Skip to main content

Age-Related Hearing Loss and Its Cellular and Molecular Bases

  • Chapter

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 31))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen PD, Burkard RF, Ison JR, Walton JP (2003) Impaired gap encoding in aged mouse inferior colliculus at moderate but not high stimulus levels. Hear Res 186:17–29.

    PubMed  Google Scholar 

  • Ates NA, Unal M, Tamer L, Derici E, Karakas S, Ercan B, Camdevirin H (2005) Glutathione S-transferase gene polymorphisms in presbycusis. Otol Neurotol 26:392–397.

    PubMed  Google Scholar 

  • Axellson A, Lindgren F (1985) Is there a relationship between hypercholesterolemia and noise-induced hearing loss? Acta Otolaryngol 100:379–386.

    Google Scholar 

  • Bai U, Seidman MD, Hinojosa R, Quirk WS (1997) Mitochondrial DNA deletions associated with aging and possibly presbycusis: A human archival temporal bone study. Am J Otol 18:449–453.

    PubMed  CAS  Google Scholar 

  • Banay-Schwartz, M, Lajtha A, Palkovits M.(1889) Changes with aging in the levels of amino acids in rat CNS structural elements II. Taurine and small neutral amino acids. Neurochem Res 14:563–570.

    Google Scholar 

  • Bao J, Lei D, Du Y, Ohlemiller KK, Beaudet AL, Role LW (2005) Requirement of nicotinic acetylcholine receptor subunit β2 in the maintenance of spiral ganglion neurons during aging. J Neurosci 25:3041–3045.

    PubMed  CAS  Google Scholar 

  • Barda G (2002) Rate of generation of oxidative stress–related damage and animal longevity. Free Radic Biol Med 33:1167–1172.

    Google Scholar 

  • Barker DJP (1998) In utero programming of chronic disease. Clin Sci 95:115–128.

    PubMed  CAS  Google Scholar 

  • Barrenös M-L, Bratthall A, Dahlgren J (2003) The thrifty phenotype hypothesis and hearing problems. Br Med J 327:1199–1200.

    Google Scholar 

  • Barrenös M-L, Bratthall A, Dahlgren J (2005) The association between short stature and sensorineural hearing loss. Hear Res 205:123–130.

    Google Scholar 

  • Bohne BA, Gruner MM, Harding GW (1990) Morphological correlates of aging in the chinchilla cochlea. Hear Res 48:79–91.

    PubMed  CAS  Google Scholar 

  • Bredberg G (1968) Cellular pattern and nerve supply of the human organ of Corti. Acta Otolaryngol (Suppl)236:1–135.

    Google Scholar 

  • Brimes M, Cerami A (2005) Emerging biological roles for erythropoietin in the nervous system. Nat Neurosci 6:484–494.

    Google Scholar 

  • Briner W, Willott JF (1989) Ultrastructural features of neurons in the CB57BL/6J mouse anteroventral cochlear nucleus: young mice versus old mice with chronic presbycusis. Neurobiol Aging 10:295–303.

    PubMed  CAS  Google Scholar 

  • Brody H (1955) Organization of the cerebral cortex: III. A study of aging in the human cerebral cortex. J Comp Neurol 102:511–556.

    PubMed  CAS  Google Scholar 

  • Cable J, Jackson IJ, Steel KP (1993) Light (Blt), a mutation that causes melanocyte death, affects stria vascularis function, in the mouse inner ear. Pigment Cell Res 6:215–225.

    PubMed  CAS  Google Scholar 

  • Canlon B, Erichsen S, Nemlander E, Chen M, Hossain A, Celsi G, Ceccatelli S (2003) Alterations in intrauterine environment by glucocorticoids modifies the developmental program of the auditory system. Eur J Neurosci 17:2035–2041.

    PubMed  Google Scholar 

  • Carlsson P-I,VanLaer L, Borg E, Bondeson M-L, Thys M, Fransen E, Van Camp G (2005) The influence of genetic variation in oxidative stress genes on human noise susceptibility. Hear Res 202:87–96.

    PubMed  CAS  Google Scholar 

  • Caspary DM, Raza A, Armour BAL, Pippin J, Arneric SP (1990) Immunocytochemical and neurochemical evidence for age-related loss of GABA in the inferior colliculus: implications for neural presbycusis. J Neurosci 10:2363–2372.

    PubMed  CAS  Google Scholar 

  • Caspary DM, Milbrandt, JC, Helfert RH (1995) Central auditory aging: GABA changes in the inferior colliculus. Exp Gerontol 30:349–360.

    PubMed  CAS  Google Scholar 

  • Caspary DM, Holder TM, Hughes LF, Milbrandt JC, McKernan RM, Naritoku DK (1999) Age-related changes in GABA a receptor subunit composition and function in rat auditory system. Neuroscience 93:307–312.

    PubMed  CAS  Google Scholar 

  • Caspary DM, Schatteman TA, Hughes, LF (2005) Age–related changes in the inhibitory response properties of dorsal cochlear nucleus output neurons: role of inhibitory inputs. J Neurosci 47:10952–10959.

    Google Scholar 

  • Chan DK, Hudspeth AJ (2005) Ca2+ current-driven nonlinear amplification by the mammalian cochlea in vitro. Nat Neurosci 8:149–155.

    PubMed  CAS  Google Scholar 

  • Chen MA, Webster P, Yang Y, Linthicum FH (2006) Presbycusic neuritic degeneration within the osseous spiral lamina. Otol Neurotol 27:316–322.

    PubMed  Google Scholar 

  • Chisolm TH, Willott JF, Lister JJ (2003) The aging auditory system: anatomic and physiologic changes and implications for rehabilitation. Int J Audiol 42:2S3–2S10.

    PubMed  Google Scholar 

  • Conlee JW, Gerrity LC, Bennett ML (1994) Ongoing proliferation of melanocytes in the stria vascularis of adult guinea pigs. Hear Res 79:115–122.

    PubMed  CAS  Google Scholar 

  • Covell WP, Rogers JB (1957) Pathologic changes in the inner ear of senile guinea pigs. Laryngoscope 67:118–129.

    PubMed  CAS  Google Scholar 

  • Crompton M (2004) Mitochondria and aging: a role for the permeability transition? Aging Cell 3:3–6.

    PubMed  CAS  Google Scholar 

  • Cruickshanks KJ, Klein R, Klein BEK, T.L. W, Nondahl DM, Tweed TS (1998) Cigarette smoking and hearing loss. JAMA 279:1715–1719.

    Google Scholar 

  • Dai P, Yang W, Jiang S, Gu R, Yuan H, Han D, Guo W, Cao J (2004) Correlation of blood supply with mitochondrial DNA common deletion in presbycusis. Acta Otolaryngol 124:130–136.

    PubMed  CAS  Google Scholar 

  • Davis RR, Newlander JK, Ling X–B, Cortopassi GA, Kreig EF, Erway LC (2001) Genetic basis for susceptibility to noise–induced hearing loss in mice. Hear Res 155:82–90.

    PubMed  CAS  Google Scholar 

  • Davis RR, Kozel P, Erway LC (2003) Genetic influences in individual susceptibility to noise: a review. Noise Health 5:19–28.

