Skip to main content

Early Preclinical Evaluation of Brain Exposure in Support of Hit Identification and Lead Optimization

  • Chapter
Optimizing the “Drug-Like” Properties of Leads in Drug Discovery

Part of the book series: Biotechnology: Pharmaceutical Aspects ((PHARMASP,volume IV))

Abstract

Assessing brain exposure continues to be a central theme for multiple therapeutic areas within the pharmaceutical industry. In addition to optimizing delivery to CNS targets, brain exposure is considered for unwanted CNS access for either on-target activity or for off-target CNS toxicity or adverse events. The biopharmaceutical scientist is challenged to arrive at a rational strategy that is functional within the constraints of limited resources. Common strategies are integrated combinations of in silico, in vitro, and in vivo methods (Caldwell et al., 2001). The appropriate strategy used depends upon the need, i.e., to drive chemistry or to establish a pharmacokinetic-pharmacodynamic relationship. We believe that a rigorous strategy is best so that the best lead series are selected. The intent is to anticipate liabilities of a lead series such that subsequent lead optimization cycle time and clinical attrition rates are ultimately reduced. The rigorous methods should deliver value by aiding synthetic chemistry direction while filtering out difficult templates. We also advocate the use of animal models as early as possible to establish a realistic perspective around the plethora of higher-throughput screening assay data. This application obviously challenges one to increase the capacity of these in vivo assays without compromising data quality or wasting vital and limited people resources.

Retired from Pharmacia Corp., Kalamazoo, MI

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi Y, Suzuki H, Sugiyama Y (2001) Comparative studies on in vitro methods for evaluating in vivo function of MDR1 P-glycoprotein. Pharm. Res. 18: 1660–1668.

    Article  PubMed  CAS  Google Scholar 

  • Adson A, Burton PS, Raub TJ, Barsuhn CL, Audus KL, Ho NFH (1995) Passive diffusion of weak organic electrolytes across Caco-2 cell monolayers: uncoupling the contributions of hydrodynamic, transcellular and paracellular barriers. J. Pharm. Sci. 84: 1197–1204.

    Article  PubMed  CAS  Google Scholar 

  • Arendt RM, Greenblatt DJ, Liebisch DC, Luu MD, Paul SM (1987) Determinants of benzodiazepine brain uptake: lipophilicity versus binding affinity. Psychopharmacology 93:72–76.

    Article  PubMed  CAS  Google Scholar 

  • Atkinson F, Cole S, Green C, van de Waterbeemd H (2002) Lipophilicity and other parameters affecting brain penetration. Curr. Med. Chem.-Central Nerv. Sys. Agents 2: 229–240.

    Article  CAS  Google Scholar 

  • Bartsch W, Sponer G, Dietmann K, Fuchs G (1976) Acute toxicity of various solvents in the mouse and rat. Arzneim.-Forsch. 26(8): 1581–1583.

    CAS  Google Scholar 

  • Blasberg RG, Patlak CS, Fenstermacher JD (1983) Selection of experimental conditions for the accurate determination of blood-brain transfer constants from single-time experiments: a theoretical analysis. J. Cerebr. Blood Flow Metab. 3: 215–225.

    CAS  Google Scholar 

  • Bonate PL (1995) Animal models for studying transport across the blood-brain barrier. J. Neurosci. Methods 56: 1–15.

    Article  PubMed  CAS  Google Scholar 

  • Caldwell GW, Ritchie DM, Masucci JA, Hageman W, Yan Z (2001) The new preclinical paradigm: compound optimization in early and late phase drug discovery. Curr. Topics Med. Chem. 1: 353–366.

    Article  CAS  Google Scholar 

  • Clark DE (2003) In silico prediction of blood-brain barrier permeation. Drug Discov. Today 8: 927–933.

    Article  PubMed  CAS  Google Scholar 

  • Cornford EM, Braun LD, Oldendorf WH, Hill MA (1982) Comparison of lipid mediated blood-brain barrier permeability in the newborn and adult brain. Am. J. Physiol. 243: C161–C168.

