Skip to main content

The Role of Mammalian Coronins in Development and Disease

  • Chapter

Part of the book series: Subcellular Biochemistry ((SCBI,volume 48))

Abstract

Coronins have maintained a high degree of conservation over the roughly 800 million years of eukaryotic evolution.1,2 From its origins as a single gene in simpler eukaryotes, the mammalian Coronin gene family has expanded to include at least six members (see Chapter 4). Increasing evidence indicates that Coronins play critical roles as regulators of actin dependent processes such as cell motility and vesicle trafficking3,4 (see Chapters 6–9). Considering the importance of these processes, it is not surprising that recent findings have implicated the involvement of Coronins in multiple diseases. This review primarily focuses on Coronin 1C (HGNC symbol: CORO1C, also known as Coronin 3) which is a transcriptionally dynamic gene that is up-regulated in multiple types of clinically aggressive cancer. In addition to reviewing the molecular signals and events that lead to Coronin 1C transcription, we summarize the results of several studies describing the possible functional roles of Coronin 1C in development as well as disease progression. Here, the main focus is on brain development and on the progression of melanoma and glioma. Finally, we will also review the role of other mammalian Coronin genes in clinically relevant processes such as neural regeneration and pathogenic bacterial infections (see Chapter 10).

These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rybakin V, Clemen CS. Coronin proteins as multifunctional regulators of the cytoskeleton and membrane trafficking. Bioessays 2005; 27(6):625–632.

    Article  PubMed  CAS  Google Scholar 

  2. Uetrecht AC, Bear JE. Coronins: the return of the crown. Trends Cell Biol 2006; 16(8): 421–426.

    Article  PubMed  CAS  Google Scholar 

  3. Cai L, Marshall TW, Uetrecht AC et al. Coronin 1B coordinates Arp 2/3 complex and cofilin activities at the leading edge. Cell 2007; 128(5):915–929.

    Article  PubMed  CAS  Google Scholar 

  4. Rosentreter A, Hofmann A, Xavier CP et al. Coronin 3 involvement in F-actin-dependent processes at the cell cortex. Exp Cell Res 2007; 313(5):878–895.

    Article  PubMed  CAS  Google Scholar 

  5. Wick M, Burger C, Brusselbach S et al. Identification of serum-inducible genes: different patterns of gene regulation during G0→S and G1→S progression. J Cell Sci 1994; 107 (Pt 1):227–239.

    PubMed  CAS  Google Scholar 

  6. Chang HY, Sneddon JB, Alizadeh AA et al. Gene Expression Signature of Fibroblast Serum Response Predicts Human Cancer Progression: Similarities between Tumors and Wounds. PloS Biol 2004; 2(2):E7.

    Article  PubMed  CAS  Google Scholar 

  7. Tullai JW, Schaffer ME, Mullenbrock S et al. Immediate-early and delayed primary response genes are distinct in function and genomic architecture. J Biol Chem 2007; 282(33):23981–95

    Article  PubMed  CAS  Google Scholar 

  8. Li Z, Van Calcar S, Qu C et al. A global transcriptional regulatory role for c-Myc in Burkitt’s lymphoma cells. Proc Natl Acad Sci USA 2003; 100(14):8164–8169.

    Article  PubMed  CAS  Google Scholar 

  9. Moreno-Bueno G, Cubillo E, Sarrio D et al. Genetic profiling of epithelial cells expressing e-cadherin repressors reveals a distinct role for snail, slug and e47 factors in epithelial-mesenchymal transition. Cancer Res 2006; 66(19):9543–9556.

    Article  PubMed  CAS  Google Scholar 

  10. Moreno-Bueno G, Sanchez-Estevez C, Cassia R et al. Differential gene expression profile in endometrioid and nonendometrioid endometrial carcinoma: STK15 is frequently overexpressed and amplified in nonendometrioid carcinomas. Cancer Res 2003; 63(18):5697–5702.

    PubMed  CAS  Google Scholar 

  11. Winter SC, Buffa FM, Silva P et al. Relation of a hypoxia metagene derived from head and neck cancer to prognosis of multiple cancers. Cancer Res 2007; 67(7):3441–3449.

    Article  PubMed  CAS  Google Scholar 

  12. Nordsmark M, Bentzen SM, Rudat V et al. Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study. Radiother Oncol 2005; 77(1):18–24.

    Article  PubMed  Google Scholar 

  13. Zhao H, Kim Y, Wang P et al. Genome-wide characterization of gene expression variations and DNA copy number changes in prostate cancer cell lines. Prostate 2005; 63(2):187–197.

    Article  PubMed  CAS  Google Scholar 

  14. Bonaccorsi L, Muratori M, Carloni V et al. Androgen receptor and prostate cancer invasion. Int J Androl 2003; 26(1):21–25.

