Skip to main content

Meta-Analysis in Epidemiology

  • Reference work entry

Abstract

The use of meta-analyses in order to synthesize the evidence from epidemiological studies has become more and more popular recently. It has been estimated by Egger et al. (1998) that from articles retrieved by MEDLINE with the medical subject heading (MeSH) term “meta-analysis” some 33% reported results of a meta-analysis from randomized clinical trials and nearly the same proportion (27%) were from observational studies, including 12% papers in which the etiology of a disease was investigated. The remaining papers include methodological publications or review articles. Reasons for the popularity of meta-analyses are the growing information in the scientific literature and the need of timely decisions for risk assessment or in public health. Methods for meta-analyses in order to summarize or synthesize evidence from randomized controlled clinical trials have been continuously developed during the last years. In 1993, the Cochrane Collaboration was established as an international organization, which provides systematic reviews to evaluate healthcare interventions. They have published a handbook (Higgins and Green 2009) with detailed information on how to conduct systematic reviews of randomized clinical trials. While methods for meta-analyses of randomized clinical trials are now also summarized in several text books, for example, Sutton et al. (2000) and Whitehead (2002), and in a handbook by Egger et al. (2001a) and Dickersin (2002) argued that statistical methods for meta-analyses of epidemiological studies are still behind in comparison to the progress that has been made for randomized clinical trials. The use of meta-analyses for epidemiological research caused many controversial discussions; see, for example, Blettner et al. (1999), Berlin (1995), Greenland (1994), Feinstein (1995), Olkin (1994), Shapiro (1994a,b), or Weed (1997) for a detailed overview of the arguments. The most prominent arguments against meta-analyses are the fundamental issues of confounding, selection bias, as well as the large variety and heterogeneity of study designs and data collection procedures in epidemiological research. Despite these controversies, results from meta-analyses are often cited and used for decisions. They are often seen as the fundamentals for risk assessment. They are also performed to summarize the current state of knowledge often prior to designing new studies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allam MF, Del Castillo AS, Navajas RF (2003) Parkinson’s disease, smoking and family history: meta-analysis. Eur J Neurol 10:59–62

    Article  CAS  PubMed  Google Scholar 

  • Baker SG, Kramer BS (2002) The transitive fallacy for randomized trials: if a bests b and b bests c in separate trials, is a better than c? BMC Med Res Methodol 2(1):13

    Article  PubMed Central  PubMed  Google Scholar 

  • Begg CB, Mazumdar M (1994) Operating characteristics of a rank correlation test for publication bias. Biometrics 50:1088–1101

    Article  CAS  PubMed  Google Scholar 

  • Bennett DA (2003) Review of analytical methods for prospective cohort studies using time to event data: single studies and implications for meta-analysis. Stat Methods Med Res 12:297–319

    Article  PubMed  Google Scholar 

  • Berlin JA (1995) Invited commentary: benefits of heterogeneity in meta-analysis of data from epidemiologic studies. Am J Epidemiol 142:383–387

    CAS  PubMed  Google Scholar 

  • Berlin JA, Begg CB, Louis TN (1989) An assessment of publication bias using a sample of published clinical trials. J Am Stat Assoc 84:381–392

    Article  Google Scholar 

  • Berlin JA, The University of Pennsylvania Meta-Analysis Blinding Study Group (1997) Does blinding of readers affect the results of meta-analyses? Lancet 350:185–186

    Article  CAS  PubMed  Google Scholar 

  • Blair A, Burg J, Floran J, Gibb H, Greenland S, Morris R, Raabe G, Savitz D, Teta J, Wartenberg D, Wong O, Zimmerman R (1995) Guidelines for application of meta-analysis in environmental epidemiology. Regul Toxicol Pharmacol 22:189–197

    Article  CAS  PubMed  Google Scholar 

  • Blettner M, Sauerbrei W, Schlehofer B, Scheuchenpflug T, Friedenreich C (1999) Traditional reviews, meta-analyses and pooled analyses in epidemiology. Int J Epidemiol 28:1–9

    Article  CAS  PubMed  Google Scholar 

  • Boffetta P (2002) Involuntary smoking and lung cancer. Scand J Work Environ Health 28(Suppl 2):30–40

    CAS  PubMed  Google Scholar 

  • Boffetta P, Saracci R, Andersen A, Bertazzi PA, Chang-Claude J, Cherrie J, Ferro G, Frentzel-Beyme R, Hansen J, Plato N, Teppo L, Westerholm P, Winter PD, Zochetti C (1997) Cancer mortality among man-made vitreous fiber production workers. Epidemiology 8:259–268