    PubMed  CAS  Google Scholar 

  • Croop JM, Raymond M, Haber D, Devault A, Arceci RJ, Gros P, Housman DE (1989) The three mouse multidrug resistance (mdr) genes are expressed in a tissue-specific manner in normal mouse tissues. Mol. Cell Biol. 9: 1346–1350.

    PubMed  CAS  Google Scholar 

  • Dagenais C, Rousselle C, Pollack GM, Scherrmann JM (2000) Development of an in situ mouse brain perfusion model and its application to mdr1a Pglycoprotein-deficient mice. J. Cereb. Blood Flow Metab. 20: 381–386.

    Article  PubMed  CAS  Google Scholar 

  • Dagenais C, Zong J, Ducharme J, Pollack GM (2001) Effect of mdr1a Pglycoprotein gene disruption, gender, and substrate concentration on brain uptake of selected compounds. Pharm. Res. 18: 957–963.

    Article  PubMed  CAS  Google Scholar 

  • Dash AK, Elmquist WF (2003) Separation methods that are capable of revealing blood-brain barrier permeability. J. Chromatogr. B Analyt Technol Biomed Life Sci. 797: 241–254.

    Article  PubMed  CAS  Google Scholar 

  • Davies B, Morris T (1993) Physiological parameters in laboratory animals and humans. Pharm. Res. 10: 1093–1095.

    Article  PubMed  CAS  Google Scholar 

  • de Boer A, Gaillard PJ (2002) In vitro models of the blood-brain barrier: when to use which? Curr. Med. Chem.-Central Nerv. Sys. Agents 2: 203–209.

    Article  Google Scholar 

  • de Lange EC, Danhof M (2002) Considerations in the use of cerebrospinal fluid pharmacokinetics to predict brain target concentrations in the clinical setting: implications of the barriers between blood and brain. Clin. Pharmacokinet. 41: 691–703.

    Article  PubMed  Google Scholar 

  • Dubey RK, McAllister CB, Wilkinson GR (1989) Plasma binding and transport of diazepam across the blood-brain barrier: no evidence for in vivo enhanced dissociation. J. Clin. Invest. 84:1155–1159.

    PubMed  CAS  Google Scholar 

  • Ecker GF, Noe CR (2004) In silico prediction models for blood-brain barrier permeation. Curr. Med. Chem. 11: 1617–1628.

    PubMed  CAS  Google Scholar 

  • Eisenbraun MD, Miller RA (1999) mdr1a-encoded P-glycoprotein is not required for peripheral T cell proliferation, cytokine release, or cytotoxic effector function in mice. J. Immunol. 163: 2621–2627.

    PubMed  CAS  Google Scholar 

  • Eisenbraun MD, Mosley RL, Teitelbaum DH, Miller RA (2000) Altered development of intestinal intraepithelial lymphocytes in P-glycoproteindeficient mice. Dev. Comp. Immunol. 24: 783–795.

    Article  PubMed  CAS  Google Scholar 

  • Epps DE, Raub TJ, Kezdy FJ (1995) A general, wide-range spectrofluorometric method for measuring the site-specific affinities of ligands toward human serum albumin. Anal. Biochem. 227: 342–350.

    Article  PubMed  CAS  Google Scholar 

  • Epps DE, Raub TJ, Caiolfa V, Chiari A, Zamai M (1999) Determination of the affinity of drugs toward serum albumin by measurement of the quenching of the intrinsic tryptophan fluorescence of the protein. J. Pharm. Pharmacol. 51: 41–48.

    Article  PubMed  CAS  Google Scholar 

  • Erickson RP, Kiela M, Devine PJ, Hoyer PB, Heidenreich RA (2002) mdr1a deficiency corrects sterility in Niemann-Pick C1 protein deficient female mice. Mol. Reprod. Dev. 62: 167–173.

    Article  PubMed  CAS  Google Scholar 

  • Fenstermacher JD, Blasberg RG, Patlak CS (1981) Methods for quantifying the transport of drugs across brain barrier systems. Phamacol. Ther. 14: 217–248.

    Article  CAS  Google Scholar 

  • Fenstermacher JD, Rapoport SI (1984) Blood-brain barrier, In Handbook of Physiology. Section 2: The Cardiovascular System, Renkin EM, Michel CC, eds. Bethesda, MD: Am. Physiol. Soc., pp. 969–1000.

