Skip to main content

TMEM165 Deficiency: Postnatal Changes in Glycosylation

  • Research Report
  • Chapter
  • First Online:

Part of the book series: JIMD Reports ((JIMD,volume 26))

Abstract

Congenital disorders of glycosylation form a rapidly growing group of inherited metabolic diseases. As glycosylation affects proteins all over the organism, a mutation in a single gene leads to a multisystemic disorder. We describe a patient with TMEM165-CDG with facial dysmorphism, nephrotic syndrome, cardiac defects, enlarged cerebral ventricles, feeding problems, and neurological involvement. Having confirmed the diagnosis via prenatal diagnostics, we were able to observe the glycosylation right from birth, finding a pathological pattern already on the first day of life. Within the next few weeks, hypoglycosylation progressed to less sialylated and then also to hypogalactosylated isoforms. On the whole, there has not been much published evidence concerning postnatal glycosylation and its adaptational process. This is the first paper reporting changes in glycosylation patterns over the first postnatal weeks in TMEM165-CDG.

Competing interests: None declared

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Apweiler R, Hermjakob H, Sharon N (1999) On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta 1473(1):4–8. doi:10.1016/S0304-4165(99)00165-8

    Article  CAS  PubMed  Google Scholar 

  • Bjellqvist B, Pasquali C, Ravier F, Sanchez JC, Hochstrasser D (1993) A nonlinear wide-range immobilized pH gradient for two-dimensional electrophoresis and its definition in a relevant pH scale. Electrophoresis 14(12):1357–1365

    Article  CAS  PubMed  Google Scholar 

  • Chung MC-M (1984) Structure and function of transferrin. Biochem Educ 12:146–154. doi:10.1016/0307-4412(84)90118-3

    Article  CAS  Google Scholar 

  • Clayton P, Winchester B, Di Tomaso E, Young E, Keir G, Rodeck C (1993) Carbohydrate-deficient glycoprotein syndrome: normal glycosylation in the fetus. Lancet 341(8850):956. doi:10.1016/0140-6736(93)91244-G

    Article  CAS  PubMed  Google Scholar 

  • de Jong G, van Eijk HG (1988) Microheterogeneity of human serum transferrin: a biological phenomenon studied by isoelectric focusing in immobilized pH gradients. Electrophoresis 9(9):589–598

    Article  PubMed  Google Scholar 

  • de Jong G, van Noort WL, Feelders RA, de Jeu-Jaspars CM, van Eijk HG (1992) Adaptation of transferrin protein and glycan synthesis. Clin Chim Acta 212(1–2):27–45

    Article  PubMed  Google Scholar 

  • Demaegd D, Foulquier F, Colinet A-S, Gremillon L, Legrand D, Mariot P et al (2013) Newly characterized Golgi-localized family of proteins is involved in calcium and pH homeostasis in yeast and human cells. Proc Natl Acad Sci U S A 110(17):6859–6864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denecke J, Kranz C, Von Kleist-Retzow JC et al (2005) Congenital disorder of glycosylation type Id: clinical phenotype, molecular analysis, prenatal diagnosis, and glycosylation of fetal proteins. Pediatr Res 58:248–253. doi:10.1203/01.PDR.0000169963.94378.B6

    Article  CAS  PubMed  Google Scholar 

  • Edwards M, McKenzie F, O’Callaghan S et al (2006) Prenatal diagnosis of congenital disorder of glycosylation type Ia (CDG-Ia) by cordocentesis and transferrin isoelectric focussing of serum of a 27-week fetus with non-immune hydrops. Prenat Diagn 26:985–988. doi:10.1002/pd.1543

    Article  CAS  PubMed  Google Scholar 

  • Exome Variant Server, NHLBI GO Exome sequencing project (ESP), Seattle, WA. http://evs.gs.washington.edu/EVS/. Accessed Jan 2015

  • Foulquier F, Amyere M, Jaeken J et al (2012) TMEM165 deficiency causes a congenital disorder of glycosylation. Am J Hum Genet 91(1):15–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funke S, Gardeitchik T, Kouwenberg D et al (2013) Perinatal and early infantile symptoms in congenital disorders of glycosylation. Am J Med Genet A 161A:578–584

    Article  PubMed  Google Scholar 

  • Gitlin D, Kumate J, Urrusti J, Morales C (1964) The selectivity of the human placenta in the transfer of plasma proteins from mother to fetus. J Clin Invest 43(10):1938–1951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Granovsky M, Fode C, Warren CE et al (1995) GlcNAc-transferase V and core 2 GlcNAc-transferase expression in the developing mouse embryo. Glycobiology 5:797–806

    Article  CAS  PubMed  Google Scholar 

  • Helenius A, Aebi M (2004) Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem 73:1019–1049

    Article  CAS  PubMed  Google Scholar 

  • Hitzig WH (1961) Das Bluteiweissbild beim gesunden Säugling. Spezifische Proteinbestimmungen mit besonderer Berücksichtigung immunochemischer Methoden. Helv Paediatr Acta 16:46–81

