Skip to main content

CURCUMIN AND AUTOIMMUNE DISEASE

  • Chapter

Part of the book series: ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY ((AEMB,volume 595))

Abstract

The immune system has evolved to protect the host from microbial infection; nevertheless, a breakdown in the immune system often results in infection, cancer, and autoimmune diseases. Multiple sclerosis, rheumatoid arthritis, type 1 diabetes, inflammatory bowel disease, myocarditis, thyroiditis, uveitis, systemic lupus erythromatosis, and myasthenia gravis are organ-specific autoimmune diseases that afflict more than 5% of the population worldwide.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. C. A. Janeway, Jr., The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol Today 13, 11 (1992).

    PubMed  CAS  Google Scholar 

  2. 2. I. J. Crane and J. V. Forrester, Th1 and Th2 lymphocytes in autoimmune disease. Crit Rev Immunol 25, 75 (2005).

    PubMed  CAS  Google Scholar 

  3. 3. T. Tsubata, B cell abnormality and autoimmune disorders. Autoimmunity 38, 331 (2005).

    PubMed  CAS  Google Scholar 

  4. 4. J. J. Bright, C. Du, M. Coon, S. Sriram, and S. J. Klaus, Prevention of experimental allergic encephalomyelitis via inhibition of IL-12 signaling and IL-12-mediated Th1 differentiation: An effect of the novel anti-inflammatory drug lisofylline. J Immunol 161, 7015 (1998).

    PubMed  CAS  Google Scholar 

  5. 5. C. Natarajan and J. J. Bright, Curcumin inhibits experimental allergic encephalomyelitis by blocking IL-12 signaling through Janus kinase-STAT pathway in T lymphocytes. J Immunol 168, 6506 (2002).

    PubMed  CAS  Google Scholar 

  6. 6. P. Friedl, A. T. den Boer, and M. Gunzer, Tuning immune responses: Diversity and adaptation of the immunological synapse. Nat Rev Immunol 5, 532 (2005).

    PubMed  CAS  Google Scholar 

  7. 7. M. Kronenberg, Self-tolerance and autoimmunity. Cell 65, 537 (1991).

    PubMed  CAS  Google Scholar 

  8. 8. S. Anderton, C. Burkhart, B. Metzler, and D. Wraith, Mechanisms of central and peripheral T-cell tolerance: Lessons from experimental models of multiple sclerosis. Immunol Rev 169, 123 (1999).

    PubMed  CAS  Google Scholar 

  9. 9. A. W. Goldrath and S. M. Hedrick, Central tolerance matters.[comment]. Immunity 23, 113 (2005).

    PubMed  CAS  Google Scholar 

  10. 10. E. Thorsby and B. A. Lie, HLA associated genetic predisposition to autoimmune diseases: Genes involved and possible mechanisms. Transplant Immunol 14, 175 (2005).

    CAS  Google Scholar 

  11. 11. S. G. Sukkar and E. Rossi, Oxidative stress and nutritional prevention in autoimmune rheumatic diseases. Autoimmun Rev 3, 199 (2004).

    PubMed  CAS  Google Scholar 

  12. 12. S. M. Rates, Plants as source of drugs. Toxicon 39, 603 (2001).

    PubMed  CAS  Google Scholar 

  13. 13. M. M. Chan, C. T. Ho, and H. I. Huang, Effects of three dietary phytochemicals from tea, rosemary and turmeric on inflammation-induced nitrite production. Cancer Lett 96, 23 (1995).

    PubMed  CAS  Google Scholar 

  14. 14. Y. Surh, Molecular mechanisms of chemopreventive effects of selected dietary and medicinal phenolic substances. Mutat Res. 428, 305 (1999).

    PubMed  CAS  Google Scholar 

  15. 15. R. B. Arora, V. Kapoor, N. Basu, and A. P. Jain, Anti-inflammatory studies on Curcuma longa (turmeric). Indian J Med Res. 59, 1289 (1971).

    PubMed  CAS  Google Scholar 

  16. 16. D. Chandra and S. S. Gupta, Anti-inflammatory and anti-arthritic activity of volatile oil of Curcuma longa (Haldi). Indian J Med Res 60, 138 (1972).

    PubMed  CAS  Google Scholar 

  17. 17. N. Ghatak and N. Basu, Sodium curcuminate as an effective anti-inflammatory agent. Indian J Exp Biol 10, 235 (1972).

    PubMed  CAS  Google Scholar 

  18. 18. A. Mukhopadhyay, N. Basu, N. Ghatak, and P. K. Gujral, Anti-inflammatory and irritant activities of curcumin analogues in rats. Agents Actions 12, 508 (1982).

    PubMed  CAS  Google Scholar 

  19. 19. R. C. Srimal and B. N. Dhawan, Pharmacology of diferuloyl methane (curcumin), a non-steroidal anti-inflammatory agent. J Pharm Pharmacol 25, 447 (1973).

    PubMed  CAS  Google Scholar 

  20. 20. H. P. Ammon, H. Safayhi, T. Mack, and J. Sabieraj, Mechanism of antiinflammatory actions of curcumine and boswellic acids. J Ethanopharmacol 38, 113 (1993).

    CAS  Google Scholar 

  21. 21. A. C. Reddy and B. R. Lokesh, Studies on spice principles as antioxidants in the inhibition of lipid peroxidation of rat liver microsomes, Mol Cell Biochem. 111, 117 (1992).

    PubMed  CAS  Google Scholar 

  22. 22. M. N. Sreejayan Rao, Curcuminoids as potent inhibitors of lipid peroxidation. J Pharm Pharmacol 46, 1013 (1994).

    Google Scholar 

  23. 23. I. Brouet and H. Ohshima, Curcumin, an anti-tumour promoter and anti-inflammatory agent, inhibits induction of nitric oxide synthase in activated macrophages. Biochem Biophys Res Commun 206, 533 (1995).

    PubMed  CAS  Google Scholar 

  24. 24. M. M. Chan, H. I. Huang, M. R. Fenton, and D. Fong, In vivo inhibition of nitric oxide synthase gene expression by curcumin, a cancer preventive natural product with anti-inflammatory properties. Biochem Pharmacol 55, 1955 (1998).

