Skip to main content

How the NOTCH Pathway Contributes to the Ability of Osteosarcoma Cells to Metastasize

  • Chapter
  • First Online:
Pediatric and Adolescent Osteosarcoma

Part of the book series: Cancer Treatment and Research ((CTAR,volume 152))

Abstract

Controlling metastasis is the key to improving outcomes for osteosarcoma patients; yet our knowledge of the mechanisms regulating the metastatic process is incomplete. Clearly Fas and Ezrin are important, but other genes must play a role in promoting tumor spread. Early developmental pathways are often recapitulated in malignant tissues, and these genes are likely to be important in regulating the primitive behaviors of tumor cells, including invasion and metastasis. The Notch pathway is a highly conserved regulatory signaling network involved in many developmental processes and several cancers, at times serving as an oncogene and at others, behaving as a tumor suppressor. In normal limb development, Notch signaling maintains the apical ectodermal ridge in the developing limb bud and regulated size of bone and muscles. Here, we examine the role of Notch signaling in promoting metastasis of osteosarcoma, and the underlying regulatory processes that control Notch pathway expression and activity in the disease.

We have shown that, compared to normal human osteoblasts and non-metastatic osteosarcoma cell lines, osteosarcoma cell lines with the ability to metastasize have higher levels of Notch 1, Notch 2, the Notch ligand DLL1 and the Notch-induced gene Hes1. When invasive osteosarcoma cells are treated with small molecule inhibitors of γ-secretase, which blocks Notch activation, invasiveness is abrogated. Direct retroviral expression has shown that Hes1 expression was necessary for osteosarcoma invasiveness and accounted for the observations. In a novel orthotopic murine xenograft model of osteosarcoma pulmonary metastasis, blockade of Hes1 expression and Notch signaling eliminated spread of disease from the tibial primary tumor. In a sample of archival human osteosarcoma tumor specimens, expression of Hes1 mRNA was inversely correlated with survival (n=16 samples, p=0.04). Expression of the microRNA 34 cluster, which is known to downregulate DLL1, Notch 1 and Notch 2, was inversely correlated with invasiveness in a small panel of osteosarcoma tumors, suggesting that this family of microRNAs may be responsible for regulating Notch expression in at least some tumors. Further, exposure to valproic acid at therapeutic concentrations induced expression of Notch genes and caused a 250-fold increase in invasiveness for non-invasive cell lines, but had no discernible effect on those lines that expressed high levels of Notch without valproic acid treatment, suggesting a role for HDAC in regulating Notch pathway expression in osteosarcoma. These findings show that the Notch pathway is important in regulating osteosarcoma metastasis and may be useful as a therapeutic target. Better understanding of Notch’s role and its regulation will be essential in planning therapies with other agents, especially the use of valproic acid and other HDAC inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science. 1999;284(5415):770-776.

    Article  CAS  PubMed  Google Scholar 

  2. Greenwald I. LIN-12/Notch signaling: lessons from worms and flies. Genes & Dev. 1998;12(12):1751-1762.

    Article  CAS  Google Scholar 

  3. Gridley T. Notch signaling and inherited disease syndromes. Hum Mol Genet. 2003;12(Suppl_1):R9-R13. %R 10.1093/hmg/ddg052.

    Article  CAS  PubMed  Google Scholar 

  4. Hartmann D, et al. The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for {alpha}-secretase activity in fibroblasts. Hum Mol Genet. 2002;11(21):2615-2624. %R 10.1093/hmg/11.21.2615.

    Article  CAS  PubMed  Google Scholar 

  5. Fortini M. Gamma-secretase-mediated proteolysis in cell-surface-receptor signalling. Nat Rev Mol Cell Biol. 2002;3(9):673-684.

    Article  CAS  PubMed  Google Scholar 

  6. Schnabel M, et al. Differential expression of Notch genes in human osteoblastic cells. Int J Mol Med. 2002;9(3):229-232.

    CAS  PubMed  Google Scholar 

  7. Sciaudone M, et al. Notch 1 impairs osteoblastic cell differentiation. Endocrinology. 2003;144(12):5631-5639.

    Article  CAS  PubMed  Google Scholar 

  8. Tezuka K, et al. Stimulation of osteoblastic cell differentiation by Notch. J Bone Miner Res. 2002;17(2):231-239.

    Article  CAS  PubMed  Google Scholar 

  9. Yamada T, et al. Regulation of osteoclast development by Notch signaling directed to osteoclast precursors and through stromal cells. Blood. 2003;101(6):2227-2234.

    Article  CAS  PubMed  Google Scholar 

  10. Bai S, et al. Notch1 regulates osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblast lineage cells. J Biol Chem. 2007;M707000200 (%R 10.1074/jbc.M707000200).

  11. Dallas DJ, et al. Localization of ADAM10 and Notch receptors in bone. Bone. 1999;25(1):9-15.

    Article  CAS  PubMed  Google Scholar 

  12. Crowe R, Zikherman J, Niswander L. Delta-1 negatively regulates the transition from prehypertrophic to hypertrophic chondrocytes during cartilage formation. Development. 1999;126(5):987-998.

    CAS  PubMed  Google Scholar 

  13. Francis JC, Radtke F, Logan MP. Notch1 signals through Jagged2 to regulate apoptosis in the apical ectodermal ridge of the developing limb bud. Dev Dyn. 2005;234(4):1006-1015.

    Article  CAS  PubMed  Google Scholar 

  14. Irvine KD, Vogt TF. Dorsal-ventral signaling in limb development. Curr Opin Cell Biol. 1997;9(6):867-876.

    Article  CAS  PubMed  Google Scholar 

  15. Schuster-Gossler K, Cordes R, Gossler A. Premature myogenic differentiation and depletion of progenitor cells cause severe muscle hypotrophy in Delta1 mutants. Proc Natl Acad Sci USA. 2007;104(2):537-542. %R 10.1073/pnas.0608281104.

    Article  CAS  PubMed  Google Scholar 

  16. Dunwoodie SL, et al. Axial skeletal defects caused by mutation in the spondylocostal dysplasia/pudgy gene Dll3 are associated with disruption of the segmentation clock within the presomitic mesoderm. Development. 2002;129(7):1795-1806.

    CAS  PubMed  Google Scholar 

  17. Kusumi K, et al. The mouse pudgy mutation disrupts Delta homologue Dll3 and initiation of early somite boundaries. Nat Genet. 1998;19(3):274-278.

    Article  CAS  PubMed  Google Scholar 

  18. Kusumi K, et al. Dll3 pudgy mutation differentially disrupts dynamic expression of somite genes. Genesis. 2004;39(2):115-121.

    Article  CAS  PubMed  Google Scholar 

  19. Sidow A, et al. Serrate2 is disrupted in the mouse limb-development mutant syndactylism. Nature. 1997;389(6652):722-725.

    Article  CAS  PubMed  Google Scholar 

  20. Bulman MP, et al. Mutations in the human delta homologue, DLL3, cause axial skeletal defects in spondylocostal dysostosis. Nat Genet. 2000;24(4):438-441.

    Article  CAS  PubMed  Google Scholar 

  21. Ponio JB-D, et al. Biological function of mutant forms of JAGGED1 proteins in Alagille syndrome: inhibitory effect on Notch signaling. Hum Mol Genet. 2007;16(22):2683-2692. %R 10.1093/hmg/ddm222.

    Article  Google Scholar 

  22. Yuan ZR, et al. Mutational analysis of the Jagged 1 gene in Alagille syndrome families. Hum Mol Genet. 1998;7(9):1363-1369. %R 10.1093/hmg/7.9.1363.

    Article  CAS  PubMed  Google Scholar 

  23. Li L, et al. Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nat Genet. 1997;16(3):243-251.

    Article  CAS  PubMed  Google Scholar 

  24. Turnpenny PD, et al. Abnormal vertebral segmentation and the Notch signaling pathway in man. Dev Dyn. 2007;236(6):1456-1474.