    Article  CAS  PubMed  Google Scholar 

  • Böhning D, Dietz E, Schlattmann P (1998) Recent developments in computer assisted mixture analysis. Biometrics 54:283–303

    Article  Google Scholar 

  • Böhning D, Malzahn U, Dietz E, Schlattmann P, Viwatwongkasem C, Biggeri A (2002) Some general points in estimating heterogeneity variance with the DerSimonian-Laird estimator. Biostatistics 3:445–457

    Article  PubMed  Google Scholar 

  • Boyd NF, Martin LJ, Noffel M, Lockwood GA, Trichler DL (1993) A meta-analysis of studies of dietary fat and breast cancer. Br J Cancer 68:627–636

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bucher HC, Guyatt GH, Griffith LE, Walter SD (1997) The results of direct and indirect treatment comparisons in meta-analysis of randomized controlled trials. J Clin Epidemiol 50(6):683–691

    Article  CAS  PubMed  Google Scholar 

  • Caldwell DM, Welton NJ, Ades AE (2009) Mixed treatment comparison analysis provides internally coherent treatment effect estimates based on overviews of reviews and can reveal inconsistency. J Clin Epidemiol. doi:10.1016/j.jclinepi.2009.08.025

    Google Scholar 

  • CGHFBC Collaborative Group On Hormonal Factors Breast Cancer (1996) Breast cancer and hormonal contraceptives: collaborative reanalysis of individual data on 53 297 women with breast cancer and 100 239 women without breast cancer from 54 epidemiological studies. Lancet 347:1713–1727

    Article  Google Scholar 

  • Cook DJ, Guyatt GH, Ryan G, Clifton J, Buckingham L, Willan A, McLlroy W, Oxman AD (1993) Should unpublished data be included in meta- analyses? current conflictions and controversies. J Am Med Assoc 21:2749–2753

    Article  Google Scholar 

  • Cooper NJ, Sutton AJ, Morris D, Ades AE, Welton NJ (2009) Adressing between-study heterogeneity and inconsistency in mixed treatment comparisons: application to stroke prevention treatments in individuals with non-rheumatic atrial fibrillation. Stat Med 28(14):1861–1881

    Article  PubMed  Google Scholar 

  • Copas JB, Shi JQ (2001) A sensitivity analysis for publication bias in systematic review. Med Res 10:251–265

    CAS  Google Scholar 

  • DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188

    Article  CAS  PubMed  Google Scholar 

  • Dickersin K (2002) Systematic reviews in epidemiology: why are we so far behind? Int J Epidemiol 31:6–12

    Article  PubMed  Google Scholar 

  • Dickersin K, Scherer R, Lefebvre C (1994) Identifying relevant studies for systematic reviews. BMJ 309:1286–1291

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a single, graphical test. BMJ 315:629–634

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Egger M, Schneider M, Davey Smith G (1998) Spurious precision? meta-analysis of observational studies. BMJ 316:140–144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Egger M, Davey Smith G, Altman DG (2001a) Systematic reviews in health care. Meta-analysis in context, 2nd edn. BMJ Publishing Group, London

    Book  Google Scholar 

  • Egger M, Davey Smith G, Schneider M (2001b) Systematic reviews of observational studies. BMJ Publishing Group, London, pp 211–227

    Google Scholar 

  • Egger M, Juni P, Bartlett C, Holenstein F, Sterne J (2003) How important are comprehensive literature searches and the assessment of trial quality in systematic reviews? An empirical study. Health Technol Assess 7:1–76

    CAS  PubMed  Google Scholar 

  • Elliott WJ, Meyer PM (2007a) Incident diabetes in clinical trials of antihypertensive drugs: a network meta-analysis. Lancet 369(9557):201–207

    Article  CAS  PubMed  Google Scholar 

  • Elliott WJ, Meyer PM (2007b) Incident diabetes in clinical trials of antihypertensive drugs. Lancet 369:1514–1515

    Article  Google Scholar 

  • Feinstein AR (1995) Meta-analysis: statistical alchemy for the 21st century. J Clin Epidemiol 48:71–79

    Article  CAS  PubMed  Google Scholar 

  • Friedenreich CM (1993) Methods for pooled analyses of epidemiologic studies. Epidemiology 4:295–302

    Article  CAS  PubMed  Google Scholar 

  • Friedenreich C (1994) Influence of methodologic factors in a pooled analysis of 13 case-control studies of colorectal cancer and dietary fiber. Epidemiology 5:66–67

