Skip to main content

Interaction of Stress, Corticotropin-Releasing Factor, Arginine Vasopressin and Behaviour

  • Chapter
  • First Online:
Book cover Behavioral Neurobiology of Stress-related Disorders

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 18))

Abstract

Stress mediates the activation of a variety of systems ranging from inflammatory to behavioral responses. In this review we focus on two neuropeptide systems, corticotropin-releasing factor (CRF) and arginine vasopressin (AVP), and their roles in regulating stress responses. Both peptides have been demonstrated to be involved in anxiogenic and depressive effects, actions mediated in part through their regulation of the hypothalamic-pituitary-adrenal axis and the release of adrenocorticotropic hormone. Because of the depressive effects of CRF and AVP, drugs modifying the stress-associated detrimental actions of CRF and AVP are under development, particularly drugs antagonizing CRF and AVP receptors for therapy in depression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilera G (1994) Regulation of pituitary ACTH secretion during chronic stress. Front Neuroendocrinol 15:321–350

    CAS  PubMed  Google Scholar 

  • Aguilera G, Rabadan-Diehl C (2000) Vasopressinergic regulation of the hypothalamic-pituitary-adrenal axis: implications for stress adaptation. Regul Pept 96:23–29

    CAS  PubMed  Google Scholar 

  • Alescio-Lautier B, Paban V, Soumireu-Mourat B (2000) Neuromodulation of memory in the hippocampus by vasopressin. Eur J Pharmacol 405:63–72

    CAS  PubMed  Google Scholar 

  • Antoni FA (1986a) Hypothalamic control of adrenocorticotropin secretion: advances since the discovery of 41-residue corticotropin-releasing factor. Endocr Rev 7:351–378

    CAS  PubMed  Google Scholar 

  • Antoni FA (1986b) Oxytocin receptors in rat adenohypophysis: evidence from radioligand binding studies. Endocrinology 119:2393–2395

    CAS  PubMed  Google Scholar 

  • Antoni FA (1993) Vasopressinergic control of pituitary adrenocorticotropin secretion comes of age. Front Neuroendocrinol 14:76–122

    CAS  PubMed  Google Scholar 

  • Arima H, House SB, Gainer H, Aguilera G (2002) Neuronal activity is required for the circadian rhythm of vasopressin gene transcription in the suprachiasmatic nucleus in vitro. Endocrinology 143:4165–4171

    CAS  PubMed  Google Scholar 

  • Austin MC, Janosky JE, Murphy HA (2003) Increased corticotropin-releasing hormone immunoreactivity in monoamine-containing pontine nuclei of depressed suicide men. Mol Psychiatry 8:324–332

    CAS  PubMed  Google Scholar 

  • Banki CM, Karmacsi L, Bissette G, Nemeroff CB (1992) CSF corticotropin-releasing hormone and somatostatin in major depression: response to antidepressant treatment and relapse. Eur neuropsychopharmacol 2:107–113 the journal of the European College of Neuropsychopharmacology

    CAS  PubMed  Google Scholar 

  • Bao AM, Swaab DF (2010) Corticotropin-releasing hormone and arginine vasopressin in depression focus on the human postmortem hypothalamus. Vitam Horm 82:339–365

    CAS  PubMed  Google Scholar 

  • Berridge CW, Dunn AJ (1989) CRF and restraint-stress decrease exploratory behavior in hypophysectomized mice. Pharmacol Biochem Behav 34:517–519

    CAS  PubMed  Google Scholar 

  • Bilbo SD, Yirmiya R, Amat J, Paul ED, Watkins LR, Maier SF (2008) Bacterial infection early in life protects against stressor-induced depressive-like symptoms in adult rats. Psychoneuroendocrinology 33:261–269

    PubMed Central  PubMed  Google Scholar 

  • Bosch OJ, Neumann ID (2010) Vasopressin released within the central amygdala promotes maternal aggression. Eur J Neurosci 31:883–891

    PubMed  Google Scholar 

  • Britton DR, Koob GF, Rivier J, Vale W (1982) Intraventricular corticotropin-releasing factor enhances behavioral effects of novelty. Life Sci 31:363–367