    PubMed  CAS  Google Scholar 

  • Delprat B, Ruel J, Guitton MJ, Hamard G, Lenoir M, Pujol R, Puel JL, Brabet P, Hamel CPJA (2005) Deafness and cochlear fibrocyte alterations in mice deficient for the inner ear protein otospiralin. Mol Cell Biol 25:847–853.

    PubMed  CAS  Google Scholar 

  • Derin A, Agirdir B, Derin N, Dinc O, Guney K, Ozcaglar H, Kilincarslan S (2004) The effects of L–carnitine on presbycusis in the rat model. Clin Otolaryngol 29:238–241.

    PubMed  CAS  Google Scholar 

  • Di Girolamo S, Quaranta N, Picciotti P, Torsello A, Wolf F (2001) Age-related histopathological changes of the stria vascularis: an experimental model. Audiology 40:322–326.

    PubMed  Google Scholar 

  • Dirnagl U, Simon RP, Hallenbeck JM (2003) Ischemic tolerance and endogenous neuroprotection. Trends Neurosci 26:248–254.

    PubMed  CAS  Google Scholar 

  • Drettner B, Hedstrand H, Klockhoff I, Svedberg A (1975) Cardiovascular risk factors and hearing loss. Acta Otolaryngol 79:366–371.

    PubMed  CAS  Google Scholar 

  • Dunaway G, Mhaskar Y, Armour G, Whitworth C, Rybak LP (2003) Migration of cochlear lateral wall cells. Hear Res 177:1–11.

    PubMed  CAS  Google Scholar 

  • Erway Lc, Willott JF, Archer JR, Harrison DE (1993) Genetics of age–related hearing loss in mice: I. Inbred and F1 hybrid strains. Hear Res 65:125–132.

    PubMed  CAS  Google Scholar 

  • Erway LC, Shiau Y–W, Davis RR, Kreig EF (1996) Genetics of age-related hearing loss in mice. III. Susceptibility of inbred and F1 hybrid strains to noise-induced hearing loss. Hear Res 93:181–187.

    PubMed  CAS  Google Scholar 

  • Fechter LD (2004) Promotion of noise–induced hearing loss by chemical contaminants. J Toxicol Appl Environ Health A 67:727–740.

    CAS  Google Scholar 

  • Felder E, Schrott-Fischer A (1995) Quantitative evaluation of myelinated nerve fibers in cochlea of humans with age-related high-tone hearing loss. Hear Res 91:19–32.

    PubMed  CAS  Google Scholar 

  • Felder E, Kanonier G, Scholtz A, Rask-Andersen H, Schrott-Fischer A (1997) Quantitative evaluation of cochlear neurons and computer-aided three-dimensional reconstruction of spiral ganglion cells in humans with a peripheral loss of nerve fibers. Hear Res 105:183–190.

    PubMed  CAS  Google Scholar 

  • Felix H, Pollak A, Gleeson MJ, Johnsson L–G (2002) Degeneration pattern of human first-order cochlear neurons. Adv Otorhinolaryngol 59:116–123.

    PubMed  Google Scholar 

  • Fenech M (1998) Chromosomal damage rate, aging, and diet. Ann NY Acad Sci 854:23–26.

    PubMed  CAS  Google Scholar 

  • Ferraro JA, Minckler J (1977) The human lateral lemniscus and its nuclei. Brain Lang 4:156–164.

    PubMed  CAS  Google Scholar 

  • Fitzgibbons PJ, Gordon-Salant S (1996) Auditory temporal processing in elderly listeners. J Am Acad Audiol 7:183–189.

    Google Scholar 

  • Forge A, Schacht J (2000) Aminoglycoside antibiotics. Audiol Neuro-Otol 5:3–22.

    CAS  Google Scholar 

  • Fransen E, Lemkens N, Van Laer L, Van Camp G (2003) Age-related hearing impairment (ARHI): environmental risk factors and genetic prospects. Exp Gerontol 38:353–359.

    PubMed  Google Scholar 

  • Frisina RD (2001) Possible neurochemical and neuroanatomical bases of age-related hearing loss—presbycusis. Semin Hear 22:213–225.

    Google Scholar 

  • Frisina DR, Frisina RD (1997) Speech recognition in noise and presbycusis: relations to possible neural mechanisms. Hear Res 106:95–104.

    PubMed  CAS  Google Scholar 

  • Frisina RD, Walton JP (2001) Aging of the mouse central auditory system. In: Willott JP (ed) From Behavior to Molecular Biology. New York: CRC Press, pp. 339–379.

    Google Scholar 

  • Frisina RD, Walton JP (2006) Age-related structural and functional changes in the cochlear nucleus. Hear Res. 217:216–233.

    Google Scholar 

  • Frisina DR, Frisina RD, Snell KB, Burkard R, Walton JP, Ison JR (2001) Auditory temporal processing during aging. In: Hof PR, Mobbs CV (eds) Functional Neurobiology of Aging. San Diego: Academic Press, pp. 565–579.

    Google Scholar 

  • Frisina ST, Mapes F, Kim S-H, Frisina DR, Frisina RD (2006) Characterization of hearing loss in aged type II diabetics. Hear Res 211:103–113.

    PubMed  Google Scholar 

  • Fukushima H, Cureoglu S, Schachern PA, Kusunoki T, Oktay MF, Fukushima N, Paparella MM, Harada T (2005) Cochlear changes in patients with type I diabetes mellitus. Otolaryngol Head Neck Surg 133:100–106.

    PubMed  Google Scholar 

  • Gagnon PM, Simmons DD, Bao J, Lei D, Ortmann A, J., Ohlemiller KK (2007) Temporal and genetic influences on protection against noise-induced hearing loss by hypoxic preconditioning in mice. Hear Res 226: 79–91.

    Google Scholar 

  • Garetz SL, Schacht J (1996) Ototoxicity: of mice and men. In: Van De Water TR, Popper AN, Fay RR (eds) Clinical Aspects of Hearing New York: Springer-Verlag, pp. 116–154.

    Google Scholar 

  • Gates GA, Mills JH (2005) Presbycusis. Lancet 366:1111–1120.

    PubMed  Google Scholar 

  • Gates GA, Couropmitree NN, Myers RH (1999) Genetic associations in age–related hearing thresholds. Arch Otolaryngol Head Neck Surg 125:654–659.

    PubMed  CAS  Google Scholar 

  • Geesaman BJ (2006) Genetics of aging: implications for drug discovery and development. Am J Clin Nutr 83:466S–469S.

    PubMed  CAS  Google Scholar 

  • Gilad O, Glorig A (1979a) Presbycusis: The aging inner ear. Part I. J Am Audit Soc 4:195–206.

    CAS  Google Scholar 

  • Gilad O, Glorig A (1979b) Presbycusis: The aging ear. Part II. J Am Audit Soc 4:207–217.

    CAS  Google Scholar 

  • Glorig A, Wheeler D, Quiggle R, Grings W, Summerfeld A (1957) 1954 Wisconsin state fair hearing survey—statistical treatment of clinical and audiometric data. Am Acad Ophthalmol Otolaryngol (Monograph).