    Article  CAS  PubMed  Google Scholar 

  • Glass GV (1977) Integrating findings: the meta-analysis of research. Rev Res 5:3–8

    Google Scholar 

  • Glenny AM, Altman DG, Song F, Sakarovitch C, Deeks JJ, Damico R, Bradburn M (2005) Indirect comparisons of competing interventions. Health Technol Assess 9(26):1–134

    CAS  PubMed  Google Scholar 

  • Greenland S (1987) Quantitative methods in the review of epidemiologic literature. Epidemiol Rev 9:1–302

    CAS  PubMed  Google Scholar 

  • Greenland S (1994) Invited commentary: a critical look at some popular meta-analytic methods. Am J Epidemiol 140:290–296

    CAS  PubMed  Google Scholar 

  • Hamajima N, Hirose K, Tajima K (2002) Alcohol, tobacco and breast cancer–collaborative reanalysis of individual data from 53 epidemiological studies, including 58,515 women with breast cancer and 95,067 women without the disease. Br J Cancer 87:1234–1245

    Article  CAS  PubMed  Google Scholar 

  • Higgins JPT, Green S (2009) Cochrane handbook for systematic reviews of interventions, Version 5.0.2. The Cochrane Collaboration, London

    Google Scholar 

  • Higgins JP, Whitehead A (1996) Borrowing strength from external trials in a meta-analysis. Stat Med 15(24):2733–2749

    Article  CAS  PubMed  Google Scholar 

  • Hill AB (1965) The environment and disease: association or causation? Proc R Soc Med 58:295–300

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hill HA, Kleinbaum DG (2000) Bias in observational studies. Wiley, Chichester, pp 94–100

    Google Scholar 

  • Hung RJ, Boffetta P, Brockmoller J (2003) CYP1A1 and GSTM1 genetic polymorphisms and lung cancer risk in caucasian non-smokers: a pooled analysis. Carcinogenesis 24:875–882

    Article  CAS  PubMed  Google Scholar 

  • Jones DR (1992) Meta-analysis of observational epidemiologic studies in a consistent form. J R Soc Med 85:165–168

    CAS  PubMed Central  PubMed  Google Scholar 

  • Longnecker MP, Berlin JA, Orza MJ, Chalmers TC (1988) A meta-analysis of alcohol consumption in relation to risk of breast cancer. JAMA 260:652–656

    Article  CAS  PubMed  Google Scholar 

  • Lu G, Ades AE (2004) Combination of direct and indirect evidence in mixed treatment comparisons. Stat Med 23(20):3105–3124

    Article  CAS  PubMed  Google Scholar 

  • Lu G, Ades AE (2006) Assessing evidence inconsistency in mixed treatment comparisons. J Am Stat Assoc 101(474):447–459

    Article  CAS  Google Scholar 

  • Lubin JH, Boice JD Jr, Edling C, Hornung RW, Howe G, Kunz E, Kusiak RA, Morrison HI, Radford EP, Samet JM, Timarche M, Woodward A, Yao SX (1995) Radon-exposed underground miners and inverse dose-rate (protraction enhancement) effects. Health Phys 69:494–500

    Article  CAS  PubMed  Google Scholar 

  • Lumley T (2002) Network meta-analysis for indirect treatment comparisons. Stat Med 21(16):2313–2324

    Article  PubMed  Google Scholar 

  • Macaskill PS, Walter SD, Irwig L (2001) A comparison of methods to detect publication bias in meta-analysis. Stat Med 20:641–654

    Article  CAS  PubMed  Google Scholar 

  • Meinert R, Michaelis J (1996) Meta-analyses of studies on the association between electromagnetic fields and childhood cancer. Radiat Environ Biophys 35:11–18

    Article  CAS  PubMed  Google Scholar 

  • Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009) Preferred reporting items for systematic reviews and meta-analyses: the prisma statement. The Cochrane Collaboration. PLoS Med 6(7):e1000097. doi:10.1371/journal.pmed.1000097

    Article  Google Scholar 

  • Nixon RM, Bansback N, Brennan A (2007) Using mixed treatment comparisons and meta-regression to perform indirect comparisons to estimate the efficacy of biologic treatments in rheumatoid arthritis. Stat Med 26(6):1237–1254

    Article  CAS  PubMed  Google Scholar 

  • Normand SL (1999) Meta-analysis: formulating, evaluating, combining, and reporting. Stat Med 18:321–359

    Article  CAS  PubMed  Google Scholar 

  • Olkin I (1994) Invited commentary: Re: “a critical look at some popular meta-analytic methods”. Am J Epidemiol 140:297–299

