Skip to main content

Mitochondrial Reactive Oxygen Species are Required for Hypoxic HIFα Stabilization

  • Conference paper
Hypoxia and Exercise

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 588))

Abstract

Multicellular organisms initiate adaptive responses when oxygen (O2) availability decreases. The underlying mechanisms of O2 sensing remain unclear. Mitochondria have been implicated in many hypoxia-inducible factor (HIF) -dependent and -independent hypoxic responses. However, the role of mitochondria in mammalian cellular O2 sensing has remained controversial, particularly regarding the use pharmacologic agents to effect hypoxic HIFα stabilization, which has produced conflicting data in the literature. Using murine embryonic cells lacking cytochrome c, we show that mitochondrial reactive O2 species (ROS) are essential for O2 sensing and subsequent HIFα stabilization at 1.5% O2. In the absence of this signal, HIFα subunits continue to be hydroxylated and degraded via the proteasome. Importantly, exogenous treatment with H2O2 and severe O2 deprivation is sufficient to stabilize HIFα even in the absence of functional mitochondrial. These results demonstrate that mitochondria function as O2 sensors and signal hypoxic HIFα stabilization by releasing ROS to the cytoplasm. The cytochrome c mutant embryonic cells provide a unique reagent to further dissect the role of mitochondria in O2 mediated-intracellular events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Archer SL, Reeve HL, Michelakis E, Puttagunta L, Waite R, Nelson DP, Dinauer MC, and Weir EK. O2 sensing is preserved in mice lacking the gp91 phox subunit of NADPH oxidase. Proc Natl Acad Sci U S A 96: 7944–7949, 1999.

    Article  PubMed  CAS  Google Scholar 

  2. Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, and Schumacker PT. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci USA 95: 11715–11720, 1998.

    Article  PubMed  CAS  Google Scholar 

  3. Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, and Schumacker PT. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-lalpha during hypoxia: a mechanism of O2 sensing. J Biol Chem 275: 25130–25138., 2000.

    Article  PubMed  CAS  Google Scholar 

  4. Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O’Rourke J, Mole DR, Mukherji M, Metzen E, Wilson MI, Dhanda A, Tian YM, Masson N, Hamilton DL, Jaakkola P, Barstead R, Hodgkin J, Maxwell PH, Pugh CW, Schofield CJ, and Ratcliffe PJ. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107: 43–54, 2001.

    Article  PubMed  CAS  Google Scholar 

  5. Huang LE, Gu J, Schau M, and Bunn HE Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci U S A 95: 7987–7992, 1998.

    Article  PubMed  CAS  Google Scholar 

  6. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, and Kaelin WG, Jr. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292: 464–468., 2001.

    PubMed  CAS  Google Scholar 

  7. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, and Ratcliffe PJ. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292: 468–472., 2001.

    PubMed  CAS  Google Scholar 

  8. Jones RD, Hancock JT, and Morice AH. NADPH oxidase: a universal oxygen sensor? Free Radie Biol Med 29: 416–424, 2000.

    Article  CAS  Google Scholar 

  9. Mansfield KD, Guzy RD, Pan Y, Young RD, Schumacker PT, and Simon MC. Cytochrome C is required for cellular oxygen sensing and hypoxic HIF activation. Cell Metabolism, manuscript submitted, 2005.

    Google Scholar 

  10. Michiels C, Minet E, Mottet D, and Raes M. Regulation of gene expression by oxygen: NF-kappaB and HIF-1, two extremes. Free Radie Biol Med 33: 1231–1242, 2002.

    Article  CAS  Google Scholar 

  11. Schroedl C, McClintock DS, Budinger GR, and Chandel NS. Hypoxic but not anoxic stabilization of HIF-1alpha requires mitochondrial reactive oxygen species. Am J Physiol Lung Cell Mol Physiol 283: L922–931., 2002.

    PubMed  CAS  Google Scholar 

  12. Semenza GL. Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol 15: 551–578, 1999.

    Article  PubMed  CAS  Google Scholar 

  13. Srinivas V, Leshchinsky I, Sang N, King MP, Minchenko A, and Caro J. Oxygen sensing and HIF-1 activation does not require an active mitochondrial respiratory chain electron-transfer pathway. J Biol Chem 276: 21995–21998, 2001.

    Article  PubMed  CAS  Google Scholar 

  14. Vaux E, Metzen E, Yeates K, and Ratcliffe P. Regulation of hypoxia-inducible factor is preserved in the absence of a functioning mitochondrial respiratory chain. Blood 98: 296–302, 2001.

    Article  PubMed  CAS  Google Scholar 

  15. Zhu H and Bunn H. Oxygen Sensing and signaling: impact on the regulation of physiologically important genes. Respiration Physiology 115: 239–247, 1999.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this paper

Cite this paper

Celeste Simon, M. (2006). Mitochondrial Reactive Oxygen Species are Required for Hypoxic HIFα Stabilization. In: Roach, R.C., Wagner, P.D., Hackett, P.H. (eds) Hypoxia and Exercise. Advances in Experimental Medicine and Biology, vol 588. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-34817-9_15

Download citation

Publish with us

Policies and ethics