    Google Scholar 

  • Ferte J (2000) Analysis of the tangled relationships between P-glycoproteinmediated multidrug resistance and the lipid phase of the cell membrane. Eur. J. Biochem. 267: 277–294.

    Article  PubMed  CAS  Google Scholar 

  • Fromm MF (2000) P-glycoprotein: a defense mechanism limiting oral bioavailability and CNS accumulation of drugs. Int. J. Clin. Pharmacol. Therap. 38: 69–74.

    CAS  Google Scholar 

  • Garberg P, Ball M, Berg N, Cecchelli R, Fenart L, Hurst RD, Lindmark T, Mabondzo A, Nilsson JE, Raub TJ, Stanimirovic D, Terasaki T, Öberg J-O, Österberg T (2004) In vitro models for the blood-brain barrier. Toxicol. In vitro 19:299–334.

    Article  CAS  Google Scholar 

  • Golden PL, Pardridge WM (2000) Brain microvascular P-glycoprotein and a revised model of multidrug resistance in brain. Cell. Mol. Neurobiol. 20: 165–181.

    Article  PubMed  CAS  Google Scholar 

  • Greig NH, Soncrant TT, Shetty U, Momma S, Smith QR, Rapoport SI (1990) Brain uptake and anticancer activities of vincristine and vinblastine are restricted by their low cerebrovascular permeability and binding to plasma constituents in rat. Cancer Chemother. Pharmacol. 26: 263–268.

    PubMed  CAS  Google Scholar 

  • Gumbleton M, Audus KL (2001) Progress and limitations in the use of in vitro cell cultures to serve as a permeability screen for the blood-brain barrier. J. Pharm. Sci. 90: 1681–1698.

    Article  PubMed  CAS  Google Scholar 

  • Hardebo JE, Nilsson B (1981) Opening the blood-brain barrier by acute elevation of intracarotid pressure. Acta Physiol. Scand. 111: 43–49.

    PubMed  CAS  Google Scholar 

  • Ho NFH, Raub TJ, Burton PS, Barsuhn CL, Adson A, Audus KL, Borchardt RT (2000) Quantitative approaches to delineate passive transport mechanisms in cell culture monolayers, In Transport Processes in Pharmaceutical Systems, Gordon GL, Lee PI, Topp EM, eds. New York: Marcel Dekker, pp. 219–316.

    Google Scholar 

  • Hochman JH, Yamazaki M, Ohe T, Lin JH (2002) Evaluation of drug interactions with P-glycoprotein in drug discovery: in vitro assessment of the potential for drug-drug interactions with P-glycoprotein. Curr. Drug Metab. 3: 257–273.

    Article  PubMed  CAS  Google Scholar 

  • Jones DR, Hall SD, Branch RA, Jackson EK, Wilkinson GR (1986) Plasma binding and brain uptake of benzodiazepines. In Protein Binding and Drug Transport, Vol. 20, Symposia Medica Hoechst, Tillement, J-P, Lindenlaub, E, eds. FK Schattauer-Verlag: Stuttgart, pp. 311–324.

    Google Scholar 

  • Jusko WJ, Gretch M (1976) Plasma and tissue protein binding of drugs in pharmacokinetics. Drug Metab. Rev. 5:43–140.

    Article  CAS  Google Scholar 

  • Kawahara M, Sakata A, Miyashita T, Tamai I, Tsuji A (1999) Physiologically based pharmacokinetics of digoxin in mdr1a knockout mice. J. Pharm. Sci. 88: 1281–1287.

    Article  PubMed  CAS  Google Scholar 

  • Keller F, Waser PG (1984) Brain pharmacokinetics of centrally acting drugs, a quantitative autoradiographic study. Arch. Int. Pharmacodyn. Ther. 267: 200–212.

    PubMed  CAS  Google Scholar 

  • Koeplinger KA, Raub TJ, Padbury GE, Zhao Z (1999) Equilibrium distribution of HIV antiviral drugs into human peripheral blood mononuclear cells (PBMC) is controlled by free drug concentration in the extracellular medium. J. Pharm. Biomed. Anal. 19: 399–411.

    Article  PubMed  CAS  Google Scholar 

  • Koren G, Woodland C, Ito S (1998) Toxic digoxin-drug interactions: the major role of renal P-glycoprotein. Vet. Hum. Toxicol. 40: 45–46.

    PubMed  CAS  Google Scholar 

  • Kwan P, Sills GJ, Butler E, Gant TW, Brodie MJ (2003) Differential expression of multidrug resistance genes in naive rat brain. Neurosci. Lett. 339: 33–36.

    Article  PubMed  CAS  Google Scholar 

  • Kwei GY, Alvaro RF, Chen Q, Jenkins HJ, Hop CEAC, Keohane CA, Ly VT, Strauss JR, Wang RW, Wang Z, Pippert TR, Umbenhauer DR. (1999) Disposition of ivermectin and cyclosporin A in CF-1 mice deficient in mdr1a P-glycoprotein. Drug Metab. Dispos. 27: 581–587.

    PubMed  CAS  Google Scholar 

  • Lankas GR, Cartwright ME, Umbenhauer D (1997) P-glycoprotein deficiency in a subpopulation of CF-1 mice enhances avermectin-induced neurotoxicity. Toxicol. Appl. Pharmacol. 143: 357–365.

    Article  PubMed  CAS  Google Scholar 

  • Lee G, Bendayan R (2004) Functional expression and localization of Pglycoprotein in the central nervous system: relevance to the pathogenesis and treatment of neurological disorders. Pharm. Res. 21: 1313–1330.

    Article  PubMed  CAS  Google Scholar 

  • Leo A, Hansch C, Elkins D (1971) Partition coefficients and their uses. Chem. Revs. 71: 525–615.

    Article  CAS  Google Scholar 

  • Levin VA, Fenstermacher JD, Patlak CS (1970) Sucrose and inulin space measurements of cerebral cortex in four mammalian species. Am. J. Physiol. 219: 1528–1533.

    PubMed  CAS  Google Scholar 

  • Martin I (2004) Prediction of blood-brain barrier penetration: are we missing the point? Drug Discov. Today 9: 161–162.

    Article  PubMed  Google Scholar 

  • Mayer U, Wagenaar E, Beijnen JH, Smit JW, Meijer DK, van Asperen J, Borst P, Schinkel AH (1996) Substantial excretion of digoxin via the intestinal mucosa and prevention of long-term digoxin accumulation in the brain by the mdr 1a P-glycoprotein. Br. J. Pharmacol. 119: 1038–1044.

    PubMed  CAS  Google Scholar 

  • Meibohm B, Beierle I, Derendorf H (2002) How important are gender differences in pharmacokinetics? Clin. Pharmacokinet. 41: 329–342.

    Article  PubMed  CAS  Google Scholar 

  • Mendel CM, Cavalieri RR, Gavin LA, Pettersson T, Inoue M (1989) Thyroxine transport and distribution in nagase analbuminemic rats. J. Clin. Invest. 83: 143–148.

    PubMed  CAS  Google Scholar 

  • Norinder U, Haeberlein M (2002) Computational approaches to the prediction of the blood-brain distribution. Adv. Drug Deliv. Rev. 54: 291–313.

    Article  PubMed  CAS  Google Scholar 

  • Ohno K, Pettigrew KD, Rapoport SI (1978) Lower limits of cerebrovascular permeability to nonelectrolytes in the conscious rat. Am. J. Physiol. 235(3): H299–H307.

    PubMed  CAS  Google Scholar 

  • Oldendorf (1981) Clearance of radiolabeled substances by brain after arterial injection using a diffusable internal standard. Res. Methods Neurochem. 5: 91–112.

    CAS  Google Scholar 

  • Panwala CM, Jones JC, Viney JL (1998) A novel model of inflammatory bowel disease: mice deficient for the multiple drug resistance gene, mdr1a, spontaneously develop colitis. J. Immunol. 161: 5733–5744.

    PubMed  CAS  Google Scholar 

  • Pardridge WM, Oldendorf WH (1975a) Kinetics of blood-brain barrier transport of hexoses. Biochim. Biophys. Acta 382: 377–392.

    Article  PubMed  CAS  Google Scholar 

  • Pardridge WM, Oldendorf WH (1975b) Kinetic analysis of blood-brain barrier transport of amino acids. Biochim. Biophys. Acta 401: 128–136.

    Article  PubMed  CAS  Google Scholar 

  • Pardridge WM (1981) Transport of protein-bound hormones into tissues in vivo. Endocrine Revs. 2:103–123.

    CAS  Google Scholar 

  • Pardridge WM, Landaw EM (1984) Tracer kinetic model of blood-brain barrier transport of plasma protein-bound ligands. J. Clin. Invest. 74:745–752.

    PubMed  CAS  Google Scholar 

  • Pardridge WM (2004a) Log(BB), PS products and in silico models of drug brain penetration. Drug Discov. Today 9: 392–393.

    Article  PubMed  Google Scholar 

  • Pardridge WM (2004b) Holy grails and in vitro blood-brain barrier models. Drug Discov. Today 9: 258.

    Article  PubMed  Google Scholar 

  • Perloff MD, von Moltke LL, Cotreau MM, Greenblatt DJ (1999) Unchanged cytochrome P450 3A (CYP3A) expression and metabolism of midazolam, triazolam and dexamethasone in mdr(-/-) mouse liver microsomes. Biochm. Pharmacol. 57: 1227–1232.

    Article  CAS  Google Scholar 

  • Pippert TR, Umbenhauer DR (2001) The subpopulation of CF-1 mice deficient in P-glycoprotein contains a murine retroviral insertion in the mdr1a gene. J. Biochem. Mol. Toxicol. 15: 83–89.

    Article  PubMed  CAS  Google Scholar 

  • Polli JW, Wring SA, Humphreys JE, Huang L, Morgan JB, Webster LO, Serabjit-Singh CS (2001) Rational use of in vitro P-glycoprotein assays in drug discovery. J. Pharmacol. Exp. Ther. 299: 620–628.

    PubMed  CAS  Google Scholar 

  • Porschka H, Loscher W (2001) In vivo evidence for P-glycoprotein-mediated transport of phentoin at the blood-brain barrier of rats. Epilepsia 42: 1231–1240.

    Article  Google Scholar 

  • Rapoport SI (1976a) Blood-Brain Barrier in Physiology and Medicine. New York: Raven Press.

    Google Scholar 

  • Rapoport SI (1976b) Opening of the blood-brain barrier by acute hypertension. Exp. Neurol. 52: 467–479.

    Article  PubMed  CAS  Google Scholar 

  • Reichel A, Begley DJ, Abbott NJ (2003) An overview of in vitro techniques for blood-brain barrier studies. Methods Mol. Med. 89: 307–324.

    PubMed  CAS  Google Scholar 

  • Riant P, Urien S, Albengres E, et al. (1988) Effects of the binding of imipramine to erythrocytes and plasma proteins on its transport through the rat blood-brain barrier. J. Neurochem. 51:421–425.

    Article  PubMed  CAS  Google Scholar 

  • Robinson PJ (1990) Measurement of blood-brain barrier permeability. Clin. Exp. Pharmacol. Physiol. 17: 829–840.

    Article  PubMed  CAS  Google Scholar 

  • Russ G, Ramachandra M, Hrycyna CA, Gottesman MM, Pastan I, Bennink JR, Yewdell JW (1998) P-glycoprotein plays an insignificant role in the presentation of antigenic peptides to CD8+ T cells. Cancer Res. 58: 4688–4693.

    PubMed  CAS  Google Scholar 

  • Sakane T, Nakatsu M, Tamamoto A, Hashida M, Sezaki H, Yamashita S, Nadai T (1991) Assessment of drug disposition in the perfused rat brain by statistical moment analysis. Pharm. Res. 8: 683–689.

    Article  PubMed  CAS  Google Scholar 

  • Sawada GA, Ho NFH, Williams LR, Barsuhn CL, Raub TJ (1994) Transcellular permeability of chlorpromazine demonstrating the roles of protein binding and membrane partitioning. Pharm. Res. 11: 665–673.