    CAS  PubMed  Google Scholar 

  • Paul SR, Donner A (1989) A comparison of tests of homogeneity of odds ratios in k 2x2 tables. Stat Med 8:1455–1468

    Article  CAS  PubMed  Google Scholar 

  • Peters J, Sutton A, Jones D, Abrams K, Rushton L (2006) Comparison of two methods to detect publication bias inmeta-analysis. The Cochrane Collaboration. JAMA 295(6):676–680

    Article  CAS  PubMed  Google Scholar 

  • Pettiti DB (1994) Meta-analysis, decision analysis and cost-effectiveness analysis. Oxford University Press, New York

    Google Scholar 

  • Morris RD (1994) Meta-analysis in cancer epidemiology. Environ Health Perspect 102:61–66

    Article  PubMed Central  PubMed  Google Scholar 

  • Riley RD, Simmonds MC, Look MP (2007) Evidence synthesis combining individual patient data and aggregate data: a systematic review identified current practice and possible methods. J Clin Epidemiol 60(5):431–439. doi:10.1016/j.jclinepi.2006.09.009

    Article  PubMed  Google Scholar 

  • Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, Jackson RD, Beresford SA, Howard BV, Johnson KC, Kotchen JM, Ockene J, Writing Group for the Women’s Health Initiative Investigators (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the women’s health initiative randomized controlled trial. JAMA 288:321–333

    Article  CAS  PubMed  Google Scholar 

  • Salanti G, Higgins JP, Ades AE, Ioannidis JP (2008) Evaluation of networks of randomized trials. Stat Methods Med Res 17(3):279–301

    Article  PubMed  Google Scholar 

  • Sauerbrei W, Blettner M, Royston P (2001) Letter to White, IR (1999): “The level of alcohol consumption at which all-cause mortality is least”. J Clin Epidemiol 54:537–538

    Article  Google Scholar 

  • Schlattmann P (2009) Medical applications of finite mixture models. Statistics for biology and health. Springer, Berlin, 246p. EUR 64.15

    Google Scholar 

  • Schlattmann P, Böhning D (1993) Computer packages c.a.man (computer assisted mixture analysis) and dismap. Stat Med 12:1965

    Google Scholar 

  • Schlehofer B, Blettner M, Preston-Martin S, Niehoff D, Wahrendorf J, Arslan A, Ahlbom A, Choi WN, Giles GG, Howe GR, Little J, Menegoz F, Ryan P (1999) Role of medical history in brain tumour development. Results from the international adult brain tumour study. Int J Cancer 82:155–160

    Article  CAS  PubMed  Google Scholar 

  • Schwarzer G, Antes G, Schumacher M (2002) Inflation of type I error rate in two statistical tests for the detection of publication bias in meta-analyses with binary outcomes. Stat Med 21:2465–2477

    Article  PubMed  Google Scholar 

  • Shapiro S (1994a) Is there is or is there ain’t no baby? Dr. Shapiro replies to Drs. Petitti and Greenland. Am J Epidemiol 140:788–791

    CAS  PubMed  Google Scholar 

  • Shapiro S (1994b) Meta-analysis/shmeta-analysis. Am J Epidemiol 140:771–778

    CAS  PubMed  Google Scholar 

  • Sidik K, Jonkman JN (2005) Simple heterogeneity variance estimation for meta-analysis. Appl Stat 54:367–384

    Google Scholar 

  • Sillero-Arenas M, Delgado-Rodriguez M, Rodiguesw-Canteras R, Bueno-Cavanillas A, Galvez-Vargas R (1992) Menopausal hormone replacement therapy and breast cancer: a meta-analysis. Obstet Gynecol 79:286–294

    CAS  PubMed  Google Scholar 

  • Smith ML, Glass GV (1977) Meta-analysis of psychotherapy outcome studies. Am Psychol 32(9):752–760

    Article  CAS  PubMed  Google Scholar 

  • Smith-Warner SA, Ritz J, Hunter DJ, Albanes D (2002) Dietary fat and risk of lung cancer in a pooled analysis of prospective studies. Cancer Epidemiol Biomark Prev 11:987–992

    Google Scholar 

  • Song F, Altman DG, Glenny AM, Deeks JJ (2003) Validity of indirect comparison for estimating efficacy of competing interventions: empirical evidence from published meta-analyses. BMJ 326(7387):472

    Article  PubMed Central  PubMed  Google Scholar 

  • Song F, Harvey I, Lilford R (2008) Adjusted indirect comparison may be less biased than direct comparison for evaluating new pharmaceutical interventions. J Clin Epidemiol 61(5):455–463