    CAS  PubMed  Google Scholar 

  • Brothers SP, Wahlestedt C, Nemeroff CB (2012) Modulation of HPA axis function for treatment of mood disorders. In: Z Rankovic, M Bingham, EJ Nestler, R Hargreaves (eds) RSC drug discovery series no. 28, drug discovery for psychiatric disorders, The royal society of chemistry 2012

    Google Scholar 

  • Caffe AR, van Leeuwen FW, Luiten PG (1987) Vasopressin cells in the medial amygdala of the rat project to the lateral septum and ventral hippocampus. J Comp Neurol 261:237–252

    CAS  PubMed  Google Scholar 

  • Caldwell HK, Lee HJ, Macbeth AH, Young WS 3rd (2008) Vasopressin: behavioral roles of an “original” neuropeptide. Prog Neurobiol 84:1–24

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chadio SE, Antoni FA (1989) Characterization of oxytocin receptors in rat adenohypophysis using a radioiodinated receptor antagonist peptide. J Endocrinol 122:465–470

    CAS  PubMed  Google Scholar 

  • Champagne DL, Bagot RC, van Hasselt F, Ramakers G, Meaney MJ, de Kloet ER, Joels M, Krugers H (2008) Maternal care and hippocampal plasticity: evidence for experience-dependent structural plasticity, altered synaptic functioning, and differential responsiveness to glucocorticoids and stress. J Neurosci 28:6037–6045

    CAS  PubMed  Google Scholar 

  • Chen J, Aguilera G (2010) Vasopressin protects hippocampal neurones in culture against nutrient deprivation or glutamate-induced apoptosis. J Neuroendocrinol 22:1072–1081

    PubMed Central  PubMed  Google Scholar 

  • Chen J, Liu Y, Soh JW, Aguilera G (2009) Antiapoptotic effects of vasopressin in the neuronal cell line H32 involve protein kinase Calpha and beta. J Neurochem 110:1310–1320

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen J, Young S, Subburaju S, Sheppard J, Kiss A, Atkinson H, Wood S, Lightman S, Serradeil-Le Gal C, Aguilera G (2008) Vasopressin does not mediate hypersensitivity of the hypothalamic pituitary adrenal axis during chronic stress. Ann N Y Acad Sci 1148:349–359

    Google Scholar 

  • Chen Y, Bender RA, Frotscher M, Baram TZ (2001) Novel and transient populations of corticotropin-releasing hormone-expressing neurons in developing hippocampus suggest unique functional roles: a quantitative spatiotemporal analysis. J Neurosci 21:7171–7181

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen Y, Brunson KL, Adelmann G, Bender RA, Frotscher M, Baram TZ (2004) Hippocampal corticotropin releasing hormone: pre- and postsynaptic location and release by stress. Neuroscience 126:533–540

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen Y, Brunson KL, Muller MB, Cariaga W, Baram TZ (2000) Immunocytochemical distribution of corticotropin-releasing hormone receptor type-1 [CRF(1)]-like immunoreactivity in the mouse brain: light microscopy analysis using an antibody directed against the C-terminus. J Comp Neurol 420:305–323

    CAS  PubMed Central  PubMed  Google Scholar 

  • Collins SM, Surette M, Bercik P (2012) The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol 10:735–742

    CAS  PubMed  Google Scholar 

  • Dayas CV, Buller KM, Crane JW, Xu Y, Day TA (2001) Stressor categorization: acute physical and psychological stressors elicit distinctive recruitment patterns in the amygdala and in medullary noradrenergic cell groups. Eur J Neurosci 14:1143–1152

    CAS  PubMed  Google Scholar 

  • De Bellis MD, Gold PW, Geracioti TD Jr, Listwak SJ, Kling MA (1993) Association of fluoxetine treatment with reductions in CSF concentrations of corticotropin-releasing hormone and arginine vasopressin in patients with major depression. Am j psychiatry 150:656–657

    PubMed  Google Scholar 

  • de Wied D, Diamant M, Fodor M (1993) Central nervous system effects of the neurohypophyseal hormones and related peptides. Front Neuroendocrinol 14:251–302