    PubMed  CAS  Google Scholar 

  25. 25. F. Zhang, N. K. Altorki, J. R. Mestre, K. Subbaramaiah, and A. J. Dannenberg, Curcumin inhibits cyclooxygenase-2 transcription in bile acid- and phorbol ester-treated human gastrointestinal epithelial cells. Carcinogenesis 20, 445 (1999).

    PubMed  CAS  Google Scholar 

  26. 26. J. Y. Liu, S. J. Lin, and J. K. Lin, Inhibitory effects of curcumin on protein kinase C activity induced by 12-O-tetradecanoyl-phorbol-13-acetate in NIH 3T3 cells. Carcinogenesis 14, 857 (1993).

    PubMed  CAS  Google Scholar 

  27. 27. S. S. Kakar and D. Roy, Curcumin inhibits TPA induced expression of c-fos, c-jun and c-myc proto-oncogenes messenger RNAs in mouse skin. Cancer Lett 87, 85 (1994).

    PubMed  CAS  Google Scholar 

  28. 28. A. H. Conney, T. Lysz, T. Ferraro, T. F. Abidi, P. S. Manchand, J. D. Laskin, and M. T. Huang, Inhibitory effect of curcumin and some related dietary compounds on tumor promotion and arachidonic acid metabolism in mouse skin. Adv Enzyme Regul 31, 385 (1991).

    PubMed  CAS  Google Scholar 

  29. 29. Y. J. Surh, K. S. Chun, H. H. Cha, S. S. Han, Y. S. Keum, K. K. Park, and S. S. Lee, Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: Down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat Res 480–481, 243 (2001).

    PubMed  Google Scholar 

  30. 30. P. Claeson, U. Pongprayoon, T. Sematong, P. Tuchinada, V. Reutrakul, P. Soontornsaratune, an W. C. Taylor, Non-phenolic linear diarylheptanoids from Curcuma xanthorrhiza. A novel type of topical anti-inflammatory agents: structure–activity relationship. Planta Med 62, 236 (1996).

    PubMed  CAS  Google Scholar 

  31. 31. P. Venkatesan and M. N. Rao, Structure–activity relationships for the inhibition of lipid peroxidation and the scavenging of free radicals by synthetic symmetrical curcumin analogues. J Pharm Pharmacol 52, 1123 (2000).

    PubMed  CAS  Google Scholar 

  32. 32. C. Natarajan and J. J. Bright, Peroxisome proliferator-activated receptor-gamma agonists inhibit experimental allergic encephalomyelitis by blocking IL-12 production, IL-12 signaling and Th1 differentiation. Genes Immun 3, 59 (2002).

    PubMed  CAS  Google Scholar 

  33. 33. M. Srinivasan, Effect of curcumin on blood sugar as seen in a diabetic subject. Indian J Med Sci 26, 269 (1972).

    PubMed  CAS  Google Scholar 

  34. 34. P. S. Babu and K. Srinivasan, Influence of dietary curcumin and cholesterol on the progression of experimentally induced diabetes in albino rat. Mol Cell Biochem 152, 13 (1995).

    PubMed  CAS  Google Scholar 

  35. 35. A. Srivivasan, V. P. Menon, V. Periaswamy, and K. N. Rajasekaran, Protection of pancreatic beta-cell by the potential antioxidant bis-o-hydroxycinnamoyl methane, analogue of natural curcuminoid in experimental diabetes. J Pharm Pharm Sci 6, 327 (2003).

    PubMed  Google Scholar 

  36. 36. S. D. Deodhar, R. Sethi, and R. C. Srimal, Preliminary study on antirheumatic activity of curcumin (diferuloyl methane). Indian J Med Res 71, 632 (1980).

    PubMed  CAS  Google Scholar 

  37. 37. J. L. Funk, J. N. Oyarzo, J. B. Frye, G. Chen, R. C. Lantz, S. D. Jolad, A. M. Solyom, and B. N. Timmermann, Turmeric extracts containing curcuminoids prevent experimental rheumatoid arthritis. J Nat Prod 69, 351 (2006).

    PubMed  CAS  Google Scholar 

  38. 38. M. C. Heng, M. K. Song, J. Harker, and M. K. Heng, Drug-induced suppression of phosphorylase kinase activity correlates with resolution of psoriasis as assessed by clinical, histological and immunohistochemical parameters. Br J Dermatol 143, 937 (2000).

    PubMed  CAS  Google Scholar 

  39. 39. B. Bosman, Testing of lipoxygenase inhibitors, cyclooxygenase inhibitors, drugs with immunomodulating properties and some reference antipsoriatic drugs in the modified mouse tail test, an animal model of psoriasis, Skin Pharmacol 7, 324 (1994).

    PubMed  CAS  Google Scholar 

  40. 40. P. R. Holt, S. Katz, and R. Kirshoff, Curcumin therapy in inflammatory bowel disease, a pilot study. Dig Dis Sci 50, 2191 (2005).

    PubMed  Google Scholar 

  41. 41. K. Sugimoto, H. Hanai, K. Tozawa, T. Aoshi, M. Uchijima, T. Nagata, and Y. Koide, Curcumin prevents and ameliorates trinitrobenzene sulfonic acid-induced colitis in mice. Gastroenterology 123, 1912 (2002).

    PubMed  CAS  Google Scholar 

  42. 42. B. Salh, K. Assi, V. Templeman, K. Parhar, D. Owen, A. Gomez-Munoz, and K. Jacobson, Curcumin attenuates DNB-induced murine colitis. Am J Physiol Gastrointest Liver Physiol 285, G235 (2003).

    PubMed  CAS  Google Scholar 

  43. 43. Y. T. Jian, G. F. Mai, J. D. Wang, Y. L. Zhang, R. C. Luo, and Y. X. Fang, Preventive and therapeutic effects of NF-kappaB inhibitor curcumin in rats colitis induced by trinitrobenzene sulfonic acid. World J Gastroenterol 11, 1747 (2005).

    PubMed  CAS  Google Scholar 

  44. 44. G. Dean, How many people in the world have multiple sclerosis? Neuroepidemiology 13, 1 (1994).