    Article  PubMed  CAS  Google Scholar 

  15. Sharpless NE, Chin L. The INK4a/ARF locus and melanoma. Oncogene 2003; 22(20):3092–3098.

    Article  PubMed  CAS  Google Scholar 

  16. Chin L, Merlino G, DePinho RA. Malignant melanoma: modern black plague and genetic black box. Genes Dev 1998; 12(22):3467–3481.

    Article  PubMed  CAS  Google Scholar 

  17. Cochran AJ. Prediction of outcome for patients with cutaneous melanoma. Pigment Cell Res 1997; 10(3):162–167.

    Article  PubMed  CAS  Google Scholar 

  18. Ahmed I. Malignant melanoma: prognostic indicators. Mayo Clin Proc 1997; 72(4):356–361.

    Article  PubMed  CAS  Google Scholar 

  19. Davies H, Bignell GR, Cox C et al. Mutations of the BRAF gene in human cancer. Nature 2002; 417(6892):949–954.

    Article  PubMed  CAS  Google Scholar 

  20. Omholt K, Karsberg S, Platz A et al. Screening of N-ras codon 61 mutations in paired primary and metastatic cutaneous melanomas: mutations occur early and persist throughout tumor progression. Clin Cancer Res 2002; 8(11):3468–3474.

    PubMed  CAS  Google Scholar 

  21. Herlyn M, Satyamoorthy K. Activated ras. Yet another player in melanoma? Am J Pathol 1996; 149(3):739–744.

    PubMed  CAS  Google Scholar 

  22. Schulze A, Nicke B, Warne PH et al. The transcriptional response to Raf activation is almost completely dependent on Mitogen-activated Protein Kinase Kinase activity and shows a major autocrine component. Mol Biol Cell 2004; 15(7):3450–3463.

    Article  PubMed  CAS  Google Scholar 

  23. Shields JM, Thomas NE, Cregger M et al. Lack of extracellular signal-regulated kinase mitogen-activated protein kinase signaling shows a new type of melanoma. Cancer Res 2007; 67(4):1502–1512.

    Article  PubMed  CAS  Google Scholar 

  24. Clark EA, Golub TR, Lander ES et al. Genomic analysis of metastasis reveals an essential role for RhoC. Nature 2000; 406(6795):532–535.

    Article  PubMed  CAS  Google Scholar 

  25. Wang W, Wyckoff JB, Goswami S et al. Coordinated regulation of pathways for enhanced cell motility and chemotaxis is conserved in rat and mouse mammary tumors. Cancer Res 2007; 67(8):3505–3511.

    Article  PubMed  CAS  Google Scholar 

  26. Bear JE, Roadcap DW. Unpublished Data. 2007.

    Google Scholar 

  27. Hasse A, Rosentreter A, Spoerl Z et al. Coronin 3 and its role in murine brain morphogenesis. Eur J Neurosci 2005; 21(5):1155–1168.

    Article  PubMed  Google Scholar 

  28. Berry M. Development of the cerebral neocortex of the rat. In: Gottlieb G, ed. Aspects of Neurogenesis. New York: Academic Press, 1974: Vol. 2. pp. 7–67.

    Google Scholar 

  29. Massey PV, Bashir ZI. Long-term depression: multiple forms and implications for brain function. Trends Neurosci 2007; 30(4):176–184.

    Article  PubMed  CAS  Google Scholar 

  30. Matsuzaki M, Honkura N, Ellis-Davies GC et al. Structural basis of long-term potentiation in single dendritic spines. Nature 2004; 429(6993):761–766.

    Article  PubMed  CAS  Google Scholar 

  31. Krucker T, Siggins GR, Halpain S. Dynamic actin filaments are required for stable long-term potentiation (LTP) in area CA1 of the hippocampus. Proc Natl Acad Sci USA 2000; 97(12):6856–6861.

    Article  PubMed  CAS  Google Scholar 

  32. Fukazawa Y, Saitoh Y, Ozawa F et al. Hippocampal LTP is accompanied by enhanced F-actin content within the dendritic spine that is essential for late LTP maintenance in vivo. Neuron 2003; 38(3):447–460.

    Article  PubMed  CAS  Google Scholar 

  33. Bjartmar C, Hildebrand C, Loinder K. Morphological heterogeneity of rat oligodendrocytes: Electron microscopic studies on serial sections. Glia 1994; 11:235–244.

    Article  PubMed  CAS  Google Scholar 

  34. Coffrey JC, McDermott KW. The regional distribution of myelin oligodendrocyte glycoprotein (MOG) in the developing rat CNS: An in vivo immunohistochemical study. J Neurocytol 1997; 26:149–161.

    Article  Google Scholar 

  35. Weitzdoerfer R, Fountoulakis M, Lubec G. Reduction of actin-related protein complex 2/3 in fetal Down syndrome brain. Biochem Biophys Res Commun 2002; 293(2):836–841.