    PubMed  Google Scholar 

  • Dinan TG, Cryan JF (2012) Regulation of the stress response by the gut microbiota: implications for psychoneuroendocrinology. Psychoneuroendocrinology 37:1369–1378

    CAS  PubMed  Google Scholar 

  • Dinan TG, Scott LV (2005) Anatomy of melancholia: focus on hypothalamic-pituitary-adrenal axis overactivity and the role of vasopressin. J Anat 207:259–264

    CAS  PubMed Central  PubMed  Google Scholar 

  • Donaldson ZR, Young LJ (2008) Oxytocin, vasopressin, and the neurogenetics of sociality. Science 322:900–904

    CAS  PubMed  Google Scholar 

  • Dunn AJ, Berridge CW, Lai YI, Yachabach TL (1987) CRF-induced excessive grooming behavior in rats and mice. Peptides 8:841–844

    CAS  PubMed  Google Scholar 

  • Ferguson JN, Young LJ, Insel TR (2002) The neuroendocrine basis of social recognition. Front Neuroendocrinol 23:200–224

    CAS  PubMed  Google Scholar 

  • Frank E, Landgraf R (2008) The vasopressin system–from antidiuresis to psychopathology. Eur J Pharmacol 583:226–242

    CAS  PubMed  Google Scholar 

  • Gillies GE, Linton EA, Lowry PJ (1982) Corticotropin releasing activity of the new CRF is potentiated several times by vasopressin. Nature 299:355–357

    CAS  PubMed  Google Scholar 

  • Griebel G, Simiand J, Serradeil-Le Gal C, Wagnon J, Pascal M, Scatton B, Maffrand JP, Soubrie P (2002) Anxiolytic- and antidepressant-like effects of the non-peptide vasopressin V1b receptor antagonist, SSR149415, suggest an innovative approach for the treatment of stress-related disorders. Proc Nat Acad Sci USA 99:6370–6375

    Google Scholar 

  • Griffante C, Green A, Curcuruto O, Haslam CP, Dickinson BA, Arban R (2005) Selectivity of d(Cha4)AVP and SSR149415 at human vasopressin and oxytocin receptors: evidence that SSR149415 is a mixed vasopressin V1b/oxytocin receptor antagonist. Br J Pharmacol 146:744–751

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grigoriadis DE (2005) The corticotropin-releasing factor receptor: a novel target for the treatment of depression and anxiety-related disorders. Expert Opin Ther Targets 9:651–684

    CAS  PubMed  Google Scholar 

  • Guastella AJ, Kenyon AR, Alvares GA, Carson DS, Hickie IB (2010) Intranasal arginine vasopressin enhances the encoding of happy and angry faces in humans. Biol Psychiatry 67:1220–1222

    CAS  PubMed  Google Scholar 

  • Hauger RL, Grigoriadis DE, Dallman MF, Plotsky PM, Vale WW, Dautzenberg FM (2003) International union of pharmacology XXXVI. Current status of the nomenclature for receptors for corticotropin-releasing factor and their ligands. Pharmacol Rev 55:21–26

    CAS  PubMed  Google Scholar 

  • Heim C, Newport DJ, Miller AH, Nemeroff CB (2000) Long-term neuroendocrine effects of childhood maltreatment. JAMA J Am Med Assoc 284:2321

    Google Scholar 

  • Heim C, Newport DJ, Mletzko T, Miller AH, Nemeroff CB (2008) The link between childhood trauma and depression: insights from HPA axis studies in humans. Psychoneuroendocrinology 33:693–710

    CAS  PubMed  Google Scholar 

  • Heinrichs SC, Britton KT, Koob GF (1991) Both conditioned taste preference and aversion induced by corticotropin-releasing factor. Pharmacol Biochem Behav 40:717–721

    CAS  PubMed  Google Scholar 

  • Herman JP, Cullinan WE (1997) Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci 20:78–84

    CAS  PubMed  Google Scholar 

  • Heuser I, Bissette G, Dettling M, Schweiger U, Gotthardt U, Schmider J, Lammers CH, Nemeroff CB, Holsboer F (1998) Cerebrospinal fluid concentrations of corticotropin-releasing hormone, vasopressin, and somatostatin in depressed patients and healthy controls: response to amitriptyline treatment. Depress Anxiety 8:71–79