    PubMed  CAS  Google Scholar 

  45. 45. S. Donoghue and C. Greenlees, Drugs in development for the treatment of multiple sclerosis, antigen non-specific therapies: An update. Expert Opin Investig Drugs 9, 167 (2000).

    PubMed  CAS  Google Scholar 

  46. 46. J. W. Prineas, R. O. Barnard, T. Revesz, E. E. Kwon, L. Sharer, and E. S. Cho, Multiple sclerosis. Pathology of recurrent lesions. Brain 116, 681 (1993).

    PubMed  Google Scholar 

  47. 47. B. D. Trapp, J. Peterson, R. M. Ransohoff, R. Rudick, S. Mork, and L. Bo, Axonal transection in the lesions of multiple sclerosis. [see comment]. N Engl J Med 338, 278 (1998).

    PubMed  CAS  Google Scholar 

  48. 48. C. S. Raine, Multiple sclerosis: Immunopathologic mechanisms in the progression and resolution of inflammatory demyelination. Res Publ Assoc Res Nerv Ment Dis 68, 37 (1990).

    PubMed  CAS  Google Scholar 

  49. 49. E. M. Frohman, M. K. Racke, and C. S. Raine, Multiple sclerosis: The plaque and its pathogenesis. N Engl J Med 354, 942 (2006).

    PubMed  CAS  Google Scholar 

  50. 50. J. J. Bright, B. F. Musuro, C. Du, and S. Sriram, Expression of IL-12 in CNS and lymphoid organs of mice with experimental allergic encephalitis. J Neuroimmunol 82, 22 (1998).

    PubMed  CAS  Google Scholar 

  51. 51. J. J. Bright, C. Du, and S. Sriram, Tyrphostin B42 inhibits IL-12-induced tyrosine phosphorylation and activation of Janus kinase-2 and prevents experimental allergic encephalomyelitis. J Immunol 162, 6255 (1999).

    PubMed  CAS  Google Scholar 

  52. 52. G. Muthian, H. P. Raikwar, C. Johnson, J. Rajasingh, A. Kalgutkar, L. J. Marnett, and J. J. Bright, COX-2 inhibitors modulate IL-12 signaling through JAK–STAT pathway leading to Th1 response in experimental allergic encephalomyelitis. J Clin Immunol 26, 73 (2006).

    PubMed  CAS  Google Scholar 

  53. 53. D. Devendra, E. Liu, and G. S. Eisenbarth, Type 1 diabetes: Recent developments. Br Med J 328, 750 (2004).

    Google Scholar 

  54. 54. G. S. Eisenbarth, Type I diabetes mellitus. A chronic autoimmune disease. N Engl J Med 314, 1360 (1986).

    PubMed  CAS  Google Scholar 

  55. 55. J. M. Barker, J. Yu, L. Yu, J. Wang, D. Miao, F. Bao, E. Hoffenberg, J. C. Nelson, P. A. Gottlieb, M. Rewers, and G. S. Eisenbarth, Autoantibody “subspecificity” in type 1 diabetes: Risk for organ-specific autoimmunity clusters in distinct groups. Diabetes Care 28, 850 (2005).

    PubMed  CAS  Google Scholar 

  56. 56. O. Kordonouri, R. Hartmann, D. Deiss, M. Wilms, and A. Gruters-Kieslich, Natural course of autoimmune thyroiditis in type 1 diabetes: Association with gender, age, diabetes duration, and puberty. Arch Dis Child 90, 411 (2005).

    PubMed  CAS  Google Scholar 

  57. 57. M. J. Franz, J. P. Bantle, C. A. Beebe, J. D. Brunzell, J.-L. Chiasson, A. Garg, L. A. Holzmeister, B. Hoogwerf, E. Mayer-Davis, A. D. Mooradian, J. Q. Purnell, M. Wheeler, American Diabetes, Association, Nutrition principles and recommendations in diabetes. Diabetes Care 27, S36 (2004).

    PubMed  Google Scholar 

  58. 58. G. S. Sidhu, H. Mani, J. P. Gaddipati, A. K. Singh, P. Seth, K. K. Banaudha, G. K. Patnaik, and R. K. Maheshwari, Curcumin enhances wound healing in streptozotocin induced diabetic rats and genetically diabetic mice. Wound Repair Regen 7, 362 (1999).

    PubMed  CAS  Google Scholar 

  59. 59. P. Suresh Babu and K. Srinivasan, Amelioration of renal lesions associated with diabetes by dietary curcumin in streptozotocin diabetic rats. Mol Cell Biochem 181, 87 (1998).

    PubMed  CAS  Google Scholar 

  60. 60. P. A. Kumar, P. Suryanarayana, P. Y. Reddy, and G. B. Reddy, Modulation of alpha-crystallin chaperone activity in diabetic rat lens by curcumin. Mol Vis 11, 561 (2005).

    PubMed  CAS  Google Scholar 

  61. 61. P. Suryanarayana, M. Saraswat, T. Mrudula, T.P. Krishna, K. Krishnaswamy, and G. B. Reddy, Curcumin and turmeric delay streptozotocin-induced diabetic cataract in rats. Invest Ophthalmol Vis Sci 46, 2092 (2005)

    PubMed  Google Scholar 

  62. 62. G. S. Firestein, Immunologic mechanisms in the pathogenesis of rheumatoid arthritis. J Clin Rheumatol 11, S39 (2005).

    PubMed  Google Scholar 

  63. 63. C. J. Edwards and C. Cooper, Early environmental factors and rheumatoid arthritis. Clin Exp Immunol 143, 1 (2006).

    PubMed  CAS  Google Scholar 

  64. 64. E. M. Ruderman, Current and future pharmaceutical therapy for rheumatoid arthritis. Curr Pharm Des 11, 671 (2005).

    PubMed  CAS  Google Scholar 

  65. 65. A. Liacini, J. Sylvester, W. Q. Li, and M. Zafarullah, Inhibition of interleukin-1-stimulated MAP kinases, activating protein-1 (AP-1) and nuclear factor kappa B (NF-kappa B) transcription factors down-regulates matrix metalloproteinase gene expression in articular chondrocytes. Matrix Biol 21, 251 (2002).

    PubMed  CAS  Google Scholar 

  66. 66. A. Liacini, J. Sylvester, W. Q. Li, W. Huang, F. Dehnade, M. Ahmad, an M. Zafarullah, Induction of matrix metalloproteinase-13 gene expression by TNF-alpha is mediated by MAP kinases, AP-1, and NF-kappaB transcription factors in articular chondrocytes. Exp Cell Res 288, 208 (2003).

    PubMed  CAS  Google Scholar 

  67. 67. B. B. Aggarwal and S. Shishodia, Suppression of the nuclear factor-kappaB activation pathway by spice-derived phytochemicals: Reasoning for seasoning. Ann NY Acad Sci 1030, 434 (2004).

    PubMed  CAS  Google Scholar 

  68. 68. M. Shakibaei, G. Schulze-Tanzil, T. John, and A. Mobasheri, Curcumin protects human chondrocytes from IL-l1beta-induced inhibition of collagen type II and beta1-integrin expression and activation of caspase-3: An immunomorphological study, Ann Anat 187, 487 (2005).

    PubMed  CAS  Google Scholar 

  69. 69. S. Shishodia, G. Sethi, and B. B. Aggarwal, Curcumin: Getting back to the roots. Ann NY Acad Sci 1056, 206 (2005).

    PubMed  CAS  Google Scholar 

  70. 70. A. M. Bowcock, The genetics of psoriasis and autoimmunity. Annu Rev Genomics Hum Genet 6, 93 (2005).

    PubMed  CAS  Google Scholar 

  71. 71. S. Chow, C. Rizzo, L. Ravitskiy, and A. A. Sinha, The role of T cells in cutaneous autoimmune disease. Autoimmunity 38, 303 (2005).

    PubMed  CAS  Google Scholar 

  72. 72. J. G. Krueger and A. Bowcock, Psoriasis pathophysiology: Current concepts of pathogenesis. Ann Rheum Dis 64, 30 (2005).

    Google Scholar 

  73. 73. J. Miquel, A. Bernd, J. M. Sempere, J. Diaz-Alperi, and A. Ramirez, The curcuma antioxidants: Pharmacological effects and prospects for future clinical use. A review. Arch Gerontol Geriatr 34, 37 (2002).

    PubMed  CAS  Google Scholar 

  74. 74. D. Shi, J. Das, and G. Das, Inflammatory bowel disease requires the interplay between innate and adaptive immune signals. Cell Res 16, 70 (2006).

    PubMed  CAS  Google Scholar 

  75. 75. E. Ricart, R. Panaccione, E. V. Loftus, Jr., W. J. Tremaine, W. S. Harmsen, A. R. Zinsmeister, and W. J. Sandborn, Autoimmune disorders and extraintestinal manifestations in first-degree familial and sporadic inflammatory bowel disease: A case-control study. Inflamm Bowel Dis 10, 207 (2004).

    PubMed  Google Scholar 

  76. 76. F. R. Byrne and J. L. Viney, Mouse models of inflammatory bowel disease. Curr Opin Drug Discov Devel 9, 207 (2006).

    PubMed  CAS  Google Scholar 

  77. 77. S. Ardizzone and G. Bianchi Porro, Biologic therapy for inflammatory bowel disease. Drugs 65, 2253 (2005).

    PubMed  CAS  Google Scholar 

  78. 78. E. Domenech, Inflammatory bowel disease: Current therapeutic options. Digestion 73, 67 (2006).

    PubMed  CAS  Google Scholar 

  79. 79. A. M. Feldman and D. McNamara, Myocarditis.[see comment]. N Engl J Med 343, 1388 (2000).

    PubMed  CAS  Google Scholar 

  80. 80. G. W. Dec, Jr., I. F. Palacios, J. T. Fallon, H. T. Aretz, J. Mills, D. C. Lee, and R. A. Johnson, Active myocarditis in the spectrum of acute dilated cardiomyopathies. Clinical features, histologic correlates, and clinical outcome. N Engl J Med 312, 885 (1985).

    PubMed  Google Scholar 

  81. 81. R. E. McCarthy 3rd, J. P. Boehmer, R. H. Hruban, G. M. Hutchins, E. K. Kasper, J. M. Hare, and K. L. Baughman, Long-term outcome of fulminant myocarditis as compared with acute (nonfulminant) myocarditis.[see comment]. N Engl J Med 342, 690.

    Google Scholar 

  82. 82. B. Lauer, M. Schannwell, U. Kuhl, B. E. Strauer, and H. P. Schultheiss, Antimyosin autoantibodies are associated with deterioration of systolic and diastolic left ventricular function in patients with chronic myocarditis. J Am Coll Cardiol 35, 11 (2000).

    PubMed  CAS  Google Scholar 

  83. 83. A. L. Caforio, N. J. Mahon, F. Tona, and W. J. McKenna, Circulating cardiac autoantibodies in dilated cardiomyopathy and myocarditis, pathogenetic and clinical significance. Eur J Heart Fail 4, 411 (2002).

    PubMed  Google Scholar 

  84. 84. D. Fairweather, Z. Kaya, G. R. Shellam, C. M. Lawson, and N. R. Rose, From infection to autoimmunity. J Autoimmun 16, 175 (2001).

    PubMed  CAS  Google Scholar 

  85. 85. Y. Furukawa, K. Kobuke, and A. Matsumori, Role of cytokines in autoimmune myocarditis and cardiomyopathy. Autoimmunity 34, 165 (2001).

    PubMed  CAS  Google Scholar 

  86. 86. M. Afanasyeva, D. Georgakopoulos, and N. R. Rose, Autoimmune myocarditis: Cellular mediators of cardiac dysfunction. Autoimmun Rev 3, 476 (2004).

    PubMed  CAS  Google Scholar 

  87. 87. W. Liu, W.-M. Li, C. Gao, and N.-L. Sun, Effects of atorvastatin on the Th1/Th2 polarization of ongoing experimental autoimmune myocarditis in Lewis rats. J Autoimmun 25, 258 (2005).

    PubMed  Google Scholar 

  88. 88. C. Nirmala and R. Puvanakrishnan, Protective role of curcumin against isoproterenol induced myocardial infarction in rats. Mol Cell Biochem 159, 85 (1996).