    Article  CAS  PubMed  Google Scholar 

  • Song F, Loke YK, Walsh T, Glenny AM, Eastwood AJ, Altman DG (2009) Methodological problems in the use of indirect comparisons for evaluating healthcare interventions: survey of published systematic reviews. BMJ 338:b1147. doi:10.1136/bmj.b1147

    Article  PubMed Central  PubMed  Google Scholar 

  • Steinberg KK, Smith SJ, Lee N, Stroup DF, Olkin I, Williamson GD (1997) A comparison of meta-analysis to pooled analysis: an application to ovarian cancer. Am J Epidemiol 145:1917–1925

    Article  Google Scholar 

  • Stock WA (1995) Systematic coding for research synthesis. The Russell Sage Foundation, New York, pp 1–2

    Google Scholar 

  • Straif K, Chambless L, Weiland SK, Wienke A, Bungers M, Taeger D, Keil U (1999) Occupational risk factors for mortality from stomach and lung cancer among rubber workers: an analysis using internal controls and refined exposure assessment. Int J Epidemiol 28:1037–1043

    Article  CAS  PubMed  Google Scholar 

  • Straif K, Keil U, Taeger D, Holthenrich D, Sun Y, Bungers M, Weiland SK (2000) Exposure to nitrosamines, carbon black, asbestos, and talc and mortality from stomach, lung, and laryngeal cancer in a cohort of rubber workers. Am J Epidemiol 152:297–306

    Article  CAS  PubMed  Google Scholar 

  • Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis of observational studies in epidemiology group. J Am Med Assoc 283:2008–2012

    Article  CAS  Google Scholar 

  • Stukel TA, Demidenko E, Dykes J, Karagas MR (2001) Two-stage methods for the analysis of pooled data. Stat Med 20:2115–2130

    Article  CAS  PubMed  Google Scholar 

  • Sutton AJ, Higgins JP (2008) Recent developments in meta-analysis. Stat Med 27(5):625–650

    Article  PubMed  Google Scholar 

  • Sutton AJ, Abrams KR, Jones DR, Sheldon TA, Song F (2000) Methods for meta-analysis in medical research. Wiley, Chichester/New York

    Google Scholar 

  • Sutton AJ, Kendrick D, Coupland CA (2008) Meta-analysis of individual- and aggregate-level data. Stat Med 27(5):651–669

    Article  CAS  PubMed  Google Scholar 

  • Thompson SG (1994) Why sources of heterogeneity in meta-analysis should be investigated. BMJ 309:1351–1355

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thompson SG, Sharp SJ (1999) Explaining heterogeneity in meta-analysis: a comparison of methods. Stat Med 18:2693–2708

    Article  CAS  PubMed  Google Scholar 

  • Thompson SG, Smith TC, Sharp SJ (1997) Investigating underlying risk as a source of heterogeneity in meta-analysis. Stat Med 16:2741–2758

    Article  CAS  PubMed  Google Scholar 

  • Tweedie RL, Mengersen KL (1995) Meta-analytic approaches to dose-response relationships, with application in studies of lung cancer and exposure to environmental tobacco smoke. Stat Med 14:545–569

    Article  CAS  PubMed  Google Scholar 

  • Ursin G, Longenecker MP, Haile RW, Greenland S (1995) A meta-analysis of body mass index and risk of premenopausal breast cancer. Epidemiology 6:137–141

    Article  CAS  PubMed  Google Scholar 

  • van Howelingen HC, Arends LC, Stijnen T (2002) Advanced methods in meta-analyis: multivariate approach and meta-regression. Stat Med 59:589–624

    Article  Google Scholar 

  • Weed DL (1997) Methodologic guidelines for review papers. JNCI 89:6–7

    Article  Google Scholar 

  • Weed DL (2000) Interpreting epidemiological evidence: how meta-analysis and causal inference methods are related. Int J Epidemiol 29:387–390

    Article  CAS  PubMed  Google Scholar 

  • Whitehead A (2002) Meta-analysis of controlled clinical trials. Wiley, Chichester

    Book  Google Scholar 

  • Zeeger MP, Jellema A, Ostrer H (2003) Empiric risk of prostate carcinoma for relatives of patients with prostate carcinoma: a meta-analysis. Cancer 97:1894–1903

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Blettner, M., Krahn, U., Schlattmann, P. (2014). Meta-Analysis in Epidemiology. In: Ahrens, W., Pigeot, I. (eds) Handbook of Epidemiology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09834-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-09834-0_21

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-09833-3

  • Online ISBN: 978-0-387-09834-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics