  • Litwin SE, Li J, Bridge JH (1998) Na-Ca exchange and the trigger for sarcoplasmic reticulum Ca release: studies in adult rabbit ventricular myocytes. Biophys J 75:359–371

    PubMed  CAS  Google Scholar 

  • Luo CH, Rudy Y (1994) A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ Res 74:1071–1096

    PubMed  CAS  Google Scholar 

  • Mechmann S, Pott L (1986) Identification of Na-Ca exchange current in single cardiac myocytes. Nature 319:597–599

    Article  PubMed  CAS  Google Scholar 

  • Members of the Sicilan Gambit (2001)New approaches to antiarrhythmic therapy: emerging therapeutic applications of the cell biology of cardiac arrhythmias. Cardiovasc Res 52:345–360

    Article  Google Scholar 

  • Miyamoto S, Zhu BM, Kamiya K, Nagasawa Y, Hashimoto K (2002) KB-R7943, a Na+/Ca2+ exchange inhibitor, does not suppress ischemia/reperfusion arrhythmias nor digitalis arrhythmias in dogs. Jpn J Pharmacol 90:229–235

    Article  PubMed  CAS  Google Scholar 

  • Miyata A, Zipes DP, Hall S, Rubart M (2002) Kb-R7943 prevents acute, atrial fibrillationinduced shortening of atrial refractoriness in anesthetized dogs. Circulation 106:1410–1419

    Article  PubMed  CAS  Google Scholar 

  • Mohler PJ, Schott JJ, Gramolini AO, Dilly KW, Guatimosim S, duBell WH, Song LS, Haurogne K, Kyndt F, Ali ME, Rogers TB, Lederer WJ, Escande D, Le Marec H, Bennett V (2003) Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature 421:634–639

    Article  PubMed  CAS  Google Scholar 

  • Mubagwa K, Wei Lin, Sipido KR, Bosteels S, Flameng W(1997) Monensin-induced reversal of positive force-frequency relationship in cardiac muscle: role of intracellular sodium in rest-dependent potentiation of contraction. J Mol Cell Cardiol 29:977–989

    Article  PubMed  CAS  Google Scholar 

  • Mukai M, Terada H, Sugiyama S, Satoh H, Hayashi H (2000) Effects of a selective inhibitor of Na+/Ca2+ exchange, KB-R7943, on reoxygenation-induced injuries in guinea pig papillary muscles. J Cardiovasc Pharmacol 35:121–128

    Article  PubMed  CAS  Google Scholar 

  • Mulder BJM, de Tombe PP, ter Keurs HE (1989) Spontaneous and propagated contractions in rat cardiac trabeculae. J Gen Physiol 93:943–961

    Article  PubMed  CAS  Google Scholar 

  • Myerburg RJ, Mitrani R, Interian A Jr, Castellanos A (1998) Interpretation of outcomes of antiarrhythmic clinical trials: design features and population impact. Circulation 97:1514–1521

    PubMed  CAS  Google Scholar 

  • Nagy ZA, Virag L, Toth A, Biliczki P, Acsai K, Banyasz T, Nanasi P, Papp JG, Varro A (2004) Selective inhibition of sodium-calcium exchanger by SEA-0400 decreases early and delayed afterdepolarization in canine heart. Br J Pharmacol 143:827–831

    Article  PubMed  CAS  Google Scholar 

  • Nakamura A, Harada K, Sugimoto H, Nakajima F, Nishimura N(1998) [Effects of KB-R7943, a novel Na+/Ca2+ exchange inhibitor, on myocardial ischemia/reperfusion injury]. Nippon Yakurigaku Zasshi 111:105–115

    PubMed  CAS  Google Scholar 

  • Nattel S, Li D (2000) Ionic remodeling in the heart: pathophysiological significance and new therapeutic opportunities for atrial fibrillation. Circ Res 87:440–447