    PubMed  CAS  Google Scholar 

  89. 89. C. H. Yeh, T. P. Chen, Y. C. Wu, Y. M. Lin, and P. Jing Lin, Inhibition of NFkappaB activation with curcumin attenuates plasma inflammatory cytokines surge and cardiomyocytic apoptosis following cardiac ischemia/reperfusion. J Surg Res 125, 109 (2005).

    PubMed  CAS  Google Scholar 

  90. 90. C. H. Yeh, Y. M. Lin, Y. C. Wu, and P. J. Lin, Inhibition of NF-kappa B activation can attenuate ischemia/reperfusion-induced contractility impairment via decreasing cardiomyocytic proinflammatory gene up-regulation and matrix metalloproteinase expression. J Cardiovasc Pharmaco. 45, 301 (2005).

    CAS  Google Scholar 

  91. 91. R. R. Singh, SLE: Translating lessons from model systems to human disease. Trends Immunol 26, 572 (2005).

    PubMed  CAS  Google Scholar 

  92. 92. R. Lyons, S. Narain, C. Nichols, M. Satoh, and W. H. Reeves, Effective use of autoantibody tests in the diagnosis of systemic autoimmune disease. Ann NY Acad Sci 1050, 217 (2005).

    PubMed  CAS  Google Scholar 

  93. 93. G. Nagy, A. Koncz, A. and A. Perl, T- and B-cell abnormalities in systemic lupus erythematosus. Crit Rev Immunol 25, 123 (2005).

    PubMed  CAS  Google Scholar 

  94. 94. J. A. Croker and R. P. Kimberly, SLE: Challenges and candidates in human disease. Trends Immunol 26, 580 (2005).

    PubMed  CAS  Google Scholar 

  95. 95. S. G. O'Neill and L. Schrieber, Immunotherapy of systemic lupus erythematosus. Autoimmun Rev 4, 395 (2005).

    PubMed  Google Scholar 

  96. 96. D. B. Drachman, Myasthenia gravis. N Engl J Med 330, 1797 (1994).

    PubMed  CAS  Google Scholar 

  97. 97. J. Lindstrom, D. Shelton, and Y. Fujii, Myasthenia gravis. Adv Immunol 42, 233 (1988).

    PubMed  CAS  Google Scholar 

  98. 98. K. Shigemoto, S. Kubo, N. Maruyama, N. Hato, H. Yamada, C. Jie, N. Kobayashi, K. Mominoki, Y. Abe, N. Ueda, and S. Matsuda, Induction of myasthenia by immunization against muscle-specific kinase. J Clin Invest. 116, 1016 (2006).

    PubMed  CAS  Google Scholar 

  99. 99. D. Asthana, Y. Fujii, G. E. Huston, and J. Lindstrom, Regulation of antibody production by helper T cell clones in experimental autoimmune myasthenia gravis is mediated by IL-4 and antigen-specific T cell factors. Clin Immunol Immunopathol 67, 240 (1993).

    PubMed  CAS  Google Scholar 

  100. 100. G. X. Zhang, B. G. Xiao, M. Bakhiet, P. van der Meide, H. Wigzell, H. Link, and T. Olsson, Both CD4+ and CD8/ T cells are essential to induce experimental autoimmune myasthenia gravis. J Exp Med 184, 349 (1996).

    PubMed  CAS  Google Scholar 

  101. 101. L. Moiola, F. Galbiati, G. Martino, S. Amadio, E. Brambilla, G. Comi, A. Vincent, L. M. Grimaldi, and L. Adorini, IL-12 is involved in the induction of experimental autoimmune myasthenia gravis, an antibody-mediated disease. Eur J Immunol 28, 2487 (1998).

    PubMed  CAS  Google Scholar 

  102. 102. S. Sitaraman, D. W. Metzger, R. J. Belloto, A. J. Infante, and K. A. Wall, Interleukin-12 enhances clinical experimental autoimmune myasthenia gravis in susceptible but not resistant mice. J Neuroimmunol 107, 73 (2000).

    PubMed  CAS  Google Scholar 

  103. 103. H. Tlaskalova-Hogenova, L. Tuckova, R. Stepankova, T. Hudcovic, L. Palova-Jelinkova, H. Kozakova, P. Rossmann, D. Sanchez, J. Cinova, T. Hrncir, M. Kverka, L. Frolova, H. Uhlig, F. Powrie, and P. Bland, Involvement of innate immunity in the development of inflammatory and autoimmune diseases. Ann NY Acad Sci 1051, 787 (2005).

    PubMed  CAS  Google Scholar 

  104. 104. D. N. Cook, D. S. Pisetsky, and D. A. Schwartz, Toll-like receptors in the pathogenesis of human disease. Nat Immunol 5, 975 92004).

    Google Scholar 

  105. 105. G. Cheng and S. P. Schoenberger, CD40 signaling and autoimmunity. Curr Dir Autoimmun 5, 51 (2002).

    PubMed  CAS  Google Scholar 

  106. 106. H. S. Youn, S. I. Saitoh, K. Miyake, and D. H. Hwang, Inhibition of homodimerization of Toll-like receptor 4 by curcumin. Biochem Pharmacol 72, 62 (2006).

    PubMed  CAS  Google Scholar 

  107. 107. S. Kato, Y. Yuzawa, N. Tsuboi, S. Maruyama, Y. Morita, T. Matsuguchi, and S. Matsuo, Endotoxin-induced chemokine expression in murine peritoneal mesothelial cells: The role of toll-like receptor 4. J Am Soc Nephrol 15, 1289 (2004).

    PubMed  CAS  Google Scholar 

  108. 108. R. S. Liblau, S. M. Singer, and H. O. McDevitt, Th1 and Th2 CD4+ T cells in the pathogenesis of organ-specific autoimmune diseases.[see comment]. Immunol Today 16, 34 (1995).

    PubMed  CAS  Google Scholar 

  109. 109. B. Y. Kang, S. W. Chung, W. Chung, S. Im, S. Y. Hwang, and T. S. Kim, Inhibition of interleukin-12 production in lipopolysaccharide-activated macrophages by curcumin. Eur J Pharmacol 384, 191 (1999).

    PubMed  CAS  Google Scholar 

  110. 110. B. Y. Kang, Y. J. Song, K. M. Kim, Y. K. Choe, S. Hwang, and T. S. Kim, Curcumin inhibits Th1 cytokine profile in CD4+ T cells by suppressing interleukin-12 production in macrophages. Br J Pharmacol 128, 380 (1999).

    PubMed  CAS  Google Scholar 

  111. 111. M. Sospedra and R. Martin, Immunology of multiple sclerosis. Annu Rev Immunol 23, 683 (2005).

    PubMed  CAS  Google Scholar 

  112. 112. J. C. W. Edwards and G. Cambridge, B-cell targeting in rheumatoid arthritis and other autoimmune diseases. Nat Rev Immunol 6, 394 (2006).

    PubMed  CAS  Google Scholar 

  113. 113. S. Hori, T. Takahashi, and S. Sakaguchi, Control of autoimmunity by naturally arising regulatory CD4+ T cells. Adv Immunol 81, 331 (2003).

    PubMed  CAS  Google Scholar 

  114. 114. L. A. Stephens, D. Gray, and S. M. Anderton, CD4+CD25+ regulatory T cells limit the risk of autoimmune disease arising from T cell receptor crossreactivity. Proc Natl Acad Sci USA 102, 17,418 (2005).

    CAS  Google Scholar 

  115. 115. K. J. Hammond and D. I. Godfrey, NKT cells: Potential targets for autoimmune disease therapy? Tissue Antigens 59, 353 (2002).

    PubMed  CAS  Google Scholar 

  116. 116. S. Sharif, G. A. Arreaza, P. Zucker, Q. S. Mi, and T. L. Delovitch, Regulation of autoimmune disease by natural killer T cells. J Mol Med 80, 290 (2002).

    PubMed  CAS  Google Scholar 

  117. 117. R. M. Strieter, S. L. Kunkel, and R. C. Bone, Role of tumor necrosis factor-alpha in disease states and inflammation. Crit Care Med 21, S447 (1993).

    PubMed  CAS  Google Scholar 

  118. 118. H. Korner and J. D. Sedgwick, Tumour necrosis factor and lymphotoxin: Molecular aspects and role in tissue-specific autoimmunity. Immunol Cell Biol 74, 465 (1996).

    PubMed  CAS  Google Scholar 

  119. 119. F. Atzeni, M. Turiel, F. Capsoni, A. Doria, P. Meroni, and P. Sarzi-Puttini, Autoimmunity and anti-TNF-{α} agents. Ann NY Acad Sci 1051, 559 (2005).

    PubMed  CAS  Google Scholar 

  120. 120. K. Hosaka, J. Ryu, S. Saitoh, T. Ishii, K. Kuroda, and K. Shimizu, The combined effects of anti-TNFalpha antibody and IL-1 receptor antagonist in human rheumatoid arthritis synovial membrane. Cytokine 32, 263 (2005).

    PubMed  CAS  Google Scholar 

  121. 121. V. S. Yadav, K. P. Mishra, D. P. Singh, S. Mehrotra, and V. K. Singh, Immunomodulatory effects of curcumin. Immunopharmacol Immunotoxicol 27, 485 (2005).

    PubMed  CAS  Google Scholar 

  122. 122. B. Gupta and B. Ghosh, Curcuma longa inhibits TNF-alpha induced expression of adhesion molecules on human umbilical vein endothelial cells. Int J Innumopharmacol 21, 745 (1999).

    CAS  Google Scholar 

  123. 123. S. M. Plummer, K. A. Holloway, M. M. Manson, R. J. Munks, A. Kaptein, S. Farrow, and L. Howells, Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-kappaB activation via the NIK/IKK signalling complex. Oncogene 18, 6013 (1999).

    PubMed  CAS  Google Scholar 

  124. 124. Y. R. Chen and T. H. Tan, Inhibition of the c-Jun N-terminal kinase (JNK) signaling pathway by curcumin. Oncogene 17, 173 (1998).

    PubMed  CAS  Google Scholar 

  125. 125. Y. Iwakura, Roles of IL-1 in the development of rheumatoid arthritis:Consideration from mouse models. Cytokine Growth Factor Rev 13, 341 (2002).

    PubMed  CAS  Google Scholar 

  126. 126. N. Jurrmann, R. Brigelius-Flohe, and G. F. Bol, Curcumin blocks interleukin-1 (IL-1) signaling by inhibiting the recruitment of the IL-1 receptor-associated kinase IRAK in murine thymoma EL-4 cells. J Nutr 135, 1859 (2005).

    PubMed  CAS  Google Scholar 

  127. 127. G. Trinchieri, S. Pflanz, and R. A. Kastelein, The IL-12 family of heterodimeric cytokines: New players in the regulation of T cell responses.[comment]. Immunity 19, 641 (2003).

    PubMed  CAS  Google Scholar 

  128. 128. K. E. Balashov, D. R. Smith, S. J. Khoury, D. A. Hafler, and H. L. Weiner, Increased interleukin 12 production in progressive multiple sclerosis: Induction by activated CD4+ T cells via CD40 ligand. Proc Natl Acad Sci USA 94, 599 (1997).

    PubMed  CAS  Google Scholar 

  129. 129. J. J. Bright, M. Rodriguez, and S. Sriram, Differential influence of interleukin-12 in the pathogenesis of autoimmune and virus-induced central nervous system demyelination. J Virol 73, 1637 (1999).

    PubMed  CAS  Google Scholar 

  130. 130. 130. J. P. Leonard, K. E. Waldburger, and S. J. Goldman, Prevention of experimental autoimmune encephalomyelitis by antibodies against interleukin 12. J Exp Med 181, 381 (1995).

    PubMed  CAS  Google Scholar 

  131. 131. B. Oppmann, R. Lesley, B. Blom, J. C. Timans, Xu, B. Hunte, F. Vega, N. Yu, J. Wang, K. Singh, F. Zonin, E. Vaisberg, T. Churakova, M. Liu, D. Gorman, J. Wagner, S. Zurawski, Y. Liu, J. S. Abrams, K. W. Moore, D. Rennick, R. de Waal-Malefyt, C. Hannum, J. F. Bazan, and R. A. Kastelein, Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13, 715 (2000).