    Google Scholar 

  • Gordon-Salant S, Fitzgibbons PJ (1993) Temporal factors and speech recognition performance in young and elderly listeners. J Speech Hear Res 36:1272–1285.

    Google Scholar 

  • Gratton MA, Schulte BA (1995) Alterations in microvasculature are associated with atrophy of the stria vascularis in quiet-aged gerbils. Hear Res 82:44–52.

    PubMed  CAS  Google Scholar 

  • Gratton MA, Schmiedt RA, Schulte BA (1996) Age-related decreases in endocochlear potential are associated with vascular abnormalities in the stria vascularis. Hear Res 102:181–190.

    PubMed  CAS  Google Scholar 

  • Gratton MA, Smyth BJ, Lam CF, Boettcher FA, Schmiedt RA (1997) Decline in the endocochlear potential corresponds to decreased Na,K-ATPase activity in the lateral wall of quiet-aged gerbils. Hear Res 108:9–16.

    PubMed  CAS  Google Scholar 

  • Hamernik RP, Patterson JH, Turrentine GA, Ahroon WA (1989) The quantitative relation between sensory cell loss and hearing thresholds. Hear Res 38:199–212.

    PubMed  CAS  Google Scholar 

  • Hamernik RP, Qiu W, Davis B (2003) Cochlear toughening, protection, and potentiation of noise–induced hearing loss by non-Gaussian noise. J Acoust Soc Am 113:969–976.

    PubMed  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:98–300.

    Google Scholar 

  • Harper JM, Wolf N, Galecki AT, Pinkosky SL, Miller RA (2003) Hormone levels and cataract scores as sex-specific, mid-life predictors of longevity in genetically heterogeneous mice. Mech Ageing Dev 124:801–810.

    PubMed  CAS  Google Scholar 

  • Harper JM, Galecki AT, Burke DT, Miller RA (2004) Body weight, hormones and T cell subsets as predictors of life span in genetically heterogeneous mice. Mech Ageing Dev 125:381–390.

    PubMed  CAS  Google Scholar 

  • Harper JM, Durkee SJ, Smith-Wheelock M, Miller RA (2005) Hyperglycemia, impaired glucose tolerance and elevated glycated hemoglobin in a long-lived mouse stock. Exp Gerontol 40:303–314.

    PubMed  CAS  Google Scholar 

  • Harper JM, Salmon AB, Chang Y, Bonkowski M, Bartke A, Miller RA (2006) Stress resistance and aging: influence of genes and nutrition. Mech Ageing Dev 127:687–694.

    PubMed  CAS  Google Scholar 

  • Hawkins JE, Johnsson L-G, Preston RE (1972) Cochlear microvasculature in normal and damaged ears. Laryngoscope 82:1091–1104.

    PubMed  Google Scholar 

  • Helfert RD, Sommer TJ, Meeks J, Hofstetter P, Hughes L F (1999) Age-related synaptic changes in the central nucleus of the inferior colliculus of the Fischer-344 rat. J Comp Neurol 406:285–298.

    PubMed  CAS  Google Scholar 

  • Helfert RD, Krenning J, Wilson TS, Hughes LF (2003) Age-related synaptic changes in the anteroventral cochlear nucleus of Fischer-344 rats. Hear Res 183:18–28.

    PubMed  Google Scholar 

  • Henry KR, Chole RA (1980) Genotypic differences in behavioral, physiological and anatomical expressions of age-related hearing loss in the laboratory mouse. Audiology 19:369–383.

    PubMed  CAS  Google Scholar 

  • Hequembourg S, Liberman MC (2001) Spiral ligament pathology: a major aspect of age-related cochlear degeneration in C57BL/6 mice. J Assoc Res Otolaryngol 2:118–129.

    PubMed  CAS  Google Scholar 

  • Hirose K, Liberman MC (2003) Lateral wall histopathology and endocochlear potential in the noise-damaged mouse cochlea. J Assoc Res Otolaryngol 4:339–352.

    PubMed  Google Scholar 

  • Hirose K, Discolo CM, Keasler JR, Ransohoff R (2005) Mononuclear phagocytes migrate into the murine cochlea after acoustic trauma. J Comp Neurol 489:180–194.

    PubMed  Google Scholar 

  • Hulbert AJ, Faulks SC, Harper JM, Miller RA, Buffenstein R (2006) Extended longevity of wild-derived mice is associated with peroxidation-resistant membranes. Mech Ageing Dev 127:653–657.

    PubMed  CAS  Google Scholar 

  • Ichimiya I, Suzuki M, Goro M (2000) Age-related changes in the murine cochlear lateral wall. Hear Res 139:116–122.

    PubMed  CAS  Google Scholar 

  • Idrizbegovic E. Canlon B. Bross LS. Willott JF. Bogdanovic N (2001a) The total number of neurons and calcium binding protein positive neurons during aging in the cochlear nucleus of CBA/CaJ mice: a quantitative study. Hear Res 158:102–115.

    CAS  Google Scholar 

  • Idrizbegovic E, Viberg A, Bogdanovic N, Canlon B (2001b) Peripheral cell loss related to calcium binding protein immunocytochemistry in the dorsal cochlear nucleus in CBA/CaJ mice during aging. Audiol Neuro-Otol 6:132–139.

    CAS  Google Scholar 

  • Idrizbegovic E, Bogdanovic N, Viberg A, Canlon B (2003) Auditory peripheral influences on calcium binding protein immunoreactivity in the cochlear nucleus during aging in the C57BL/6J mouse. Hear Res 179:33–42.

    PubMed  CAS  Google Scholar 

  • Idrizbegovic E. Bogdanovic N. Willott JF. Canlon B (2004) Age-related increases in calcium-binding protein immunoreactivity in the cochlear nucleus of hearing impaired C57BL/6J mice. Neurobiol Aging 25:1085–1093.

    PubMed  CAS  Google Scholar 

  • Ishikawa T, Naito Y, Taniguchi K (1995) Hearing impairment in WBN/Kob rats with spontaneous diabetes mellitus. Diabetologia 38:649–655

    PubMed  CAS  Google Scholar 

  • Jacobson M, KimS-H, Romney J, Zhu XX, Frisina RD (2003) Contralateral suppression of distortion-product otoacoustic emissions declines with age: a comparison of findings in CBA mice with human listeners. Laryngoscope 113:1707–1713.

    Google Scholar 

  • Jerger J, Jordan C (1992) Age-related asymmetry on a cued-listening task. Ear Hear 13:272–277.

    PubMed  CAS  Google Scholar 

  • Jerger J, Martin J (2004) Hemispheric asymmetry of the right ear advantage in dichotic listening. Hear Res 198:125–136.

    PubMed  Google Scholar 

  • Jerger J, Chmiel R, Stach B, Spretnjak M (1993) Gender affects audiometric shape in presbycusis. J Am Acad Audiol 4:42–49.

    PubMed  CAS  Google Scholar 

  • Jerger J, Chmiel R, Allen J, Wilson A (1994) Effects of age and gender on dichotic sentence identification. Ear Hear 15:274–286.

    PubMed  CAS  Google Scholar 

  • Jerger J, Alford B, Lew H, Rivera V, Chmiel R (1995) Dichotic listening, event-related potentials, and interhemispheric transfer in the elderly. Ear Hear 16:482–498.

    PubMed  CAS  Google Scholar 

  • Jiang H, Talaska AE, Schacht J, Sha S-H (2006) Oxidative imbalance in the aging inner ear. Neurobiol Aging 28: 1605–1612.

    PubMed  Google Scholar 

  • Johnson KR, Zheng QY, Erway LC (2000) A major gene affecting age-related hearing loss is common to at least 10 inbred strains of mice. Genomics 70:171–180.

    PubMed  CAS  Google Scholar 

  • Johnson KR, Zheng QY, Noben-Trauth K (2006) Strain background effects and genetic modifiers of hearing in mice. Brain Res 1091:79–88.

    PubMed  CAS  Google Scholar 

  • Johnsson L-G, Hawkins JE (1972) Strial atrophy in clinical and experimental deafness. Laryngoscope 82:1105–1125.

    PubMed  CAS  Google Scholar 

  • Karasik D, Demissie S, Cupples AL, Kiel DP (2005) Disentangling the genetic determinants of human aging: biological age as an alternative to the use of survival measures. J Gerontol Biol Sci 60A:574–587.

    CAS  Google Scholar 

  • Keen EC, Hudspeth AJ (2006) Transfer characteristics of the hair cell’s afferent synapse. Proc Natl Acad Sci USA 103:5537–5542.

    Google Scholar 

  • Keithley, EM, Croskrey KL (1990) Spiral ganglion cell endings in the cochlear nucleus of young and old rats. Hear Res 49:169–177.

    PubMed  CAS  Google Scholar 

  • Keithley EM, Feldman ML (1979) Spiral ganglion cell counts in an age-graded series of rat cochleas. J Comp Neurol 188:429–444.

    PubMed  CAS  Google Scholar 

  • Keithley EM, Canto C, Zheng QY, Fischel-Ghodsian N, Johnson KR (2004) Age-related hearing loss and the ahl locus in mice. Hear Res 188:21–28.

    PubMed  CAS  Google Scholar 

  • Keithley EM, Canto C, Zheng QY, Wang X, Fischel-Ghodsian N, Johnson KR (2005) Cu/Zn superoxide dismutase and age-related hearing loss. Hear Res 209:76–85.

    PubMed  CAS  Google Scholar 

  • Kim S-H, Frisina DR, Frisina RD (2002) Effects of age on contralateral suppression of distortion-product otoacoustic emissions in human listeners with normal hearing. Audiol Neuro-Otol 7:348–357.

    Google Scholar 

  • Konigsmark BW, Murphy EA (1970) Neuronal populations in the human brain. Nature 228:1335–1336.

    PubMed  CAS  Google Scholar 

  • Konigsmark BW, Murphy EA (1972) Volume of the ventral cochlear nucleus in man: Its relationship to neuronal population and age. J Neuropathol Exp Neurol 31:304–316.

    PubMed  CAS  Google Scholar 

  • Krebs J (1998) The role of calcium in apoptosis. Biometals 11:375–382.

    PubMed  CAS  Google Scholar 

  • Krenning J, Hughes L, Caspary D, Helfert, RH (1998) Age–related glycine receptor subunit changes in the cochlear nucleus of Fischer-344 rats. Laryngoscope 108:26–31.

    PubMed  CAS  Google Scholar 

  • Kujawa SG, Liberman MC (2006) Acceleration of age–related hearing loss by early noise: Evidence of a misspent youth. J Neurosci 26:2115–2123.

    PubMed  CAS  Google Scholar 

  • Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE, Hofer T, Seo AY, Sullivan R, Jobling WA, Morrow JD, Van Remmen H, Sedivy JM, Yamasoba T, Tanokura M, Weindruch R, Leeuwenburgh C, Prolla TA (2005) Mitochondrial DNA mutations, oxidative stress, and apoptosisin mammalian aging. Science 309:481–484.

    PubMed  CAS  Google Scholar 

  • Lambert PR, Schwartz IR (1982) A longitudinal study of changes in the cochlear nucleus in the CBA mouse. Otolaryngol Head Neck Surg 90:787–794.

    PubMed  CAS  Google Scholar 

  • Lang H, Schulte BA, Schmiedt RA (2002) Endocochlear potentials and compound action potential recovery: functions in the C57BL/6J mouse. Hear Res 172:118–126.

    PubMed  CAS  Google Scholar 

  • Lang H, Schulte BA, Schmiedt RA (2003) Effects of chronic furosemide treatment and age on cell division in the adult gerbil inner ear. J Assoc Res Otolaryngol 4:164–175.

    PubMed  CAS  Google Scholar 

  • Lang H, Schulte BA, Zhou D, Smythe NM, Spicer SS, Schmiedt RA (2006a) Nuclear factor κB deficiency is associated with auditory nerve degeneration and increased noise-induced hearing loss. J Neurosci 26:3541–3550.

    CAS  Google Scholar 

  • Lang H, Ebihara Y, Schmiedt RA, Minamiguchi H, Zhou D, Smythe N, M., Liu L, Ogawa M, Schulte BA (2006b) Contribution of bone marrow hematopoietic stem cells to adult mouse inner ear: mesenchymal cells and fibrocytes. J Comp Neurol 496:187–201.

    Google Scholar 

  • Le T, Keithley EM (2006) Effects of antioxidants on the aging inner ear. Hear Res 226: 194–202.

    PubMed  Google Scholar 

  • Le Prell CG, Yamashita D, Minami SB, Yamasoba T, Miller JM (2006) Mechanisms of noise-induced hearing loss indicate multiple methods of prevention. Hear Res 226: 22–43.

    PubMed  Google Scholar 

  • Leutner S, Eckert A, Muller WE (2001) ROS generation, lipid peroxidation and antioxidant enzyme activities in the aging brain. J Neural Transm 108:955–967.

    PubMed  CAS  Google Scholar 

  • Lu KP, Means AR (1993) Regulation of the cell cycle by calcium and calmodulin. Endocr Rev 14:40–58.

    PubMed  CAS  Google Scholar 

  • Ma F, Gomez-Martin O, Lee DJ, Balkany T (1998) Diabetes and hearing impairment in Mexican American adults: A population-based study. J Laryngol Otol 112:835–839.

    PubMed  CAS  Google Scholar 

  • Malpas S, Blake P, Bishop R, Robinson B, Johnson R (1989) Does autonomic neuropathy in diabetes cause hearing deficits? N Zeal Med J 102:434–435.

    CAS  Google Scholar 

  • Martin JS, Jerger JF (2005) Some effects of aging on central auditory processing. J Rehab Res Dev 42:25–44.

    Google Scholar 

  • McBride DJ, Williams S (2001) Audiometric notch as a sign of noise-induced hearing loss. Occup Environ Med 58:46–51.

    PubMed  CAS  Google Scholar 

  • McFadden SL, Willott JF (1994) Responses of inferior colliculus neurons in C57BL/6J mice with and without sensorineural hearing loss: effects of changing the azimuthal location of an unmasked pure-tone stimulus. Hear Res 78:115–131.

    PubMed  CAS  Google Scholar 

  • McFadden SL, Ding D, Reaume AG, Flood DG, Salvi RJ (1999) Age-related cochlear hair cell loss is enhanced in mice lacking copper/zinc superoxide dismutase. Neurobiol Aging 20:1–8.