    CAS  PubMed  Google Scholar 

  • Hodgson RA, Higgins GA, Guthrie DH, Lu SX, Pond AJ, Mullins DE, Guzzi MF, Parker EM, Varty GB (2007) Comparison of the V1b antagonist, SSR149415, and the CRF1 antagonist, CP-154,526, in rodent models of anxiety and depression. Pharmacol Biochem Behav 86:431–440

    CAS  PubMed  Google Scholar 

  • Holsboer F, Gerken A, Steiger A, Benkert O, Müller OA, Stalla GK (1984) Corticotropin-releasing-factor induced pituitary-adrenal response in depression. Lancet 1:55

    Google Scholar 

  • Holsboer F, Ising M (2008) Central CRH system in depression and anxiety–evidence from clinical studies with CRH1 receptor antagonists. Eur J Pharmacol 583:350–357

    CAS  PubMed  Google Scholar 

  • Huber D, Veinante P, Stoop R (2005) Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala. Science 308:245–248

    CAS  PubMed  Google Scholar 

  • Iijima M, Chaki S (2007) An arginine vasopressin V1b antagonist, SSR149415 elicits antidepressant-like effects in an olfactory bulbectomy model. Prog Neuropsychopharmacol Biol Psychiatry 31:622–627

    CAS  PubMed  Google Scholar 

  • Ising M, Zimmermann US, Kunzel HE, Uhr M, Foster AC, Learned-Coughlin SM, Holsboer F, Grigoriadis DE (2007) High-affinity CRF1 receptor antagonist NBI-34041: preclinical and clinical data suggest safety and efficacy in attenuating elevated stress response. Neuropsychopharmacology 32:1941–1949

    CAS  PubMed  Google Scholar 

  • Jaferi A, Bhatnagar S (2007) Corticotropin-releasing hormone receptors in the medial prefrontal cortex regulate hypothalamic-pituitary-adrenal activity and anxiety-related behavior regardless of prior stress experience. Brain Res 1186:212–223

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jard S, Barberis C, Audigier S, Tribollet E (1987) Neurohypophyseal hormone receptor systems in brain and periphery. Prog Brain Res 72:173–187

    CAS  PubMed  Google Scholar 

  • Joels M, Baram TZ (2009) The neuro-symphony of stress. Nat Rev Neurosci 10:459–466

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kalsbeek A, Fliers E, Hofman MA, Swaab DF, Buijs RM (2010) Vasopressin and the output of the hypothalamic biological clock. J Neuroendocrinol 22:362–372

    CAS  PubMed  Google Scholar 

  • Keck ME, Welt T, Muller MB, Uhr M, Ohl F, Wigger A, Toschi N, Holsboer F, Landgraf R (2003) Reduction of hypothalamic vasopressinergic hyperdrive contributes to clinically relevant behavioral and neuroendocrine effects of chronic paroxetine treatment in a psychopathological rat model. Neuropsychopharmacology 28:235–243

    CAS  PubMed  Google Scholar 

  • Korosi A, Baram TZ (2008) The central corticotropin releasing factor system during development and adulthood. Eur J Pharmacol 583:204–214

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koshimizu TA, Nakamura K, Egashira N, Hiroyama M, Nonoguchi H, Tanoue A (2012) Vasopressin V1a and V1b receptors: from molecules to physiological systems. Physiol Rev 92:1813–1864

    Google Scholar 

  • Kunzel HE, Zobel AW, Nickel T, Ackl N, Uhr M, Sonntag A, Ising M, Holsboer F (2003) Treatment of depression with the CRH-1-receptor antagonist R121919: endocrine changes and side effects. J Psychiatr Res 37:525–533

    PubMed  Google Scholar 

  • Landgraf R (2006) The involvement of the vasopressin system in stress-related disorders. CNS Neurol Disord Drug Targets 5:167–179

    CAS  PubMed  Google Scholar 

  • Li JD, Burton KJ, Zhang C, Hu SB, Zhou QY (2009) Vasopressin receptor V1a regulates circadian rhythms of locomotor activity and expression of clock-controlled genes in the suprachiasmatic nuclei. Am J Physiol Regul Integr Comp Physiol 296:R824–R830