    PubMed  CAS  Google Scholar 

  132. 132. X. T. Ma, X. j. Zhang, B. Zhang, Y. Q. Geng, Y. M. Lin, G. Li, and K. F. Wu, Expression and regulation of interleukin-23 subunits in human peripheral blood mononuclear cells and hematopoietic cell lines in response to various inducers. Cell Biol Int 28, 689 (2004).

    PubMed  CAS  Google Scholar 

  133. 133. A. Wada, Y. Tada, O. Shimozato, Y. Takiguchi, K. Tatsumi, T. Kuriyama, and M. Tagawa, Expression of CD40 ligand in CD40-positive murine tumors activates transcription of the interleukin-23 subunit genes and produces antitumor responses. Anticancer Res 24, 2713 (2004).

    PubMed  CAS  Google Scholar 

  134. 134. D. J. Cua, J. Sherlock, Y. Chen, C. A. Murphy, B. Joyce, B. Seymour, L. Lucian, W. To, S. Kwan, T. Churakova, S. Zurawski, M. Wiekowski, S. A. Lira, D. Gorman, R.A. Kastelein, and J. D. Sedgwick, Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain.[see comment]. Nature 421, 744 (2003).

    PubMed  CAS  Google Scholar 

  135. 135. S. J. Szabo, S. T. Kim, G. L. Costa, X. Zhang, C. G. Fathman, and L. H. Glimcher, A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100, 655 (2000).

    PubMed  CAS  Google Scholar 

  136. 136. A. Takeda, S. Hamano, A. Yamanaka, T. Hanada, T. Ishibashi, T. W. Mak, A. Yoshimura, and H. Yoshida, Cutting edge: Role of IL-27/WSX-1 signaling for induction of T-bet through activation of STAT1 during initial Th1 commitment. J Immunol 170, 4886 (2003).

    PubMed  CAS  Google Scholar 

  137. 137. E. Bettelli, B. Sullivan, S. J. Szabo, R. A. Sobel, L. H. Glimcher, and V. K. Kuchroo, Loss of T-bet, but not STAT1, prevents the development of experimental autoimmune encephalomyelitis. J Exp Med 200, 79 (2004).

    PubMed  CAS  Google Scholar 

  138. 138. A. E. Lovett-Racke, A. E. Rocchini, J. Choy, S. C. Northrop, R. Z. Hussain, R. B. Ratts, D. Sikder, and M. K. Racke, Silencing T-bet defines a critical role in the differentiation of autoreactive T lymphocytes. Immunity 21, 719 (2004).

    PubMed  CAS  Google Scholar 

  139. 139. S. Pflanz, J. C. Timans, J. Cheung, R. Rosales, H. Kanzler, J. Gilbert, L. Hibbert, T. Churakova, M. Travis, E. Vaisberg, W. M. Blumenschein, J. D. Mattson, J. L. Wagner, W. To, S. Zurawski, T. K. McClanahan, D. M. Gorman, J. F. Bazan, R. de Waal Malefyt, D. Rennick, and R. A. Kastelein, IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4(+) T cells. Immunity 16, 779 (2002).

    PubMed  CAS  Google Scholar 

  140. 140. R. Goldberg, Y. Zohar, G. Wildbaum, Y. Geron, G. Maor, and N. Karin, Suppression of ongoing experimental autoimmune encephalomyelitis by neutralizing the function of the p28 subunit of IL-27. J Immunol 173, 6465 (2004).

    PubMed  CAS  Google Scholar 

  141. 141. B. M. Segal, B. k. Dwyer, and E. M. Shevach, An interleukin (IL)-10/IL-12 immunoregulatory circuit controls susceptibility to autoimmune disease. J Exp Med 187, 537 (1998).

    PubMed  CAS  Google Scholar 

  142. 142. S. Ghosh, M. J. May, and E. B. Kopp, NF-kappa B and Rel proteins: Evolutionarily conserved mediators of immune responses. Annu Rev Immunol 16, 225 (1998).

    PubMed  CAS  Google Scholar 

  143. 143. G. Y. Kim, K. H. Kim, S. H. Lee, M. S. Yoon, H. J. Lee, D. O. Moon, C. M. Lee, S. C. Ahn, Y. C. Park, and Y. M. Park, Curcumin inhibits immunostimulatory function of dendritic cells: MAPKs and translocation of NF-kappa B as potential targets. J Immunol 174, 8116 (2005).

    PubMed  CAS  Google Scholar 

  144. 144. G. Kang, P. J. Kong, Y. J. Yuh, S. Y. Lim, S. V. Yim, W. Chun, and S. S. Kim, Curcumin suppresses lipopolysaccharide-induced cyclooxygenase-2 expression by inhibiting activator protein 1 and nuclear factor kappab bindings in BV2 microglial cells. J Pharmacol Sci 94, 325 (2004).

    PubMed  CAS  Google Scholar 

  145. 145. W. C. Sha, Regulation of immune responses by NF-kappa B/Rel transcription factor. J Exp Med 187, 143 (1998).

    PubMed  CAS  Google Scholar 

  146. 146. J. D. Woronicz, X. Gao, Z. Cao, M. Rothe, and D. V. Goeddel, IkappaB kinase-beta: NF-kappaB activation and complex formation with IkappaB kinase-alpha and NIK. Science 278, 866 (1997).

    PubMed  CAS  Google Scholar 

  147. 147. T. L. Murphy, M. G. Cleveland, P. Kulesza, J. Magram, and K. M. Murphy, Regulation of interleukin 12 p40 expression through an NF-kappa B half-site. Mol Cell Biol 15, 5258 (1995).

    PubMed  CAS  Google Scholar 

  148. 148. D. D'Ambrosio, M. Cippitelli, M. G. Cocciolo, D. Mazzeo, P. Di Lucia, R. Lang, F. Sinigaglia, and P. Panina-Bordignon, Inhibition of IL-12 production by 1,25-dihydroxyvitamin D3. Involvement of NF-kappaB downregulation in transcriptional repression of the p40 gene. J Clin Invest 101, 252 (1998).