    Article  PubMed  CAS  Google Scholar 

  36. Neer EJ, Schmidt CJ, Smith T. LIS is more. Nat Genet 1993; 5(1):3–4.

    Article  PubMed  CAS  Google Scholar 

  37. Lo Nigro C, Chong CS, Smith AC et al. Point mutations and an intragenic deletion in LIS1, the lissencephaly causative gene in isolated lissencephaly sequence and Miller-Dieker syndrome. Hum Mol Genet 1997; 6(2):157–164.

    Article  PubMed  Google Scholar 

  38. Henning KA, Li L, Iyer N et al. The Cockayne syndrome group A gene encodes a WD repeat protein that interacts with CSB protein and a subunit of RNA polymerase II TFIIH. Cell 1995; 82(4):555–564.

    Article  PubMed  CAS  Google Scholar 

  39. Bassi MT, Ramesar RS, Caciotti B et al. X-linked late-onset sensorineural deafness caused by a deletion involving OA1 and a novel gene containing WD-40 repeats. Am J Hum Genet 1999; 64(6):1604–1616.

    Article  PubMed  CAS  Google Scholar 

  40. Tullio-Pelet A, Salomon R, Hadj-Rabia S et al. Mutant WD-repeat protein in triple-A syndrome. Nat Genet 2000; 26(3):332–335.

    Article  PubMed  CAS  Google Scholar 

  41. Handschug K, Sperling S, Yoon SJ et al. Triple A syndrome is caused by mutations in AAAS, a new WD-repeat protein gene. Hum Mol Genet 2001; 10(3):283–290.

    Article  PubMed  CAS  Google Scholar 

  42. Spoerl Z, Stumpf M, Noegel AA et al. Oligomerization, F-actin interaction and membrane association of the ubiquitous mammalian coronin 3 are mediated by its carboxyl terminus. J Biol Chem 2002; 277(50):48858–48867.

    Article  PubMed  CAS  Google Scholar 

  43. Thal DR, Xavier CP, Rosentreter A et al. Expression of coronin 3 in diffuse gliomas is related to malignancy. J Pathol. In press.

    Google Scholar 

  44. Kleihues P, Cavenee WK. Pathology and Genetics: Tumours of the Nervous System. Lyon: IARC-Press; 2000.

    Google Scholar 

  45. Foger N, Rangell L, Danilenko DM et al. Requirement for coronin 1 in T-lymphocyte trafficking and cellular homeostasis. Science 2006; 313(5788):839–842.

    Article  PubMed  CAS  Google Scholar 

  46. Yanagisawa Y, Sato Y, Asahi-Ozaki Y et al. Effusion and solid lymphomas have distinctive gene and protein expression profiles in an animal model of primary effusion lymphoma. J Pathol 2006; 209(4):464–473.

    Article  PubMed  CAS  Google Scholar 

  47. Graham SM, Vass JK, Holyoake TL et al. Transcriptional analysis of quiescent and proliferating CD34+ human haemopoietic cells from normal and CML sources. Stem Cells 2007; 25(12):3111–20.

    Article  PubMed  CAS  Google Scholar 

  48. Wilson CS, Davidson GS, Martin SB et al. Gene expression profiling of adult acute myeloid leukemia identifies novel biologic clusters for risk classification and outcome prediction. Blood 2006; 108(2):685–696.

    Article  PubMed  CAS  Google Scholar 

  49. Sasaki H, Nishikata I, Shiraga T et al. Overexpression of a cell adhesion molecule, TSLC1, as a possible molecular marker for acute-type adult T-cell leukemia. Blood 2005; 105(3):1204–1213.

    Article  PubMed  CAS  Google Scholar 

  50. Mahadevan D, Spier C, Della Croce K et al. Transcript profiling in peripheral T-cell lymphoma, not otherwise specified and diffuse large B-cell lymphoma identifies distinct tumor profile signatures. Mol Cancer Ther 2005; 4(12):1867–1879.

    Article  PubMed  CAS  Google Scholar 

  51. Ferrari G, Langen H, Naito M et al. A coat protein on phagosomes involved in the intracellular survival of mycobacteria. Cell 1999; 97(4):435–447.

    Article  PubMed  CAS  Google Scholar 

  52. Vergne I, Chua J, Singh SB et al. Cell biology of mycobacterium tuberculosis phagosome. Annu Rev Cell Dev Biol 2004; 20:367–394.

    Article  PubMed  CAS  Google Scholar 

  53. Anes E, Kuhnel MP, Bos E et al. Selected lipids activate phagosome actin assembly and maturation resulting in killing of pathogenic mycobacteria. Nat Cell Biol 2003; 5(9):793–802.