    PubMed  CAS  Google Scholar 

  • Nattel S, Yue L, Wang Z (1999) Cardiac ultrarapid delayed rectifiers: a novel potassium current family of functional similarity and molecular diversity. Cell Physiol Biochem 9:217–226

    Article  PubMed  CAS  Google Scholar 

  • Negretti N, O’Neill SC, Eisner DA (1993) The relative contributions of different intracellular and sarcolemmal systems to relaxation in rat ventricular myocytes. Cardiovasc Res 27:1826–1830

    Article  PubMed  CAS  Google Scholar 

  • Negretti N, Varro A, Eisner DA (1995) Estimate of net calcium fluxes and sarcoplasmic reticulum calcium content during systole in rat ventricular myocytes. J Physiol (Lond) 486:581–591

    PubMed  CAS  Google Scholar 

  • Noble D, Noble SJ, Bett GC, Earm YE, Ho WK, So IK (1991) The role of sodium-calcium exchange during the cardiac action potential. Ann N Y Acad Sci 639:334–353

    PubMed  CAS  Google Scholar 

  • Nuyens D, Stengl M, Dugarmaa S, Rossenbacker T, Compernolle V, Rudy Y, Smits JF, Flameng W, Clancy CE, Moons L, Vos MA, Dewerchin M, Benndorf K, Collen D, Carmeliett E, Carmeliet P (2001) Abrupt rate accelerations or premature beats cause life-threatening arrhythmias in mice with long-QT3 syndrome. Nat Med 7:1021–1027

    Article  PubMed  CAS  Google Scholar 

  • O’Rourke B, Kass DA, Tomaselli GF, Kaab S, Tunin R, Marban E (1999) Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, I: experimental studies. Circ Res 84:562–570

    PubMed  CAS  Google Scholar 

  • Omelchenko A, Bouchard R, Le HD, Choptiany P, Visen N, Hnatowich M, Hryshko LV (2003) Inhibition of canine (NCX1.1) and Drosophila (CALX1.1) Na(+)-Ca(2+) exchangers by 7-chloro-3,5-dihydro-5-phenyl-1H-4,1-benzothiazepine-2-one (CGP-37157). J Pharmacol Exp Ther 306:1050–1057

    Article  PubMed  CAS  Google Scholar 

  • Paulus WJ, Goethals MA, Sys SU (1992) Failure of myocardial inactivation: a clinical assessment in the hypertrophied heart. Basic Res Cardiol 87 Suppl 2:145–161

    Google Scholar 

  • Piacentino V III, Weber CR, Chen X, Weisser-Thomas J, Margulies KB, Bers DM, Houser SR (2003) Cellular basis of abnormal calcium transients of failing human ventricular myocytes. Circ Res 92:651–658

    Article  PubMed  CAS  Google Scholar 

  • Pieske B, Maier LS, Piacentino V, Weisser J, Hasenfuss G, Houser S (2002) Rate dependence of [Na+]i and contractility in nonfailing and failing human myocardium. Circulation 106:447–453

    Article  PubMed  CAS  Google Scholar 

  • Pogwizd SM (1995) Nonreentrant mechanisms underlying spontaneous ventricular arrhythmias in a model of nonischemic heart failure in rabbits. Circulation 92:1034–1048

    PubMed  CAS  Google Scholar 

  • Pogwizd SM (2003) Clinical potential of sodium-calcium exchanger inhibitors as antiarrhythmic agents. Drugs 63:439–452

    Article  PubMed  CAS  Google Scholar 

  • Pogwizd SM, Hoyt RH, Saffitz JE, Corr PB, Cox JL, Cain ME (1992) Reentrant and focal mechanisms underlying ventricular tachycardia in the human heart. Circulation 86:1872–1887

    PubMed  CAS  Google Scholar 

  • Pogwizd SM, Qi M, Yuan W, Samarel AM, Bers DM (1999) Upregulation of Na+/Ca2+ exchanger expression and function in an arrhythmogenic rabbit model of heart failure. Circ Res 85:1009–1019

    PubMed  CAS  Google Scholar 

  • Pogwizd SM, Schlotthauer K, Li L, Yuan W, Bers DM (2001) Arrhythmogenesis and contractile dysfunction in heart failure: roles of sodium-calcium exchange, inward rectifier potassium current, and residual β-adrenergic responsiveness. Circ Res 88:1159–1167

    PubMed  CAS  Google Scholar 

  • Pogwizd SM, Sipido KR, Verdonck F, Bers DM (2003) Intracellular Na in animal models of hypertrophy and heart failure: contractile function and arrhythmogenesis. Cardiovasc Res 57:887–896

    Article  PubMed  CAS  Google Scholar 

  • Priori SG, Napolitano C, Tiso N, Memmi M, Vignati G, Bloise R, Sorrentino V, Danieli GA (2001) Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation 103:196–200

    PubMed  CAS  Google Scholar 

  • Reuter H, Henderson SA, Han T, Matsuda T, Baba A, Ross RS, Goldhaber JI, Philipson KD (2002) Knockout mice for pharmacological screening: testing the specificity of Na+-Ca2+ exchange inhibitors. Circ Res 91:90–92

    Article  PubMed  CAS  Google Scholar 

  • Rosen MR, Gelband H, Hoffman BF (1973) Correlation between effects of ouabain on the canine electrocardiogram and transmembrane potentials of isolated Purkinje fibers. Circulation 47:65–72

    PubMed  CAS  Google Scholar 

  • Salvador JM, Inesi G, Rigaud J-L, Mata AM (1998) Ca2+ transport by reconstituted synaptosomal ATPase is associated with H+ countertransport and net charge displacement. J Biol Chem 273:18230–18234

    Article  PubMed  CAS  Google Scholar 

  • Satoh H, Ginsburg KS, Qing K, Terada H, Hayashi H, Bers DM (2000) KB-R7943 block of Ca2+ influx via Na+/Ca2+ exchange does not alter twitches or glycoside inotropy but prevents Ca2+ overload in rat ventricular myocytes. Circulation 101:1441–1446

    PubMed  CAS  Google Scholar 

  • Satoh H, Mukai M, Urushida T, Katoh H, Terada H, Hayashi H (2003) Importance of Ca2+ influx by Na+/Ca2+ exchange under normal and sodium-loaded conditions in mammalian ventricles. Mol Cell Biochem 242:11–17

    Article  PubMed  CAS  Google Scholar 

  • Schillinger W, Fiolet JW, Schlotthauer K, Hasenfuss G (2003) Relevance of Na+-Ca2+ exchange in heart failure. Cardiovasc Res 57:921–933

    Article  PubMed  CAS  Google Scholar 

  • Schuh K, Uldrijan S, Telkamp M, Rothlein N, Neyses L (2001) The plasmamembrane calmodulin-dependent calcium pump: a major regulator of nitric oxide synthase I. J Cell Biol 155:201–205

    Article  PubMed  CAS  Google Scholar 

  • Schwiening CJ, Kennedy HJ, Thomas RC (1993) Calcium-hydrogen exchange by the plasma membrane Ca-ATPase of voltage-clamped snail neurons. Proc R Soc Lond B Biol Sci 253:285–289

    Article  CAS  Google Scholar 

  • Sham JSK, Cleemann L, Morad M (1995) Functional coupling of Ca2+ channels and ryanodine receptors in cardiac myocytes. Proc Natl Acad Sci U S A 92:121–125

    PubMed  CAS  Google Scholar 

  • Shannon TR, Wang F, Puglisi J, Weber C, Bers DM (2004) A mathematical treatment of integrated Ca dynamics within the ventricular myocyte. Biophys J 87:3351–3371

    Article  PubMed  CAS  Google Scholar 

  • Shorofsky SR, Aggarwal R, Corretti M, Baffa JM, Strum JM, Al-Seikhan BA, Kobayashi YM, Jones LR, Wier WG, Balke CW (1999) Cellular mechanisms of altered contractility in the hypertrophied heart. Circ Res 84:424–434

    PubMed  CAS  Google Scholar 

  • Siegl PK, Cragoe EJJ, Trumble MJ, Kaczorowski GJ (1984) Inhibition of Na+/Ca2+ exchange in membrane vesicle and papillary muscle preparations from guinea pig heart by analogs of amiloride. Proc Natl Acad Sci U S A 81:3238–3242

    PubMed  CAS  Google Scholar 

  • Sipido KR, Callewaert G, Porciatti F, Vereecke J, Carmeliet E (1995) [Ca2+]i-dependent membrane currents in guinea-pig ventricular cells in the absence of Na/Ca exchange. Pflügers Arch 430:871–878

    Article  PubMed  CAS  Google Scholar 

  • Sipido KR, Maes MM, Van de Werf F (1997) Low efficiency of Ca2+ entry through the Na/Ca exchanger as trigger for Ca2+ release from the sarcoplasmic reticulum. Circ Res 81:1034–1044

    PubMed  CAS  Google Scholar 

  • Sipido KR, Volders PGA, de Groot SH, Verdonck F, Van de Werf F, Wellens HJ, Vos MA (2000) Enhanced Ca2+ release and Na/Ca exchange activity in hypertrophied canine ventricular myocytes: a potential link between contractile adaptation and arrhythmogenesis. Circulation 102:2137–2144

    PubMed  CAS  Google Scholar 

  • Sipido KR, Volders PG, Vos MA, Verdonck F (2002) Altered Na/Ca exchange activity in cardiac hypertrophy and heart failure: a new target for therapy? Cardiovasc Res 53:782–805

    Article  PubMed  CAS  Google Scholar 

  • Strehler EE, Zacharias DA (2001) Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps. Physiol Rev 81:21–50

    PubMed  CAS  Google Scholar 

  • Su Z, Sugishita K, Ritter M, Li F, Spitzer KW, Barry WH (2001) The sodium pump modulates the influence of I(Na) on [Ca2+]i transients in mouse ventricular myocytes. Biophys J 80:1230–1237

    Article  PubMed  CAS  Google Scholar 

  • Sun H, Gaspo R, Leblanc N, Nattel S (1998) Cellular mechanisms of atrial contractile dysfunction caused by sustained atrial tachycardia. Circulation 98:719–727

    PubMed  CAS  Google Scholar 

  • Takahashi K, Takahashi T, Suzuki T, Onishi M, Tanaka Y, Hamano-Takahashi A, Ota T, Kameo K, Matsuda T, Baba A (2003) Protective effects of SEA0400, a novel and selective inhibitor of the Na+/Ca2+ exchanger, on myocardial ischemia-reperfusion injuries. Eur J Pharmacol 458:155–162

    Article  PubMed  CAS  Google Scholar 

  • Tanaka H, Nishimaru K, Aikawa T, Hirayama W, Tanaka Y, Shigenobu K (2002) Effect of SEA0400, a novel inhibitor of sodium-calcium exchanger, on myocardial ionic currents. Br J Pharmacol 135:1096–1100

    Article  PubMed  CAS  Google Scholar 

  • Tieleman RG, De Langen C, Van Gelder IC, De Kam PJ, Grandjean J, Bel KJ, Wijffels MC, Allessie MA, Crijns HJ (1997) Verapamil reduces tachycardia-induced electrical remodeling of the atria. Circulation 95:1945–1953

    PubMed  CAS  Google Scholar 

  • Trafford AW, Eisner DA (2002) Excitation contraction coupling in cardiac muscle. In: Solaro RJ, Moss RL (eds) Molecular control in striated muscle contraction. Kluwer, Dordrecht, pp 49–89

    Google Scholar 

  • Trafford AW, Diaz ME, O’Neill SC, Eisner DA (1995) Comparison of subsarcolemmal and bulk calcium concentration during spontaneous calcium release in rat ventricular myocytes. J Physiol (Lond) 488:577–586

    PubMed  CAS  Google Scholar 

  • Trafford AW, Diaz ME, O’Neill SC, Eisner DA (2002) Integrative analysis of calcium signalling in cardiac muscle. Front Biosci 7:D843–D852

    PubMed  CAS  Google Scholar 

  • Van Noord T, Van Gelder IC, Tieleman RG, Bosker HA, Tuinenburg AE, Volkers C, Veeger NJ, Crijns HJ (2001) VERDICT: the Verapamil versus Digoxin Cardioversion Trial: a randomized study on the role of calcium lowering for maintenance of sinus rhythm after cardioversion of persistent atrial fibrillation. J Cardiovasc Electrophysiol 12:766–769

    Article  PubMed  Google Scholar 

  • Varro A, Biliczki P, Iost N, Virag L, Hala O, Kovacs P, Matyus P, Papp JG (2004) Theoretical possibilities for the development of novel antiarrhythmic drugs. Curr Med Chem 11:1–11

    Article  PubMed  CAS  Google Scholar 

  • Veldkamp MW, Verkerk AO, van Ginneken AC, Baartscheer A, Schumacher C, de Jonge N, de Bakker JM, Opthof T (2001) Norepinephrine induces action potential prolongation and early afterdepolarizations in ventricular myocytes isolated from human end-stage failing hearts. Eur Heart J 22:955–963

    Article  PubMed  CAS  Google Scholar 

  • Verdonck F, Volders PGA, Vos MA, Sipido KR (2003a) Increased Na+ concentration and altered Na/K pump activity in hypertrophied canine ventricular cells. Cardiovasc Res 57:1035–1043

    Article  PubMed  CAS  Google Scholar 

  • Verdonck F, Volders PGA, Vos MA, Sipido KR (2003b) Intracellular Na+ and altered Na+ transport mechanisms in cardiac hypertrophy and failure. J Mol Cell Cardiol 35:5–25

    Article  PubMed  CAS  Google Scholar 

  • Verdonck F, Mubagwa K, Sipido KR (2004) [Na(+)] in the subsarcolemmal ‘fuzzy’ space and modulation of [Ca(2+)](i) and contraction in cardiac myocytes. Cell Calcium 35:603–612

    Article  PubMed  CAS  Google Scholar 

  • Verkerk AO, Veldkamp MW, Baartscheer A, Schumacher CA, Klopping C, van Ginneken AC, Ravesloot JH (2001) Ionic mechanism of delayed afterdepolarizations in ventricular cells isolated from human end-stage failing hearts. Circulation 104:2728–2733

    PubMed  CAS  Google Scholar 

  • Volders PG, Vos MA, Szabo B, Sipido KR, de Groot SH, Gorgels AP, Wellens HJ, Lazzara R (2000) Progress in the understanding of cardiac early afterdepolarizations and torsades de pointes: time to revise current concepts. Cardiovasc Res 46:376–392

    Article  PubMed  CAS  Google Scholar 

  • Volders PGA, Kulcsar A, Vos MA, Sipido KR, Wellens HJ, Lazzara R, Szabo B (1997) Similarities between early and delayed afterdepolarizations induced by isoproterenol in canine ventricular myocytes. Cardiovasc Res 34:348–359

    Article  PubMed  CAS  Google Scholar 

  • Volders PGA, Sipido KR, Vos MA, Kulcsar A, Verduyn SC, Wellens HJJ (1998b) Cellular basis of biventricular hypertrophy and arrhythmogenesis in dogs with chronic complete atrioventricular block and acquired torsade de pointes. Circulation 98:1136–1147

    PubMed  CAS  Google Scholar 

  • Vos MA, de Groot SH, Verduyn SC, van der Zande J, Leunissen HD, Cleutjens JP, van Bilsen M, Daemen MJ, Schreuder JJ, Allessie MA, Wellens HJ (1998) Enhanced susceptibility for acquired torsade de pointes arrhythmias in the dog with chronic, complete AV block is related to cardiac hypertrophy and electrical remodeling. Circulation 98:1125–1135

    PubMed  CAS  Google Scholar 

  • Waldo AL, Camm AJ, deRuyter H, Friedman PL, MacNeil DJ, Pauls JF, Pitt B, Pratt CM, Schwartz PJ, Veltri EP (1996) Effect of d-sotalol on mortality in patients with left ventricular dysfunction after recent and remote myocardial infarction. The SWORD Investigators. Survival With Oral d-Sotalol. Lancet 348:7–12

    Article  PubMed  CAS  Google Scholar 

  • Watano T, Kimura J, Morita T, Nakanishi H (1996) A novel antagonist, No. 7943, of the Na+/Ca2+ exchange current in guinea-pig cardiac ventricular cells. Br J Pharmacol 119:555–563

    PubMed  CAS  Google Scholar 

  • Weber CR, Ginsburg KS, Philipson KD, Shannon TR, Bers DM (2001) Allosteric regulation of Na/Ca exchange current by cytosolic Ca in intact cardiac myocytes. J Gen Physiol 117:119–132

    Article  PubMed  CAS  Google Scholar 

  • Weber CR, Piacentino V, Ginsburg KS, Houser SR, Bers DM (2002) Na(+)-Ca(2+) exchange current and submembrane [Ca(2+)] during the cardiac action potential. Circ Res 90:182–189

    Article  PubMed  CAS  Google Scholar 

  • Weber CR, Ginsburg KS, Bers DM(2003) Cardiac submembrane [Na+] transients sensed by Na+-Ca2+ exchange current. Circ Res 92:950–952

    Article  PubMed  CAS  Google Scholar 

  • Wehrens XH, Abriel H, Cabo C, Benhorin J, Kass RS (2000) Arrhythmogenic mechanism of an LQT-3 mutation of the human heart Na(+) channel alpha-subunit: a computational analysis. Circulation 102:584–590

    PubMed  CAS  Google Scholar 

  • Wier WG, Cannell MB, Berlin JR, Marban E, Lederer WJ (1987) Cellular and subcellular heterogeneity of [Ca2+]i in single heart cells revealed by fura-2. Science 235:325–328

    PubMed  CAS  Google Scholar 

  • Winslow RL, Rice JJ, Jafri S, Marban E, O’Rourke B (1999) Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, II: model studies. Circ Res 84:571–586

    PubMed  CAS  Google Scholar 

  • Yoshiyama M, Takeuchi K, Hanatani A, Kim S, Omura T, Toda I, Teragaki M, Akioka K, Iwao H, Yoshikawa J (1997) Differences in expression of sarcoplasmic reticulum Ca2+-ATPase and Na+-Ca2+ exchanger genes between adjacent and remote noninfarcted myocardium after myocardial infarction. J Mol Cell Cardiol 29:255–264

    Article  PubMed  CAS  Google Scholar 

  • Yoshiyama M, Hayashi T, Nakamura Y, Omura T, Izumi Y, Matsumoto R, Takeuchi K, Kitaura Y, Yoshikawa J (2004) Effects of cellular cardiomyoplasty on ventricular remodeling assessed by Doppler echocardiography and topographic immunohistochemistry. Circ J 68:580–586

    Article  PubMed  Google Scholar 

  • Zipes DP, Wellens HJJ (1998) Sudden cardiac death. Circulation 98:2334–2351

    PubMed  CAS  Google Scholar 

  • Zygmunt AC, Goodrow RJ, Antzelevitch C (2000) INaCa contributes to electrical heterogeneity within the canine ventricle. Am J Physiol 278:H1671–H1678

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sipido, K., Varro, A., Eisner, D. (2006). Sodium Calcium Exchange as a Target for Antiarrhythmic Therapy. In: Basis and Treatment of Cardiac Arrhythmias. Handbook of Experimental Pharmacology, vol 171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29715-4_6

Download citation

Publish with us

Policies and ethics