    PubMed  Google Scholar 

  149. 149. D. Mazzeo, P. Panina-Bordignon, H. Recalde, F. Sinigaglia, and D. D'Ambrosio, Decreased IL-12 production and Th1 cell development by acetyl salicylic acid-mediated inhibition of NF-kappaB. Eur J Immunol 28, 3205 (1998).

    PubMed  CAS  Google Scholar 

  150. 150. C. M. Bacon, E. F. Petricoin 3rd, J. R. Ortaldo, R. C. Rees, A. C. Larner, J. A. Johnston, and J. J. O'Shea, Interleukin 12 induces tyrosine phosphorylation and activation of STAT4 in human lymphocytes. Proc Natl Acad Sci USA 92, 7307 (1995).

    PubMed  CAS  Google Scholar 

  151. 151. N. G. Jacobson, S. J. Szabo, R. M. Weber-Nordt, Z. Zhong, R. D. Schreiber, J. E. Darnell, Jr., and K. M. Murphy, Interleukin 12 signaling in T helper type 1 (Th1) cells involves tyrosine phosphorylation of signal transducer and activator of transcription (Stat)3 and Stat4. J Exp Med 181, 1755 (1995).

    PubMed  CAS  Google Scholar 

  152. 152. C. Parham, M. Chirica, J. Timans, E. Vaisberg, M. Travis, J. Cheung, S. Pflanz, R. Zhang, K. P. Singh, F. Vega, W. To, J. Wagner, A. M. O'Farrell, T. McClanahan, S. Zurawski, C. Hannum, D. Gorman, D. M. Rennick, R. A. Kastelein, R. de Waal Malefyt, and K. W. Moore, A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. J Immunol 168, 5699 (2002).

    PubMed  CAS  Google Scholar 

  153. 153. S. Aggarwal, N. Ghilardi, M. H. Xie, F. J. de Sauvage, and A. L. Gurney, Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem 278, 1910 (2003).

    PubMed  CAS  Google Scholar 

  154. 154. S. Kamiya, T. Owaki, N. Morishima, F. Fukai, J. Mizuguchi, and T. Yoshimoto, An indispensable role for STAT1 in IL-27-induced T-bet expression but not proliferation of naive CD4+ T cells. J Immunol 173, 3871 (2004).

    PubMed  CAS  Google Scholar 

  155. 155. J. J. O'Shea, H. Park, M. Pesu, D. Borie, and P. Changelian, New strategies for immunosuppression, interfering with cytokines by targeting the Jak/Stat pathway. Curr Opin Rheumatol 17, 305 (2005).

    PubMed  Google Scholar 

  156. 156. H. M. Seidel, P. Lamb, and J. Rosen, Pharmaceutical intervention in the JAK/STAT signaling pathway. Oncogene 19, 2645 (2000).

    PubMed  CAS  Google Scholar 

  157. 157. J. J. Bright, Targeting autoimmune diseases through nutraceuticals. Nutrition 20, 39 (2004).

    PubMed  CAS  Google Scholar 

  158. 158. G. Muthian and J. J. Bright, Quercetin, a flavonoid phytoestrogen, ameliorates experimental allergic encephalomyelitis by blocking IL-12 signaling through JAK-STAT pathway in T lymphocyte. J Clin Immunol 24, 542 (2004).

    PubMed  CAS  Google Scholar 

  159. 159. G. Muthian, H. P. Raikwar, J. Rajasingh, and J. J. Bright, 1,25 Dihydroxyvitamin-D3 modulates JAK-STAT pathway in IL-12/IFNgamma axis leading to Th1 response in experimental allergic encephalomyelitis. J Neurosci Res 83, 1299 (2006).

    PubMed  CAS  Google Scholar 

  160. 160. L. Neff, M. Zeisel, J. Sibilia, M. Scholler-Guinard, J. P. Klein, and D. Wachsmann, NF-kappaB and the MAP kinases/AP-1 pathways are both involved in interleukin-6 and interleukin-8 expression in fibroblast-like synoviocytes stimulated by protein I/II, a modulin from oral streptococci. Cell Microbiol 3, 703 (2001).

    PubMed  CAS  Google Scholar 

  161. 161. R. K. Patel and C. Mohan, PI3K/AKT signaling and systemic autoimmunity. Immunol Res 31, 47 (2005).

    PubMed  CAS  Google Scholar 

  162. 162. J. W. Cho, K. Park, G. R. Kweon, B. C. Jang, W. K. Baek, M. H. Suh, C. W. Kim, K. S. Lee, and S. I. Suh, Curcumin inhibits the expression of COX-2 in UVB-irradiated human keratinocytes (HaCaT) by inhibiting activation of AP-1, p38 MAP kinase and JNK as potential upstream targets. Exp Mol Med 37, 186 (2005).

    PubMed  CAS  Google Scholar 

  163. 163. S. L. Kunkel and N. Godessart, Chemokines in autoimmunity: From pathology to therapeutics. Autoimmun Rev 1, 313 (2002).

    PubMed  CAS  Google Scholar 

  164. 164. S. Arimilli, W. Ferlin, N. Solvason, S. Deshpande, M. Howard, and S. Mocci, Chemokines in autoimmune diseases. Immunol Rev 177, 43 (2000).

    PubMed  CAS  Google Scholar 

  165. 165. X. Chen, J. J. Oppenheim, and O. M. Howard, Chemokines and chemokine receptors as novel therapeutic targets in rheumatoid arthritis (RA): Inhibitory effects of traditional Chinese medicinal components. Cell Mol Immunol 1, 336 (2004).

    PubMed  CAS  Google Scholar 

  166. 166. H. Hidaka, T. Ishiko, T. Furuhashi, H. Kamohara, S. Suzuki, M. Miyazaki, O. Ikeda, S. Mita, T. Setoguchi, and M. Ogawa, Curcumin inhibits interleukin 8 production and enhances interleukin 8 receptor expression on the cell surface: Impact on human pancreatic carcinoma cell growth by autocrine regulation. Cancer 95, 1206 (2002).

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Bright, J.J. (2007). CURCUMIN AND AUTOIMMUNE DISEASE. In: Aggarwal, B.B., Surh, YJ., Shishodia, S. (eds) The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY, vol 595. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-46401-5_19

Download citation

Publish with us

Policies and ethics