    CAS  PubMed  Google Scholar 

  • Jaeken J, Hennet T, Matthijs G, Freeze HH (2009) CDG nomenclature: time for a change. Biochim Biophys Acta 1792(9):825–826. doi:10.1016/j.bbadis.2009.08.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kranz C, Denecke J, Lehle L et al (2004) Congenital disorder of glycosylation type Ik (CDG-Ik): a defect of mannosyltransferase I. Am J Hum Genet 74(3):545–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Léticée N, Bessières-Grattagliano B, Dupré T et al (2010) Should PMM2-deficiency (CDG Ia) be searched in every case of unexplained hydrops fetalis? Mol Genet Metab 101(2–3):253–257. doi:10.1016/j.ymgme.2010.06.009

    Article  PubMed  Google Scholar 

  • Matthijs G, Schollen E, Van Schaftingen E (2004) The prenatal diagnosis of congenital disorders of glycosylation (CDG). Prenat Diagn 24:114–116. doi:10.1002/pd.815

    Article  PubMed  Google Scholar 

  • Medvedova L, Knopp J, Farkas R (2003) Steroid regulation of terminal protein glycosyltransferase genes: molecular and functional homologies within sialyltransferase and fucosyltransferase families. Endocr Regul 37:203–210

    CAS  PubMed  Google Scholar 

  • Melartin L, Hirvonen T, Kaarsalo E, Toivanen P (1966) Group-specific components and transferrins in human fetal sera. Scand J Haematol 3:8

    Google Scholar 

  • Niehues R, Hasilik M, Alton G et al (1998) Carbohydrate-deficient glycoprotein syndrome type Ib. Phosphomannose isomerase deficiency and mannose therapy. J Clin Invest 101(7):1414–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JH, Zühlsdorf A, Wada Y et al (2014) The novel transferrin E592A variant impairs the diagnostics of congenital disorders of glycosylation. Clin Chim Acta 436:135–139. doi:10.1016/j.cca.2014.05.011

    Article  CAS  PubMed  Google Scholar 

  • Rosnoblet C, Legrand D, Demaegd D et al (2013) Impact of disease-causing mutations on TMEM165 subcellular localization, a recently identified protein involved in CDG-II. Hum Mol Genet 22(14):2914–2928

    Article  CAS  PubMed  Google Scholar 

  • Rozen S, Skaletsky HJ (1998) Primer3. Code available at http://www-genome.wi.mit.edu/genome_software/other/primer3.html

  • Stibler H, Skovby F (1994) Failure to diagnose carbohydrate-deficient glycoprotein syndrome prenatally. Pediatr Neurol 11(1):71

    Article  CAS  PubMed  Google Scholar 

  • The UniProt Consortium (2014) Activities at the universal protein resource (UniProt). Nucleic Acids Res 42:D191–D198

    Article  PubMed Central  Google Scholar 

  • Uehara K, Thelu J (2001) Stage- and tissue-specific expression of a beta-1,4-galactosyltransferase in the embryonic epidermis. In Vitro Cell Dev Biol Anim 37:613–617

    Article  CAS  PubMed  Google Scholar 

  • Van de Kamp JM, Lefeber DJ, Ruijter GJG et al (2007) Congenital disorder of glycosylation type Ia presenting with hydrops fetalis. J Med Genet 44(4):277–280. doi:10.1136/jmg.2006.044735

    Article  PubMed  PubMed Central  Google Scholar 

  • Wada Y, Kadoya M, Okamoto N (2012) Mass spectrometry of apolipoprotein C-III, a simple analytical method for mucin-type O-glycosylation and its application to an autosomal recessive cutis laxa type-2 (ARCL2) patient. Glycobiology 22(8):1140–1144. doi:10.1093/glycob/cws086

    Article  CAS  PubMed  Google Scholar 

  • Zhou D, Chen C, Jiang S, Shen Z, Chi Z, Gu J (1998) Expression of 1,4-galactosyltransferase in the development of mouse brain. Biochim Biophys Acta 1425:204–208

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We dedicate this paper to our friend and colleague Christian Körner. He was one of the founders of CDG research and will be deeply missed by colleagues and patients.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Marquardt .

Editor information

Editors and Affiliations

Additional information

Communicated by: Jaak Jaeken

Take-Home Message

Glycosylation patterns undergo an adaptational process over the first postnatal weeks that can be shown by transferrin analysis. Postnatal screening for CDG has pitfalls due to a correcting factor likely derived from the mother.

Compliance with Ethic Guidelines

Conflict of Interest

All authors declare no conflict of interests.

Informed Consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from the parents.

Details of the Contributions of Individual Authors

S. Schulte Althoff: acquisition and analysis of data, drafting and revision of the manuscript

M. Grüneberg, J. Reunert, J. H. Park, S. Rust, Y. Wada: acquisition and analysis of data, revision of the manuscript

C. Mühlhausen, R. Santer: medical treatment of the patient, acquisition and analysis of data, revision of the manuscript

T. Marquardt: supervision, data acquisition and interpretation, revision of the manuscript

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Table 1S. TMEM165 Primer (genomic)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 SSIEM and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schulte Althoff, S. et al. (2015). TMEM165 Deficiency: Postnatal Changes in Glycosylation. In: Morava, E., Baumgartner, M., Patterson, M., Rahman, S., Zschocke, J., Peters, V. (eds) JIMD Reports, Volume 26. JIMD Reports, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8904_2015_455

Download citation

  • DOI: https://doi.org/10.1007/8904_2015_455

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49832-3

  • Online ISBN: 978-3-662-49833-0

  • eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)

Publish with us

Policies and ethics