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lightman SL (2008) The neuroendocrinology of stress: a never ending story. J Neuroendocrinol 20:880–884

    CAS  PubMed  Google Scholar 

  • Lim MM, Young LJ (2004) Vasopressin-dependent neural circuits underlying pair bond formation in the monogamous prairie vole. Neuroscience 125:35–45

    CAS  PubMed  Google Scholar 

  • Litvin Y, Murakami G, Pfaff DW (2011) Effects of chronic social defeat on behavioral and neural correlates of sociality: vasopressin, oxytocin and the vasopressinergic V1b receptor. Physiol Behav 103:393–403

    CAS  PubMed  Google Scholar 

  • Ma XM, Levy A, Lightman SL (1997) Emergence of an isolated arginine vasopressin (AVP) response to stress after repeated restraint: a study of both AVP and corticotropin-releasing hormone messenger ribonucleic acid (RNA) and heteronuclear RNA. Endocrinology 138:4351–4357

    CAS  PubMed  Google Scholar 

  • Mak P, Broussard C, Vacy K, Broadbear JH (2012) Modulation of anxiety behavior in the elevated plus maze using peptidic oxytocin and vasopressin receptor ligands in the rat. J psychopharmacol 26:532–542

    CAS  PubMed  Google Scholar 

  • Maras PM, Baram TZ (2012) Sculpting the hippocampus from within: stress, spines, and CRH. Trends Neurosci 35:315–324

    CAS  PubMed Central  PubMed  Google Scholar 

  • McCall C, Singer T (2012) The animal and human neuroendocrinology of social cognition, motivation and behavior. Nat Neurosci 15:681–688

    CAS  PubMed  Google Scholar 

  • McEwen BS (1998) Stress, adaptation, and disease: allostasis and allostatic load. Ann N Y Acad Sci 840:33–44

    CAS  PubMed  Google Scholar 

  • McEwen BS (2007) Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev 87:873–904

    PubMed  Google Scholar 

  • Meewisse ML, Reitsma JB, de Vries GJ, Gersons BP, Olff M (2007) Cortisol and post-traumatic stress disorder in adults: systematic review and meta-analysis. Br j psychiatry 191:387–392

    PubMed  Google Scholar 

  • Merali Z, Du L, Hrdina P, Palkovits M, Faludi G, Poulter MO, Anisman H (2004) Dysregulation in the suicide brain: mRNA expression of corticotropin-releasing hormone receptors and GABA(A) receptor subunits in frontal cortical brain region. J Neurosci 24:1478–1485

    CAS  PubMed  Google Scholar 

  • Muller MB, Zimmermann S, Sillaber I, Hagemeyer TP, Deussing JM, Timpl P, Kormann MS, Droste SK, Kuhn R, Reul JM et al (2003) Limbic corticotropin-releasing hormone receptor 1 mediates anxiety-related behavior and hormonal adaptation to stress. Nat Neurosci 6:1100–1107

    PubMed  Google Scholar 

  • Murgatroyd C, Wu Y, Bockmuhl Y, Spengler D (2010) Genes learn from stress: how infantile trauma programs us for depression. Epigenetics 5(3)

    Google Scholar 

  • Nederhof E, Schmidt MV (2012) Mismatch or cumulative stress: toward an integrated hypothesis of programming effects. Physiol Behav 106:691–700

    CAS  PubMed  Google Scholar 

  • Nemeroff CB, Bissette G, Akil H, Fink M (1991) Neuropeptide concentrations in the cerebrospinal fluid of depressed patients treated with electroconvulsive therapy: corticotrophin-releasing factor, beta-endorphin and somatostatin. Br J Psychiatry 158:59–63

    CAS  PubMed  Google Scholar 

  • Nemeroff CB, Owens MJ, Bissette G, Andorn AC, Stanley M (1988) Reduced corticotropin releasing factor binding sites in the frontal cortex of suicide victims. Arch Gen Psychiatry 45:577–579

    CAS  PubMed  Google Scholar 

  • Nemeroff CB, Widerlov E, Bissette G, Walleus H, Karlsson I, Eklund K, Kilts CD, Loosen PT, Vale W (1984) Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients. Science 226:1342–1344

    CAS  PubMed  Google Scholar 

  • Neumann ID, Landgraf R (2012) Balance of brain oxytocin and vasopressin: implications for anxiety, depression, and social behaviors. Trends Neurosci 35:649–659

    CAS  PubMed  Google Scholar 

  • Nickel T, Sonntag A, Schill J, Zobel AW, Ackl N, Brunnauer A, Murck H, Ising M, Yassouridis A, Steiger A et al (2003) Clinical and neurobiological effects of tianeptine and paroxetine in major depression. J Clin Psychopharmacol 23:155–168

    CAS  PubMed  Google Scholar 

  • Overstreet DH, Griebel G (2005) Antidepressant-like effects of the vasopressin V1b receptor antagonist SSR149415 in the flinders sensitive line rat. Pharmacol Biochem Behav 82:223–227

    CAS  PubMed  Google Scholar 

  • Owens MJ, Overstreet DH, Knight DL, Rezvani AH, Ritchie JC, Bissette G, Janowsky DS, Nemeroff CB (1991) Alterations in the hypothalamic-pituitary-adrenal axis in a proposed animal model of depression with genetic muscarinic supersensitivity. Neuropsychopharmacol 4:87–93

    Google Scholar 

  • Pacak K, Palkovits M (2001) Stressor specificity of central neuroendocrine responses: implications for stress-related disorders. Endocr Rev 22:502–548

    CAS  PubMed  Google Scholar 

  • Pitkow LJ, Sharer CA, Ren X, Insel TR, Terwilliger EF, Young LJ (2001) Facilitation of affiliation and pair-bond formation by vasopressin receptor gene transfer into the ventral forebrain of a monogamous vole. J Neurosci 21:7392–7396

    CAS  PubMed  Google Scholar 

  • Raadsheer FC, Hoogendijk WJ, Stam FC, Tilders FJ, Swaab DF (1994) Increased numbers of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of depressed patients. Neuroendocrinology 60:436–444

    CAS  PubMed  Google Scholar 

  • Ring RH (2005) The central vasopressinergic system: examining the opportunities for psychiatric drug development. Curr Pharm Des 11:205–225

    CAS  PubMed  Google Scholar 

  • Rosengren A, Hawken S, Ounpuu S, Sliwa K, Zubaid M, Almahmeed WA, Blackett KN, Sitthi-amorn C, Sato H, Yusuf S (2004) Association of psychosocial risk factors with risk of acute myocardial infarction in 11119 cases and 13648 controls from 52 countries (the INTERHEART study): case-control study. Lancet 364:953–962

    PubMed  Google Scholar 

  • Ryckmans T (2010) Modulation of the vasopressin system for the treatment of CNS diseases. Curr Opin Drug Discov Devel 13:538–547

    CAS  PubMed  Google Scholar 

  • Samson WK, Schell DA (1995) Oxytocin and the anterior pituitary gland. Adv Exp Med Biol 395:355–364

    CAS  PubMed  Google Scholar 

  • Sawchenko PE, Imaki T, Potter E, Kovacs K, Imaki J, Vale W (1993) The functional neuroanatomy of corticotropin-releasing factor. In: Ciba Foundation symposium, vol 172, pp 5–21, discussion 21–29

    Google Scholar 

  • Schmidt MV (2011) Animal models for depression and the mismatch hypothesis of disease. Psychoneuroendocrinology 36:330–338

    PubMed  Google Scholar 

  • Schmidt MV, Scharf SH, Sterlemann V, Ganea K, Liebl C, Holsboer F, Muller MB (2010) High susceptibility to chronic social stress is associated with a depression-like phenotype. Psychoneuroendocrinology 35:635–643

    CAS  PubMed  Google Scholar 

  • Shalev I, Israel S, Uzefovsky F, Gritsenko I, Kaitz M, Ebstein RP (2011) Vasopressin needs an audience: neuropeptide elicited stress responses are contingent upon perceived social evaluative threats. Horm Behav 60:121–127

    CAS  PubMed  Google Scholar 

  • Shimazaki T, Iijima M, Chaki S (2006) The pituitary mediates the anxiolytic-like effects of the vasopressin V1B receptor antagonist, SSR149415, in a social interaction test in rats. Eur J Pharmacol 543:63–67

    CAS  PubMed  Google Scholar 

  • Simon NG, Guillon C, Fabio K, Heindel ND, Lu SF, Miller M, Ferris CF, Brownstein MJ, Garripa C, Koppel GA (2008) Vasopressin antagonists as anxiolytics and antidepressants: recent developments. Recent Pat CNS Drug Discovery 3:77–93

    CAS  Google Scholar 

  • Smith GW, Aubry JM, Dellu F, Contarino A, Bilezikjian LM, Gold LH, Chen R, Marchuk Y, Hauser C, Bentley CA et al (1998) Corticotropin releasing factor receptor 1-deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development. Neuron 20:1093–1102

    CAS  PubMed  Google Scholar 

  • Steckler T, Holsboer F (1999) Corticotropin-releasing hormone receptor subtypes and emotion. Biol Psychiatry 46:1480–1508

    CAS  PubMed  Google Scholar 

  • Stedenfeld KA, Clinton SM, Kerman IA, Akil H, Watson SJ, Sved AF (2011) Novelty-seeking behavior predicts vulnerability in a rodent model of depression. Physiol Behav 103:210–216

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stemmelin J, Lukovic L, Salome N, Griebel G (2005) Evidence that the lateral septum is involved in the antidepressant-like effects of the vasopressin V1b receptor antagonist, SSR149415. Neuropsychopharmacology 30:35–42

    CAS  PubMed  Google Scholar 

  • Stetler C, Miller GE (2011) Depression and hypothalamic-pituitary-adrenal activation: a quantitative summary of four decades of research. Psychosom Med 73:114–126

    PubMed  Google Scholar 

  • Sutton RE, Koob GF, Le Moal M, Rivier J, Vale W (1982) Corticotropin releasing factor produces behavioural activation in rats. Nature 297:331–333

    CAS  PubMed  Google Scholar 

  • Swanson LW, Sawchenko PE, Rivier J, Vale WW (1983) Organization of ovine corticotropin-releasing factor immunoreactive cells and fibers in the rat brain: an immunohistochemical study. Neuroendocrinology 36:165–186

    CAS  PubMed  Google Scholar 

  • Thompson RR, George K, Walton JC, Orr SP, Benson J (2006) Sex-specific influences of vasopressin on human social communication. Proc Natl Acad Sci USA 103:7889–7894

    CAS  PubMed Central  PubMed  Google Scholar 

  • Timpl P, Spanagel R, Sillaber I, Kresse A, Reul JM, Stalla GK, Blanquet V, Steckler T, Holsboer F, Wurst W (1998) Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1. Nat Genet 19:162–166

    CAS  PubMed  Google Scholar 

  • Urani A, Philbert J, Cohen C, Griebel G (2011) The corticotropin-releasing factor 1 receptor antagonist, SSR125543, and the vasopressin 1b receptor antagonist, SSR149415, prevent stress-induced cognitive impairment in mice. Pharmacol Biochem Behav 98:425–431

    CAS  PubMed  Google Scholar 

  • van Gaalen MM, Stenzel-Poore MP, Holsboer F, Steckler T (2002) Effects of transgenic overproduction of CRH on anxiety-like behaviour. Eur J Neurosci 15:2007–2015

    PubMed  Google Scholar 

  • Veenema AH, Blume A, Niederle D, Buwalda B, Neumann ID (2006) Effects of early life stress on adult male aggression and hypothalamic vasopressin and serotonin. Eur J Neurosci 24:1711–1720

    PubMed  Google Scholar 

  • Veenema AH, Reber SO, Selch S, Obermeier F, Neumann ID (2008) Early life stress enhances the vulnerability to chronic psychosocial stress and experimental colitis in adult mice. Endocrinology 149:2727–2736