    Article  PubMed  CAS  Google Scholar 

  • Sawada GA, Barsuhn CL, Lutzke BS, Houghton ME, Padbury GE, Ho NFH, Raub TJ (1999) Increased lipophilicity and subsequent cell partitioning decrease passive transcellular diffusion of novel, highly-lipophilic antioxidants. J. Pharm. Exper. Therap. 288:1317–1326.

    CAS  Google Scholar 

  • Schinkel AH, Smit JJM, van Tellingen O, Beijnen JH, Wagenaar E, van Deemter L, Mol CAAM, van der Valk MA, Robanus-Maandag EC, te Riele HPJ, Berns AJM, Borst P (1994) Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77: 491–502.

    Article  PubMed  CAS  Google Scholar 

  • Schinkel AH, Wagenaar E, van Deemter L, Mol CA, Borst P (1995) Absence of the mdr1a P-glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J. Clin. Invest. 96: 1698–1705.

    PubMed  CAS  Google Scholar 

  • Schinkel AH, Wagenaar E, Mol CA, van Deemter L (1996) P-glycoprotein in the blood brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J. Clin. Invest. 97: 2517–2524.

    Article  PubMed  CAS  Google Scholar 

  • Schinkel AH (1997) The physiological function of drug-transporting P-glycoproteins. Semin. Cancer Biol. 8: 161–170.

    Article  PubMed  CAS  Google Scholar 

  • Schinkel AH, Mayer U, Wagenaar E, Mol CA, van Deemter L, Smit JJ, van der Valk MA, Voordouw AC, Spits H, van Tellingen O, Zijlmans JM, Fibbe WE, Borst P (1997) Normal viability and altered pharmacokinetics in mice lacking mdr1-type (drug-transporting) P-glycoproteins. Proc. Natl. Acad. Sci. USA 94: 4028–4033.

    Article  PubMed  CAS  Google Scholar 

  • Schuetz EG, Umbenhauer DR, Yasuda K, Brimer C, Nguyen L, Relling MV, Schuetz JD, Schinkel AH (2000) Altered expression of hepatic cytochromes P-450 in mice deficient in one or more mdr1 genes. Mol. Pharmacol. 57: 188–197.

    PubMed  CAS  Google Scholar 

  • Schwab D, Fischer H, Tabatabaei A, Poli S, Huwyler J (2003) Comparison of in vitro P-glycoprotein screening assays: recommendations for their use in drug discovery. J. Med. Chem. 46: 1716–1725.

    Article  PubMed  CAS  Google Scholar 

  • Schwab AJ, Goresky CA (1996) Hepatic uptake of protein-bound ligands: effect of an unstirred Disse space. Am. J. Physiol. 270 (Gastointest. Liver Physiol. 33): G869–G880.

    PubMed  CAS  Google Scholar 

  • Seelig A, Landwojtowicz E (2000) Structure-activity relationship of P-glycoprotein substrates and modifiers. Eur. J. Pharm. Sci. 12: 31–40.

    Article  PubMed  CAS  Google Scholar 

  • Smith BJ, Doran AC, Mclean A, Tingley III FD, O’Neill BT, Kajiji SM (2001) Pglycoprotein efflux at the blood-brain barrier mediates differences in brain disposition and pharmacodynamics between two structurally related neuoroknin-1 receptor antagonists. J. Pharmacol. Exper. Therap. 298: 1252–1259.

    CAS  Google Scholar 

  • Smith QR, Momma S, Aoyagi M, Rapoport SI (1987) Kinetics of neutral amino acid transport across the blood-brain barrier. J. Neurochem. 49: 1651–1658.

    Article  PubMed  CAS  Google Scholar 

  • Smith QR (1989) Quantitation of blood-brain barrier permeability. In Implications of the blood-brain barrier and its manipulation, Neuwelt EA, ed. New York: Plenum Press, Vol. 1, pp. 85–118.

    Google Scholar 

  • Stein WD (1997) Kinetics of the multidrug transporter (P-glycoprotein) and its reversal. Physiol. Rev. 77:545–590.

    PubMed  CAS  Google Scholar 

  • Stolle J, Wadhwani KC, Smith QR (1993) Identification of the cationic acid transporter (System y+) of the rat blood-brain barrier. J. Neurochem. 60: 1956–1959.

    Article  Google Scholar 

  • Takasato Y, Rapoport SI, Smith QR (1984) An in situ brain perfusion technique to study cerebrovascular transport in the rat. Am. J. Physiol. 247: H484–H493.

    PubMed  CAS  Google Scholar 

  • Tamai I, Tsuji A (2000) Transporter-mediated permeation of drugs across the blood-brain barrier. J. Pharm. Sci. 89: 1371–1388.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka H, Mizojiri K (1999) Drug-protein binding and blood-brain barrier permeability. J. Pharm. Exper. Therap. 288: 912–918.

    CAS  Google Scholar 

  • Terasaki T, Ohtsuki S, Hori S, Takanaga H, Nakashima E, Hosoya K (2003) New approaches to in vitro models of blood-brain barrier drug transport. Drug Discov. Today 8:944–954.

    Article  PubMed  CAS  Google Scholar 

  • Uhr M, Holsboer F, Muller MB (2002) Penetration of endogenous steroid hormones corticosterone, cortisol, aldosterone and progesterone into the brain is enhanced in mice deficient for both mdr1a and mdr1b P-glycoproteins. J. Neuroendocrinol. 14: 753–759.

    Article  PubMed  CAS  Google Scholar 

  • Umbenhauer DR, Lankas GR, Pippert TR, Wise LD, Cartwright ME, Hall SJ, Beare CM (1997) Identification of a P-glycoprotein-deficient subpopulation in the CF-1 mouse strain using a restriction fragment length polymorphism. Toxicol. Appl. Pharmacol. 146: 88–94.

    Article  PubMed  CAS  Google Scholar 

  • van Asperen J, Schinkel AH, Beijnen JH, Nooijen WJ, Borst P, van Tellingen O (1996) Altered pharmacokinetics of vinblastine in Mdr1a P-glycoproteindeficient mice. J. Natl. Cancer Inst. 88: 994–999.

    Article  PubMed  Google Scholar 

  • van de Waterbeemd H, Camenisch G, Folkers G, Chretien JR, Raevsky OA (1998) Estimation of blood-brain barrier crossing of drugs using molecular size and shape, and H-bonding descriptors. J. Drug Target. 6: 151–65.

    PubMed  Google Scholar 

  • Van Harreveld A (1966) Brain Tissue Electrolytes. London: Butterworths Inc.

    Google Scholar 

  • Weisiger RA (1986) Non-equilibrium drug binding and hepatic drug removal. In Protein Binding and Drug Transport, Vol. 20, Symposia Medica Hoechst, Tillement, JP, Lindenlaub, E, eds. FK Schattauer-Verlag: Stuttgart, pp. 293–310.

    Google Scholar 

  • Woodward DL, Reed DJ, Woodbury DM (1967) Extracellular space of rat cerebral cortex. Am. J. Physiol. 212: 367–370.

    PubMed  CAS  Google Scholar 

  • Yamazaki M, Neway WE, Ohe T, Chen I, Rowe JF, Hochman JH, Chiba M, Lin JH (2001) In vitro substrate identification studies for p-glycoprotein-mediated transport: species difference and predictability of in vivo results. J. Pharmacol. Exp. Ther. 296: 723–735.

    PubMed  CAS  Google Scholar 

  • Youdim KA, Avdeef A, Abbott NJ (2003) In vitro trans-monolayer permeability calculations: often forgotten assumptions. Drug Discov. Today 8: 997–1003.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Raub, T.J., Lutzke, B.S., Andrus, P.K., Sawada, G.A., Staton, B.A. (2006). Early Preclinical Evaluation of Brain Exposure in Support of Hit Identification and Lead Optimization. In: Borchardt, R.T., Kerns, E.H., Hageman, M.J., Thakker, D.R., Stevens, J.L. (eds) Optimizing the “Drug-Like” Properties of Leads in Drug Discovery. Biotechnology: Pharmaceutical Aspects, vol IV. Springer, New York, NY. https://doi.org/10.1007/978-0-387-44961-6_16

Download citation

Publish with us

Policies and ethics