    Article  PubMed  CAS  Google Scholar 

  54. Deghmane AE, Soulhine H, Bach H et al. Lipoamide dehydrogenase mediates retention of coronin-1 on BCG vacuoles, leading to arrest in phagosome maturation. J Cell Sci 2007; 120(16):2796–806.

    Article  PubMed  CAS  Google Scholar 

  55. Jayachandran R, Sundaramurthy V, Combaluzier B et al. Survival of mycobacteria in macrophages is mediated by coronin 1-dependent activation of calcineurin. Cell 2007; 130(1):37–50.

    Article  PubMed  CAS  Google Scholar 

  56. Parekh AB, Putney JW Jr. Store-operated calcium channels. Physiol Rev 2005; 85(2):757–810.

    Article  PubMed  CAS  Google Scholar 

  57. Gallo EM, Cante-Barrett K, Crabtree GR. Lymphocyte calcium signaling from membrane to nucleus. Nat Immunol 2006; 7(1):25–32.

    Article  PubMed  CAS  Google Scholar 

  58. Cai L, Holoweckyj N, Schaller MD et al. Phosphorylation of coronin 1B by protein kinase C regulates interaction with Arp2/3 and cell motility. J Biol Chem 2005; 280(36):31913–31923.

    Article  PubMed  CAS  Google Scholar 

  59. Di Giovanni S, De Biase A, Yakovlev A et al. In vivo and in vitro characterization of novel neuronal plasticity factors identified following spinal cord injury. J Biol Chem 2005; 280(3):2084–2091.

    Article  PubMed  CAS  Google Scholar 

  60. Di Giovanni S, Knights CD, Rao M et al. The tumor suppressor protein p53 is required for neurite outgrowth and axon regeneration. EMBO J 2006; 25(17):4084–4096.

    Article  PubMed  CAS  Google Scholar 

  61. Martinez I, Lombardia L, Garcia-Barreno B et al. Distinct gene subsets are induced at different time points after human respiratory syncytial virus infection of A549 cells. J Gen Virol 2007; 88(Pt 2):570–581.

    Article  PubMed  CAS  Google Scholar 

  62. Fujimura N, Vacik T, Machon O et al. Wnt-mediated down-regulation of SP1 target genes by a transcriptional repressor Sp5. J Biol Chem 2007; 282(2):1225–1237.

    Article  PubMed  CAS  Google Scholar 

  63. Hartman ZC, Kiang A, Everett RS et al. Adenovirus infection triggers a rapid, MyD88-regulated transcriptome response critical to acute-phase and adaptive immune responses in vivo. J Virol 2007; 81(4):1796–1812.

    Article  PubMed  CAS  Google Scholar 

  64. Pellagatti A, Cazzola M, Giagounidis AA et al. Gene expression profiles of CD34+ cells in myelodysplastic syndromes: involvement of interferon-stimulated genes and correlation to FAB subtype and karyotype. Blood 2006; 108(1):337–345.

    Article  PubMed  CAS  Google Scholar 

  65. Kakiuchi S, Daigo Y, Ishikawa N et al. Prediction of sensitivity of advanced nonsmall cell lung cancers to gefitinib (Iressa, ZD1839). Hum Mol Genet 2004; 13(24):3029–3043.

    Article  PubMed  CAS  Google Scholar 

  66. Hertel L, Mocarski ES. Global analysis of host cell gene expression late during cytomegalovirus infection reveals extensive dysregulation of cell cycle gene expression and induction of Pseudomitosis independent of US28 function. J Virol 2004; 78(21):11988–12011.

    Article  PubMed  CAS  Google Scholar 

  67. Ning W, Li CJ, Kaminski N et al. Comprehensive gene expression profiles reveal pathways related to the pathogenesis of chronic obstructive pulmonary disease. Proc Natl Acad Sci USA 2004; 101(41):14895–14900.

    Article  PubMed  CAS  Google Scholar 

  68. Chen H, Huang XN, Stewart AF et al. Gene expression changes associated with fibronectin-induced cardiac myocyte hypertrophy. Physiol Genomics 2004; 18(3):273–283.

    Article  PubMed  CAS  Google Scholar 

  69. Messmer D, Messmer B, Chiorazzi N. The global transcriptional maturation program and stimuli-specific gene expression profiles of human myeloid dendritic cells. Int Immunol 2003; 15(4):491–503.

    Article  PubMed  CAS  Google Scholar 

  70. Ross ME, Zhou X, Song G et al. Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood 2003; 102(8):2951–2959.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Bear .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Roadcap, D.W., Clemen, C.S., Bear, J.E. (2008). The Role of Mammalian Coronins in Development and Disease. In: Clemen, C.S., Eichinger, L., Rybakin, V. (eds) The Coronin Family of Proteins. Subcellular Biochemistry, vol 48. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09595-0_12

Download citation

Publish with us

Policies and ethics