    CAS  PubMed  Google Scholar 

  • Veith RC, Lewis N, Langohr JI, Murburg MM, Ashleigh EA, Castillo S, Peskind ER, Pascualy M, Bissette G, Nemeroff CB et al (1993) Effect of desipramine on cerebrospinal fluid concentrations of corticotropin-releasing factor in human subjects. Psychiatry Res 46:1–8

    CAS  PubMed  Google Scholar 

  • Wang SS, Kamphuis W, Huitinga I, Zhou JN, Swaab DF (2008) Gene expression analysis in the human hypothalamus in depression by laser microdissection and real-time PCR: the presence of multiple receptor imbalances. Mol Psychiatry 13:786–799

    CAS  PubMed  Google Scholar 

  • Wang Z, Ferris CF, De Vries GJ (1994). Role of septal vasopressin innervation in paternal behavior in prairie voles (Microtus ochrogaster). Proc Nat Acad Sci USA 91:400–404

    Google Scholar 

  • Winslow JT, Hastings N, Carter CS, Harbaugh CR, Insel TR (1993) A role for central vasopressin in pair bonding in monogamous prairie voles. Nature 365:545–548

    CAS  PubMed  Google Scholar 

  • Yehuda R, Golier JA, Kaufman S (2005) Circadian rhythm of salivary cortisol in holocaust survivors with and without PTSD. Am J Psychiatry 162:998–1000

    PubMed  Google Scholar 

  • Zhao L, Brinton RD (2004) Suppression of proinflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha in astrocytes by a V1 vasopressin receptor agonist: a cAMP response element-binding protein-dependent mechanism. J Neurosci 24:2226–2235

    CAS  PubMed  Google Scholar 

  • Zink CF, Stein JL, Kempf L, Hakimi S, Meyer-Lindenberg A (2010) Vasopressin modulates medial prefrontal cortex-amygdala circuitry during emotion processing in humans. J Neurosci 30:7017–7022

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zobel AW, Nickel T, Kunzel HE, Ackl N, Sonntag A, Ising M, Holsboer F (2000) Effects of the high-affinity corticotropin-releasing hormone receptor 1 antagonist R121919 in major depression: the first 20 patients treated. J Psychiatr Res 34:171–181

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors apologize to the many investigators whose work could not be cited due to the limited number of references permitted. Research in the authors laboratories were supported by NIH grants MH090236 and MH094759.

Financial Disclosures

EB report no financial interests or potential conflicts of interest. CBN reports the following. Research/Grants: National Institutes of Health (NIH). Speakers Bureau: None. Consulting: Xhale, Takeda, SK Pharma, Shire, Roche, Lilly, Allergan, Mitsubishi Tanabe Pharma. Development America, Taisho Pharmaceutical Inc., Lundbeck. Stockholder: CeNeRx BioPharma, PharmaNeuroBoost, Revaax Pharma, Xhale. Other Financial Interests: CeNeRx BioPharma, PharmaNeuroBoost. Patents: Method and devices for transdermal delivery of lithium (US 6,375,990B1), Method of assessing antidepressant drug therapy via transport inhibition of monoamine neurotransmitters by ex vivo assay (US 7,148,027B2). Scientific Advisory Boards: American Foundation for Suicide Prevention (AFSP), CeNeRx BioPharma (2012), National. Alliance for Research on Schizophrenia and Depression (NARSAD), Xhale, PharmaNeuroBoost. (2012) Anxiety Disorders Association of America (ADAA), Skyland Trail. Board of Directors: AFSP, NovaDel (2011), Skyland Trail, Gratitude America, ADAA. Income sources or equity of $10,000 or more: PharmaNeuroBoost, CeNeRx BioPharma, NovaDel Pharma, Reevax Pharma, American. Psychiatric Publishing, Xhale. Honoraria: Various. Royalties: Various. Expert Witness: Various.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles B. Nemeroff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beurel, E., Nemeroff, C.B. (2014). Interaction of Stress, Corticotropin-Releasing Factor, Arginine Vasopressin and Behaviour. In: Pariante, C., Lapiz-Bluhm, M. (eds) Behavioral Neurobiology of Stress-related Disorders. Current Topics in Behavioral Neurosciences, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2014_306

Download citation

Publish with us

Policies and ethics