    PubMed  CAS  Google Scholar 

  • McFadden SL, Ding D-L, Ohlemiller KK, Salvi RJ (2001) The role of superoxide dismutase in age-related and noise-induced hearing loss: clues from Sod1 knockout mice. In: Willott JF (ed) From Behavior to Molecular Biology. New York: CRC Press, pp. 489–504.

    Google Scholar 

  • McGeer EGG, McGeer PL (1975) Age changes in the human for some enzymes associated with metabolism of catecholamines, GABA and acetylcholine. In: Ordy JM, Brizzee KR (eds) Neurobiology of Aging. New York: Plenum Press, pp. 287–305.

    Google Scholar 

  • Mikaelian DO, Warfield D, Norris O (1974) Genetic progressive hearing loss in the C57b16 mouse. Acta Otolaryngol 77:327–334.

    PubMed  CAS  Google Scholar 

  • Milbrandt JC, Albin RL, Caspary DM (1994) Age-related decrease in GABAb receptor binding in the Fischer 344 rat inferior colliculus. Neurobiol Aging 15:699–703.

    PubMed  CAS  Google Scholar 

  • Milbrandt JC, Caspary DM (1995) Age-related reduction of [3H]strychnine binding sites in the cochlear nucleus of the Fischer 344 rat. Neuroscience 67(3): 713–719.

    PubMed  CAS  Google Scholar 

  • Milbrandt JC, Albin RL, Turgeon SM, Caspary DM (1996) GABAA receptor binding in the aging rat inferior colliculus. Neuroscience 73:449–458.

    PubMed  CAS  Google Scholar 

  • Milbrandt JC, Hunter C, Caspary DM (1997) Alterations of GABAA receptor subunit mRNA levels in the aging Fischer rat inferior colliculus. J Comp Neurol 379:455–465.

    PubMed  CAS  Google Scholar 

  • Miller RA, Chang Y, Galecki AT, Al-Regaiey K, Kopchick JJ, Bartke A (2002) Gene expression patterns in calorically restricted mice: partial overlap with long-lived mutant mice. Mol Endocrinol 16:2657–2666.

    PubMed  CAS  Google Scholar 

  • Minowa O, Ikeda K, Sugitani Y, Oshima T, Nakai S, Katori Y, Suzuki M, Furukawa M, Kawase T, Zheng Y, Ogura M, Asada Y, Watanabe K, Yamanaka H, Gotoh S, Nishi-Takeshima M, Sugimoto T, Kikuchi T, Takasaka T, Noda T (1999) Altered cochlear fibrocytes in a mouse model of DFN3 nonsyndromic deafness. Science 285:1408–1411.

    PubMed  CAS  Google Scholar 

  • Nakashima T, Naganawa S, Sone M, Tominaga M, Hayashi H, Yamamoto H, Liu X, Nuttall AL (2003) Disorders of cochlear blood flow. Brain Res Rev 43:17–28.

    PubMed  Google Scholar 

  • Niu X, Canlon B (2002) Protective mechanisms of sound conditioning. Adv Otorhinolaryngol 59:96–105.

    PubMed  Google Scholar 

  • Nixon JC, Glorig A (1962) Changes in air and bone conduction threshoulds as a function of age. J Laryngol 76:288–298.

    CAS  Google Scholar 

  • Ohlemiller KK (2002) Reduction in sharpness of frequency tuning but not endocochlear potential in aging and noise-exposed BALB/cJ mice. J Assoc Res Otolaryngol 3:444–456.

    PubMed  Google Scholar 

  • Ohlemiller KK (2003) Oxidative cochlear injury and the limitations of antioxidant therapy. Semin Hear 24:123–133.

    Google Scholar 

  • Ohlemiller KK (2006) Contributions of mouse models to understanding of age- and noise-related hearing loss. Brain Res 1091:89–102.

    PubMed  CAS  Google Scholar 

  • Ohlemiller KK, Gagnon PM (2004a) Apical-to-basal gradients in age-related cochlear degeneration and their relationship to ‘primary’ loss of cochlear neurons. J Comp Neurol 479:103–116.

    Google Scholar 

  • Ohlemiller KK, Gagnon PM (2004b) Cellular correlates of progressive hearing loss in 129S6/SvEv mice. J Comp Neurol 469:377–390.

    Google Scholar 

  • Ohlemiller KK, McFadden SL, Ding D-L, Reaume AG, Hoffman EK, Scott RW, Wright JS, Putcha GV, Salvi RJ (1999) Targeted deletion of the cytosolic Cu/Zn-superoxide dismutase gene (SOD1) increases susceptibility to noise-induced hearing loss. Audiol Neuro-Otol 4:237–246.

    CAS  Google Scholar 

  • Ohlemiller KK, McFadden SL, Ding D-L, Lear PM, Ho Y-S (2000) Targeted mutation of the gene for cellular glutathione peroxidase (Gpx1) increases noise-induced hearing loss in mice. J Assoc Res Otolaryngol 1:243–254.

    PubMed  CAS  Google Scholar 

  • Ohlemiller KK, Lett JM, Gagnon PM (2006) Cellular correlates of age-related endocochlear potential reduction in a mouse model. Hear Res 220:10–26.

    PubMed  Google Scholar 

  • Ologe FE, Okoro EO, Oyejola BA (2005) Hearing function in Nigerian children with a family history of type II diabetes. Int J Pediatr Otorhinolaryngol 69:387–391.

    PubMed  Google Scholar 

  • O’Neill WE, Zettel ML, Whittemore KR, Frisina RD (1997). Calbindin D-28k immunoreactivity in the medial nucleus of the trapezoid body declines with age in C57BL/6, but not CBA/CaJ, mice. Hear Res 112:158–166.

    PubMed  CAS  Google Scholar 

  • Otte J, Schuknecht HF, Kerr AG (1978) Ganglion cell populations in normal and pathological human cochleae: Implications for cochlear implantation. Laryngoscope 38:1231–1246.

    Google Scholar 

  • Park JC, Cook KC, Verde EA (1990) Dietary restriction slows the abnormally rapid loss of spiral ganglion neurons in C57BL/6 mice. Hearing Res 48:275–280.

    CAS  Google Scholar 

  • Pauler M, Schuknecht HF, Thornton AR (1986) Correlative studies of cochlear neuronal loss with speech discrimination and pure-tone thresholds. Arch Otolaryngol 243:200–206.

    CAS  Google Scholar 

  • Pauler M, Schuknecht HF, White JA (1988) Atrophy of the stria vascularis as a cause of sensorineural hearing loss. Laryngoscope 98:754–759.

    PubMed  CAS  Google Scholar 

  • Pekkonen E (2000) Mismatch negativity in aging and in Alzheimer’s and Parkinson’s diseases. Audiol Neuro-Otol 5:216–224.

    CAS  Google Scholar 

  • Pichora-Fuller MK (2003) Processing speed and timing in aging adults: psychoacoustics, speech perception, and comprehension. Int J Audiol (Suppl 1)42:S59–67.

    Google Scholar 

  • Pickles JO (2004) Mutation in mitochondrial DNA as a cause of presbyacusis. Audiol Neuro-Otol 9:23–33.

    CAS  Google Scholar 

  • Pillsbury HC (1986) Hypertension, hyperlipoproteinemia, chronic noise exposure: Is there synergism in cochlear pathology? Laryngoscope 96:1112–1138.

    PubMed  CAS  Google Scholar 

  • Polich J, Howard L, Starr A (1985) Effects of age on the P300 component of the event–related potential from auditory stimuli: peak definition, variation, and measurement. J Gerontol 40:721–726.

    PubMed  CAS  Google Scholar 

  • Prass K, Scharff A, Ruscher K, Lowl D, Muselmann C, Victorov I, Kapinya K, Dirnagl U, Meisel A (2003) Hypoxia-induced stroke tolerance in the mouse in mediated by erythropoietin. Stroke 34:1981–1986.

    PubMed  CAS  Google Scholar 

  • Pujol R, Rebillard G, Puel J-L, Lenoir M, Eybalin M, Recasens M (1991) Glutamate neurotoxicity in the cochlea: a possible consequence of ischaemic or anoxic conditions occurring in ageing. Acta Otolaryngol (Stockh) 476:32–36.

    Google Scholar 

  • Pujol R, Puel J-L, D’Aldin CG, Eybalin M (1993) Pathophysiology of the glutamate synapses of the cochlea. Acta Otolaryngol 113:330–334.

    PubMed  CAS  Google Scholar 

  • Ran R, Xu H, Lu A, Bernaudin M, Sharp FR (2005) Hypoxic preconditioning in the brain. Dev Neurosci 27:87–92.

    PubMed  CAS  Google Scholar 

  • Raynor EM, Carrasco VN, Prazma J, Pillsbury HC (1995) An assessment of cochlear hair-cell loss in insulin-dependent diabetes mellitus diabetic and noise-exposed rats. Arch Otolaryngol Head Neck Surg 121:452–456.

    PubMed  CAS  Google Scholar 

  • Raza A, Milbrandt JC, Arneric SP, Caspary DM (1994) Age-related changes in brainstem auditory neurotransmitters: measures of GABA and acetylcholine functions. Hear Res 77:221–230.

    PubMed  CAS  Google Scholar 

  • Rosen S, Olin P, Rosen HV (1970) Dietary prevention of hearing loss. Acta Otolaryngol 70:242–247.

    PubMed  CAS  Google Scholar 

  • Rosen S, Bergman M, Plester D, El Mofti A, Satti M (1962) Presbycusis study of a relatively noise-free population in the Sudan. Ann Otol Rhinol Laryngol 71:727–742.

    PubMed  CAS  Google Scholar 

  • Rosenhall U, Pedersen KE (1995) Presbycusis and occupational hearing loss. Occup Med 10:593–607.

    PubMed  CAS  Google Scholar 

  • Rosenhall U, Sixt E, Sundh V, Svanborg A (1993) Correlations between presbycusis and extrinsic noxious factors. Audiology 32:234–243.

    PubMed  CAS  Google Scholar 

  • Ruckenstein MJ, Milburn M, Hu L (1999a) Strial dysfunction in the MRL-Faslpr mouse. Otolaryngol Head Neck Surg 121:452–456.

    CAS  Google Scholar 

  • Ruckenstein MJ, Keithley EM, Bennett T, Powell HC, Baird S, Harris JP (1999b) Ultrastructural pathology in the stria vascularis of the MRL-Faslpr mouse. Hear Res 131:22–28.

    CAS  Google Scholar 

  • Rust KR, Prazma J, Triana RJ, Michaelis OEt, Pillsbury HC (1992) Inner ear damage secondary to diabetes mellitus. II. Changes in aging SHR/N-cp rats. Arch Otolaryngol Head Neck Surg 118:397–400.

    PubMed  CAS  Google Scholar 

  • Saito T, Sato K, Saito H (1986) An experimental study of auditory dysfunction associated with hyperlipoproteinemia. Archives of Otorhinolaryngol 243:242–245.

    CAS  Google Scholar 

  • Saitoh Y, Hosokawa M, Shimada A, Watanabe Y, Yasuda N, Murakami Y, Takeda T (1995) Age-related cochlear degeneration in senescence-accelerated mouse. Neurobiol Aging 16:129–136.

    PubMed  CAS  Google Scholar 

  • Salvi RJ, Lockwood AH, Frisina RD, Coad ML, Wack DS, Frisina DR (2002) PET imaging of the normal human auditory system: responses to speech in quiet and in background noise. Hear Res 170:96–106.

    PubMed  CAS  Google Scholar 

  • Sastre J, Pallardo FV, De La Asuncion JG, Vina J (2000) Mitochondria, oxidative stress and aging. Free Radic Res 32:189–198.

    PubMed  CAS  Google Scholar 

  • Satar B, Ozkaptan Y, Surucu HS, Ozturk H (2001) Ultrastructural effects of hypercholesterolemia on the cochlea. Otol Neurotol 22:786–789.

    PubMed  CAS  Google Scholar 

  • Schacht J, Hawkins JE (2005) Sketches of otohistory. Part 9: Presby[a]cusis. Audiol Neuro–Otol 10:243–247.

    Google Scholar 

  • Schmiedt RA, Lang H, Okamura H, Schulte BA (2002) Effects of furosemide applied chronically to the round window: A model of metabolic presbycusis. J Neuroscience 22:9643–9650.

    CAS  Google Scholar 

  • Schneider BA, Pichora-Fuller MK, Kowalchuk D, Lamb M (1994) Gap detection and the precedence effect in young and old adults. J Acoust Soc Am 95:980–991.

    PubMed  CAS  Google Scholar 

  • Scholtz AW, Kammen-Jolly K, Felder E, Hussl B, Rask-Andersen H, Schrott-Fischer A (2001) Selective aspects of human pathology in high-tone hearing loss of the aging inner ear. Hear Res 157:77–86.

    PubMed  CAS  Google Scholar 

  • Schuknecht HF (1953) Lesions of the organ of Corti. Trans Am Acad Ophthalmol Otolaryngol 57:366–383.

    PubMed  CAS  Google Scholar 

  • Schuknecht HF (1964) Further observations on the pathology of presbycusis. Arch Otolaryngol 80:369–382.

    PubMed  CAS  Google Scholar 

  • Schuknecht HF (1993) Pathology of the Ear, 2nd ed. Philadelphia: Lea and Febiger.

    Google Scholar 

  • Schuknecht HF, Gacek MR (1993) Cochlear pathology in presbycusis. Ann Otol Rhinol Laryngol 102:1–16.

    PubMed  CAS  Google Scholar 

  • Schuknecht HF, Watanuki K, Takahashi T, Belal AA, Kimura RS, Jones DD (1974) Atrophy of the stria vascularis, a common cause for hearing loss. Laryngoscope 84:1777–1821.

    PubMed  CAS  Google Scholar 

  • Schulte BA, Schmiedt RA (1992) Lateral wall Na,K-ATPase and endocochlear potentials decline with age in quiet-reared gerbils. Hear Res 61:35–46.

    PubMed  CAS  Google Scholar 

  • Schwaller B, Meyer M, Schiffmann S (2002) ‘New’ functions for ‘old’ proteins: the role of the calcium-binding proteins calbindin D-28K, calretinin and parvalbumin, in cerebellar physiology. Studies with knockout mice. Cerebellum 1:241–258.

    PubMed  CAS  Google Scholar 

  • Seidman MD (2000) Effects of dietary restriction and antioxidants on presbyacusis. Laryngoscope 110:727–738.

    PubMed  CAS  Google Scholar 

  • Seidman MD, Ahmad N, Bai U (2002) Molecular mechanisms of age-related hearing loss. Ageing Res Rev 1:331–343.

    PubMed  CAS  Google Scholar 

  • Seldon HL, Clark GM (1991) Human cochlear nucleus: comparison of Nissl-stained neurons from deaf and hearing patients. Brain Res 551:185–194.

    PubMed  CAS  Google Scholar 

  • Shimada A, Ebisu M, Morita T, Takeuchi T, Umemura T (1998) Age-related changes in the cochlea and cochlear nuclei of dogs. J Vet Med Sci 60:41–48.

    PubMed  CAS  Google Scholar 

  • Siemens J, Lillo C, Dumont RA, Reynolds A, Williams DS, Gillespie PG, Muller U (2004) Cadherin 23 is a component of the tip link in hair-cell stereocilia. Nature 428:950–955.

    PubMed  CAS  Google Scholar 

  • Sikora MA, Morizono T, Ward WD, Paparella MM, Leslie K (1986) Diet-induced hyperlipidemia and auditory dysfunction. Acta Otolaryngol 102:372–381.

    PubMed  CAS  Google Scholar 

  • Sinclair DA (2005) Toward a unified theory of caloric restriction and longevity regulation. Mech Ageing Dev 126:987–1002.

    PubMed  CAS  Google Scholar 

  • Snell KB, Frisina DR (2000). Relations among age-related differences in gap detection and speech perception. J. Acoust Soc Am 107: 1615–1626.

    PubMed  CAS  Google Scholar 

  • Snell KB, Mapes FM, Hickman ED, Frisina DR (2002). Word recognition in competing babble and the effects of age, temporal processing, and absolute sensitivity. J Acoust Soc Am 112: 720–727.

    Google Scholar 

  • Someya S, Yamasoba T, Weindruch R, Prolla TA, Tanokura M (2007) Caloric restriction suppresses apoptotic cell death in the mammalian cochlea and leads to prevention of presbycusis. Neurobiol Aging 28(10):1613–1622.

    PubMed  Google Scholar 

  • Spencer JT (1973) Hyperlipoproteinemia in the etiology of inner ear disease. Laryngoscope 83:639–678.

    PubMed  Google Scholar 

  • Spicer SS, Schulte BA (2002) Spiral ligament pathology in quiet-aged gerbils. Hear Res 172:172–185.

    PubMed  Google Scholar 

  • Spicer SS, Schulte BA (2005) Pathologic changes of presbycusis begin in secondary processes and spread to primary processes of strial marginal cells. Hear Res 2005:225–240.

    Google Scholar 

  • Squier TC (2001) Oxidative stress and protein aggregation during biological aging. Exp Gerontol 36:1539–1550.

    PubMed  CAS  Google Scholar 

  • Squier TC, Bigelow DJ (2000) Protein oxidation and age-dependent alterations in calcium homeostasis. Front Biosci 5:d504–526.

    PubMed  CAS  Google Scholar 

  • Stamataki S, Francis HW, Lehar M, May BJ, Ryugo DK (2006) Synaptic alterations at inner hair cells precede spiral ganglion cell loss in aging C57BL/6J mice. Hear Res 221:104–118.

    PubMed  Google Scholar 

  • Starr A, Picton TW, Kim R (2001) Pathophysiology of auditory neuropathy. In: Sininger Y, Starr A (eds) Auditory Neuropathy: A New Perspective on Hearing Disorders San Diego: Singular, pp. 67–81.

    Google Scholar 

  • Suzuka Y, Schuknecht HF (1988) Retrograde cochlear neuronal degeneration in human subjects. Acta Otolaryngol Suppl 450:2–20.

    Google Scholar 

  • Suzuki K, Kaneko M, Murai K (2000) Influence of serum lipids on auditory function. Laryngoscope 110:1736–1738.

    PubMed  CAS  Google Scholar 

  • Swartz KP, Walton JP, Crummer GC, Hantz EC, Frisina RD (1992) P3 event-related potentials and performance of healthy old and Alzheimer’s dementia subjects for music perception tasks. Psychomusicol 11: 96–118.

    Google Scholar 

  • Swartz KP, Walton JP, Hantz EC, Goldhammer E, Crummer GC, Frisina RD (1994) P3 event-related potentials and performance of young and old subjects for music perception tasks. Int J Neurosci 78:223–239.

    PubMed  CAS  Google Scholar 

  • Sweet RJ, Price JM, Henry KR (1988) Dietary restriction and presbyacusis: periods of restriction and auditory threshold losses in the CBA/J mouse. Audiology 27:305–312.

    PubMed  CAS  Google Scholar 

  • Tachibana M, Yamamichi I, Nakae S, Hirasugi Y, Machino M, Mizukoshi O (1984) The site of involvement of hypertension within the cochlea. Acta Otolaryngol 97:257–265.

    PubMed  CAS  Google Scholar 

  • Tadros SF, Frisina ST, Mapes F, Kim S-H, Frisina DR, Frisina RD (2005a) Loss of peripheral right ear advantage in age-related hearing loss. Audiol Neuro-Otol, 10:44–52.

    Google Scholar 

  • Tadros SF, Frisina ST, Mapes F, Frisina DR, Frisina RD (2005b) Higher serum aldosterone correlates with lower hearing thresholds: a possible protective hormone against presbycusis. Hear Res 209:10–18.

    CAS  Google Scholar 

  • Takumida M, Anniko A (2005) Radical scavengers: a remedy for presbycusis. A pilot study. Acta Otolaryngol 125:129–1293.

    Google Scholar 

  • Tarnowski BI, Schmiedt RA, Hellstrom LI, Lee FS, Adams JC (1991) Age-related changes in cochleae of Mongolian gerbils. Hear Res 54:123–134.

    PubMed  CAS  Google Scholar 

  • Toescu EC (2005) Normal brain ageing: models and mechanisms. Philos Trans R Soc Lond B 360:2347–2354.

    CAS  Google Scholar 

  • Toppila E, Pyykko I, Starck J (2001) Age and noise-related hearing loss. Scand Audiol 30:236–244.

    PubMed  CAS  Google Scholar 

  • Torre P, Cruickshanks KJ, Klein BEK, Nondahl DM (2005) The association between cardiovascular disease and cochlear function in older adults. J Speech Lang Hear Res 48:473–481.

    PubMed  Google Scholar 

  • Trune DR, Kempton JB (2002) Female MRL.MpJ-Faslpr autoimmune mice have greater hearing loss than males. Hear Res 167:170–174.

    PubMed  Google Scholar 

  • Trune DR, Kempton JB, Gross ND (2006) Mineralocorticoid receptor mediates glucocorticoid treatment effects in the autoimmune mouse ear. Hear Res 212:22–32.

    PubMed  CAS  Google Scholar 

  • Uchida Y, Nakashima T, Ando F, Niino N, Shimokada H (2005) Is there a relevant effect of noise and smoking on hearing? A population-based aging study. Int J Audiol 44:86–91.

    PubMed  Google Scholar 

  • Ulehlova L (1983) Stria vascularis in acoustic trauma. Arch Otorhinolaryngol 237:133–138.

    PubMed  CAS  Google Scholar 

  • Unal M, Tamer L, Dogruer ZN, Yildirim H, Vayisoglu Y, Camdevirin H (2005) N-acetyltransferase 2 gene polymorphism and presbycusis. Laryngoscope 115:2238–2241.

    PubMed  Google Scholar 

  • Varghese GI, Zhu XX, Frisina, RD (2005) Age-related declines in contralateral suppression of distortion product otoacoustic emissions utilizing pure tones in CBA/CaJ mice. Hear Res 209:60–67.

    PubMed  Google Scholar 

  • Vaughan N, James K, McDermott D, Griest S, Fausti S (2005) A 5-year prospective study of diabetics and hearing loss in a veteran population. Otol Neurotol 27:37–43.

    Google Scholar 

  • von Zglinicki T, Martin-Ruiz CM (2005) Telomeres as biomarkers for aging and age–related disease. Curr Mol Med 5:197–203.

    Google Scholar 

  • Wackym PA, Linthicum FH (1986) Diabetes mellitus and hearing loss: clinical and histopathologic relationships. Am J Otol 7:176–182.

    PubMed  CAS  Google Scholar 

  • Walton JP, Frisina RD, Ison JE, O’Neill WE (1997) Neural correlates of behavioral gap detection in the inferior colliculus of the young CBA mouse. J Comp Physiol A 181:161–176.

    PubMed  CAS  Google Scholar 

  • Wang Y, Liberman MC (2002) Restraint stress and protection from acoustic injury in mice. Hear Res 165:96–102.

    PubMed  Google Scholar 

  • Wang Y, Manis P B (2005) Synaptic transmission at the cochlear nucleus end bulb synapse during age-related hearing loss in mice. J Neurophysiol 94: 1814–1824.

    PubMed  Google Scholar 

  • Wangemann P (2002) K+ recycling and the endocochlear potential. Hear Res 165:1–9.

    PubMed  CAS  Google Scholar 

  • Whitlock NA, Agarwal N, Ma JX, Crosson CE (2005) Hsp27 upregulation by HIF-1 signaling offers protection against retinal ischemia in rats. Inv Ophthalmol Visual Sci 46:1092–1098.

    Google Scholar 

  • Willott JF (1991). Aging and the Auditory System: Anatomy, Physiology, and Psychophysics Sam Diego: Singular.

    Google Scholar 

  • Willott JF, Bross LS (1990) Morphology of the octopus cell area of the cochlear nucleus in young and aging C57BL/6J and CBA/J mice. J Comp Neurol 300:61–81.

    PubMed  CAS  Google Scholar 

  • Willott JF, Bross LS (1996) Morphological changes in the anteroventral cochlear nucleus that accompany sensorineural hearing loss in DBA/2J and C57BL/6J mice. Dev Brain Res 91:218–226.

    CAS  Google Scholar 

  • Willott JF, Turner JG (1999) Prolonged exposure to an augmented acoustic environment ameliorates age-related auditory changes in C57BL/6J and DBA/2J mice. Hear Res 135:78–88.

    PubMed  CAS  Google Scholar 

  • Willott JF, Jackson LM, Hunter KP (1987) Morphometric study of the anteroventral cochlear nucleus of two mouse models of presbycusis. J Comp Neurol 260:472–480.

    PubMed  CAS  Google Scholar 

  • Willott JF, Parham K, Paris Hunter K (1991) Comparison of the auditory sensitivity of neurons in the cochlear nucleus and inferior colliculus of young and aging C57BL/6J and CBA/J mice. Hear Res 53: 78–94.

    PubMed  CAS  Google Scholar 

  • Willott JF, Bross LS, McFadden SL (1992) Morphology of the dorsal cochlear nucleus in C57BL/6J and CBA/J mice across the life span. J Comp Neurol 321:666–678.

    PubMed  CAS  Google Scholar 

  • Willott JF, Milbrandt JC, Seegers Bross L, Caspary DM (1997) Glycine immunoreactivity and receptor binding in the cochlear nucleus of C57BL/6J and CBA/CaJ mice: effects of cochlear impairment and aging. J Comp Neurol 385:405–414.

    PubMed  CAS  Google Scholar 

  • Willott JF, Turner JG, Carlson S, Ding D, Bross LS, Falls WA (1998) The BALB/c mouse as an animal model for progressive sensorineural hearing loss. Hear Res 115:162–174.

    PubMed  CAS  Google Scholar 

  • Wright CG, Schuknecht HF (1972) Atrophy of the spiral ligament. Arch Otolaryngol 96:16–21.

    PubMed  CAS  Google Scholar 

  • Wu W-J, Sha S, McLaren JD, Kawamoto K, Raphael Y, Schacht J (2001) Aminoglycoside ototoxicity in adult CBA, C57BL, and BALB mice and the Sprague-Dawley rat. Hear Res 158:165–178.

    PubMed  CAS  Google Scholar 

  • Xiu A–P, Kikuchi T, Minowa O, Katori Y, Oshima T, Noda T, Ikeda K (2002) Late-onset hearing loss in a mouse model of DFN3 non-syndromic deafness: morphologic and immunohistochemical analyses. Hear Res 166:150–158.

    Google Scholar 

  • Yamashita H, Shimogori H, Sugahara K, Takahashi M (1999) Cell proliferation in spiral ligament of mouse cochlea damaged by dihydrostreptomycin sulfate. Acta Otolaryngol 119:322–325.

    PubMed  CAS  Google Scholar 

  • Yoshida N, Kristiansen A, Liberman MC (1999) Heat stress and protection from permanent acoustic injury in mice. J Neurosci 19:10116–10124.

    PubMed  CAS  Google Scholar 

  • Zettel ML, Frisina RD, Haider SEA, O’Neill WE (1997) Age-related changes in calbindin D–28K and calretinin immunoreactivity in the inferior colliculus of CBA/CaJ and C57B1/6 mice. J Comp Neurol 386:92–110.

    PubMed  CAS  Google Scholar 

  • Zettel ML, O’Neill WE, Trang TT, Frisina RD (2001) Early bilateral deafening prevents calretinin up-regulation in the dorsal cortex of the inferior colliculus of aged CBA/CaJ mice. Hear Res 158:131–138

    PubMed  CAS  Google Scholar 

  • Zimmermann CE, Burgess BJ, Nadol JB (1995) Patterns of degeneration in the human cochlear nerve. Hear Res 90:192–201.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ohlemiller, K.K., Frisina, R.D. (2008). Age-Related Hearing Loss and Its Cellular and Molecular Bases. In: Schacht, J., Popper, A.N., Fay, R.R. (eds) Auditory Trauma, Protection, and Repair. Springer Handbook of Auditory Research, vol 31. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-72561-1_6

Download citation

Publish with us

Policies and ethics