    Article  CAS  PubMed  Google Scholar 

  25. Allenspach E, et al. Notch signaling in cancer. Cancer Biol Ther. 2002;1(5):466-476.

    PubMed  Google Scholar 

  26. Ellisen L, et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell. 1991;66(4):649-661.

    Article  CAS  PubMed  Google Scholar 

  27. Pear W, et al. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J Exp Med. 1996;183(5):2283-2291.

    Article  CAS  PubMed  Google Scholar 

  28. Reizis B, Leder P. Direct induction of T lymphocyte-specific gene expression by the mammalian Notch signaling pathway. Genes & Dev. 2002;16(3):295-300.

    Article  CAS  Google Scholar 

  29. Zweidler-McKay PA, et al. Notch signaling is a potent inducer of growth arrest and apoptosis in a wide range of B-cell malignancies. Blood. 2005;106(12):3898-3906.

    Article  CAS  PubMed  Google Scholar 

  30. Sutphin RM, et al. Notch agonists: emerging as a feasible therapeutic approach in AML. Blood (ASH Annual Meeting Abstracts) 2006; 108(11): 1419.

    Google Scholar 

  31. Collins B, Kleeberger W, Ball D. Notch in lung development and lung cancer. Semin Cancer Biol. 2004;14(5):357-364.

    Article  CAS  PubMed  Google Scholar 

  32. Nickoloff B, Osborne B, Miele L. Notch signaling as a therapeutic target in cancer: a new approach to the development of cell fate modifying agents. Oncogene. 2003;22(42):6598-6608.

    Article  CAS  PubMed  Google Scholar 

  33. Radtke F, Raj K. The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat Rev Cancer. 2003;3(10):756-767.

    Article  CAS  PubMed  Google Scholar 

  34. Shou J, et al. Dynamics of Notch expression during murine prostate development and tumorigenesis. Cancer Res. 2001;61(19):7291-7297.

    CAS  PubMed  Google Scholar 

  35. Bailey JM, Singh PK, Hollingsworth MA. Cancer metastasis facilitated by developmental pathways: sonic hedgehog, Notch, and bone morphogenic proteins. J Cell Biochem. 2007;102(4):829-839.

    Article  CAS  PubMed  Google Scholar 

  36. Shih I-M, Wang T-L. Notch signaling, {gamma}-secretase inhibitors, and cancer therapy. Cancer Res. 2007;67(5):1879-1882. %R 10.1158/0008-5472.CAN-06-3958.

    Article  CAS  PubMed  Google Scholar 

  37. Dominguez M. Interplay between Notch signaling and epigenetic silencers in cancer. Cancer Res. 2006;66(18):8931-8934. %R 10.1158/0008-5472.CAN-06-1858.

    Article  CAS  PubMed  Google Scholar 

  38. Proweller A, et al. Impaired Notch signaling promotes de novo squamous cell carcinoma formation. Cancer Res. 2006;66(15):7438-7444. %R 10.1158/0008-5472.CAN-06-0793.

    Article  CAS  PubMed  Google Scholar 

  39. Kunnimalaiyaan M, Chen H. Tumor suppressor role of Notch-1 signaling in neuroendocrine tumors. Oncologist. 2007;12(5):535-542. %R 10.1634/theoncologist.12-5-535.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang P, et al. Critical role of Notch signaling in osteosarcoma invasion and metastasis. Clin Cancer Res. 2008;14(10):2962-2969. %R 10.1158/1078-0432.CCR-07-1992.

    Article  CAS  PubMed  Google Scholar 

  41. Hughes DPM, et al. Cell surface expression of epidermal growth factor receptor and her-2 with nuclear expression of her-4 in primary osteosarcoma. Cancer Res. 2004;64(6):2047-2053.

    Article  CAS  PubMed  Google Scholar 

  42. Hughes DPM, et al. Essential erbB family phosphorylation in osteosarcoma as a target for CI-1033 Inhibition. Pediatr Blood Cancer. 2006;46(5):614-623.

    Article  PubMed  Google Scholar 

  43. Jia S, et al. Eradication of osteosarcoma lung metastases following intranasal interleukin-12 gene therapy using a nonviral polyethylenimine vector. Cancer Gene Ther. 2002;9(3):260-266.

    Article  CAS  PubMed  Google Scholar 

  44. Jia S, et al. Eradication of osteosarcoma lung metastasis using intranasal gemcitabine. Anticancer Drugs. 2002;13(2):155-161.

    Article  CAS  PubMed  Google Scholar 

  45. Pollack S, Lewis H. Secretase inhibitors for Alzheimer’s disease: challenges of a promiscuous protease. Curr Opin Investig Drugs. 2005;6(1):35-47.

    CAS  PubMed  Google Scholar 

  46. Vidal GA, et al. Presenilin-dependent {gamma}-secretase processing regulates multiple ERBB4/HER4 activities. J Biol Chem. 2005;280(20):19777-19783. 10.1074/jbc.M412457200.

    Article  CAS  PubMed  Google Scholar 

  47. Berlin O, et al. Development of a novel spontaneous metastasis model of human osteosarcoma transplanted orthotopically into bone of athymic mice. Cancer Research. 1993;53(20):4890-4895.

    CAS  PubMed  Google Scholar 

  48. Bali P, et al. Activity of suberoylanilide hydroxamic acid against human breast cancer cells with amplification of her-2. Clin Cancer Res. 2005;11(17):6382-6389. 10.1158/1078-0432.CCR-05-0344.

    Article  CAS  PubMed  Google Scholar 

  49. Phiel CJ, et al. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem. 2001;276(39):36734-36741. %R 10.1074/jbc.M101287200.

    Article  CAS  PubMed  Google Scholar 

  50. Gurvich N, et al. Histone deacetylase is a target of valproic acid-mediated cellular differentiation. Cancer Res. 2004;64(3):1079-1086. %R 10.1158/0008-5472.CAN-03-0799.

    Article  CAS  PubMed  Google Scholar 

  51. Li X-N, et al. Valproic acid induces growth arrest, apoptosis, and senescence in medulloblastomas by increasing histone hyperacetylation and regulating expression of p21Cip1, CDK4, and CMYC. Mol Cancer Ther. 2005;4(12):1912-1922. %R 10.1158/1535-7163.MCT-05-0184.

    Article  CAS  PubMed  Google Scholar 

  52. Zaskodova D, et al. Effect of valproic acid, a histone deacetylase inhibitor, on cell death and molecular changes caused by low-dose irradiation. Ann N Y Acad Sci. 2006;1091(1):385-398. %R 10.1196/annals.1378.082.

    Article  CAS  PubMed  Google Scholar 

  53. Greenblatt DY, et al. Valproic acid activates Notch-1 signaling and regulates the neuroendocrine phenotype in carcinoid cancer cells. Oncologist. 2007;12(8):942-951. %R 10.1634/theoncologist.12-8-942.

    Article  CAS  PubMed  Google Scholar 

  54. Catalano MG, et al. Valproic acid, a histone deacetylase inhibitor, enhances sensitivity to doxorubicin in anaplastic thyroid cancer cells. J Endocrinol. 2006;191(2):465-472. %R 10.1677/joe.1.06970.

    Article  CAS  PubMed  Google Scholar 

  55. Kempf-Bielack B, et al. Osteosarcoma relapse after combined modality therapy: an analysis of unselected patients in the Cooperative Osteosarcoma Study Group (COSS). J Clin Oncol. 2005;23(3):559-568. 10.1200/JCO.2005.04.063.

    Article  PubMed  Google Scholar 

  56. Bacci G, et al. Treatment and outcome of recurrent osteosarcoma: experience at Rizzoli in 235 patients initially treated with neoadjuvant chemotherapy. Acta Oncol. 2005;44(7):748-755.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis P. M. Hughes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hughes, D.P.M. (2009). How the NOTCH Pathway Contributes to the Ability of Osteosarcoma Cells to Metastasize. In: Jaffe, N., Bruland, O., Bielack, S. (eds) Pediatric and Adolescent Osteosarcoma. Cancer Treatment and Research, vol 152. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0284-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0284-9_28

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0283-2

  • Online ISBN: 978-1-4419-0284-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics