Skip to main content

Viral TNF Inhibitors as Potential Therapeutics

  • Chapter
Book cover Pathogen-Derived Immunomodulatory Molecules

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 666))

Abstract

The immune system functions by maintaining a delicate balance between the activities of pro-inflammatory and anti-inflammatory pathways. Unbalanced activation of these pathways often leads to the development of serious inflammatory diseases. TNF (Tumor Necrosis Factor) is a key pro-inflammatory cytokine, which can cause several inflammatory diseases when inappropriately up-regulated. Inhibition of TNF activities by using modulatory recombinant proteins has become a successful therapeutic approach to control TNF activity levels but these anti-TNF reagents also have risks and certain limitations. Biological molecules with a different mode of action in regulating TNF biology might provide a clinically useful alternative to the current therapeutics or in some cases might be efficacious in combination with existing anti-TNF therapies. TNF is also a powerful host defense cytokine commonly induced in the host response against various invading pathogens. Many viral pathogens can block TNF function by encoding modulators of TNF, its receptors or downstream signaling pathways. Here, we review the known virus-encoded TNF inhibitors and evaluate their potential as alternative future anti-TNF therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Finlay BB, McFadden G. Anti-immunology: evasion of the host immune system by bacterial and viral pathogens. Cell 2006; 124(4):767–782.

    Article  CAS  PubMed  Google Scholar 

  2. Roy CR, Mocarski ES. Pathogen subversion of cell-intrinsic innate immunity. Nat Immunol 2007; 8(11):1179–1187.

    Article  CAS  PubMed  Google Scholar 

  3. Unterholzner L, Bowie AG. The interplay between viruses and innate immune signaling: Recent insights and therapeutic opportunities. Biochem Pharmacol 2008; 75(3):589–602.

    Article  CAS  PubMed  Google Scholar 

  4. Lucas A, McFadden G. Secreted immunomodulatory viral proteins as novel biotherapeutics. J Immunol 2004; 173(8):4765–4774.

    CAS  PubMed  Google Scholar 

  5. Fallon PG, Alcami A. Pathogen-derived immunomodulatory molecules: future immunotherapeutics? Trends Immunol 2006; 27(10):470–476.

    Article  CAS  PubMed  Google Scholar 

  6. Rahman MM, McFadden G. Modulation of tumor necrosis factor by microbial pathogens. PLoS Pathog 2006; 2(2):c4.

    Article  Google Scholar 

  7. Aggarwal BB. Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 2003; 3(9):745–756.

    Article  CAS  PubMed  Google Scholar 

  8. Hehlgans T, Pfeffer K. The intriguing biology of the tumour necrosis factor/tumour necrosis factor receptor superfamily: players, rules and the games. Immunology 2005; 115(1):1–20.

    Article  CAS  PubMed  Google Scholar 

  9. Takada H, Chen NJ, Mirtsos C et al. Role of SODD in regulation of tumor necrosis factor responses. Mol Cell Biol 2003; 23(11):4026–4033.

    Article  CAS  PubMed  Google Scholar 

  10. Chan FK, Chun HJ, Zheng L et al. A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science 2000; 288(5475):2351–2354.

    Article  CAS  PubMed  Google Scholar 

  11. Clancy L, Mruk K, Archer K et al. Preligand assembly domain-mediated ligand-independent association between TRAIL receptor 4 (TR4) and TR2 regulates TRAIL-induced apoptosis. Proc Natl Acad Sci USA 2005; 102(50):18099–18104.

    Article  CAS  PubMed  Google Scholar 

  12. Sedger LM, Osvath SR, Xu XM et al. Poxvirus tumor necrosis factor receptor (TNFR)-like T2 proteins contain a conserved preligand assembly domain that inhibits cellular TNFR1-induced cell death. J Virol 2006; 80(18):9300–9309.

    Article  CAS  PubMed  Google Scholar 

  13. Siebert S, Fielding CA, Williams BD et al. Mutation of the extracellular domain of tumour necrosis factor receptor 1 causes reduced NF-kappaB activation due to decreased surface expression. FEBS Lett 2005; 579(23):5193–5198.

    Article  CAS  PubMed  Google Scholar 

  14. Siegel RM, Frederiksen JK, Zacharias DA et al. Fas preassociation required for apoptosis signaling and dominant inhibition by pathogenic mutations. Science 2000; 288(5475):2354–2357.

    Article  CAS  PubMed  Google Scholar 

  15. Chan FK. Three is better than one: preligand receptor assembly in the regulation of TNF receptor signaling. Cytokine 2007; 37(2):101–107.

    Article  CAS  PubMed  Google Scholar 

  16. Deng GM, Zheng L, Chan FK et al. Amelioration of inflammatory arthritis by targeting the preligand assembly domain of tumor necrosis factor receptors. Nat Med 2005; 11(10):1066–1072.

    Article  CAS  PubMed  Google Scholar 

  17. Choy EH, Panayi GS. Cytokine pathways and joint inflammation in rheumatoid arthritis. N Engl J Med 2001; 344(12):907–916.

    Article  CAS  PubMed  Google Scholar 

  18. Theodossiadis PG, Markomichelakis NN, Sfikakis PP. Tumor necrosis factor antagonists: preliminary evidence for an emerging approach in the treatment of ocular inflammation. Retina 2007; 27(4):399–413.

    Article  PubMed  Google Scholar 

  19. Tak PP, Taylor PC, Breedveld FC et al. Decrease in cellularity and expression of adhesion molecules by anti-tumor necrosis factor alpha monoclonal antibody treatment in patients with rheumatoid arthritis. Arthritis Rheum 1996; 39(7):1077–1081.

    Article  CAS  PubMed  Google Scholar 

  20. Goldring SR, Gravallese EM. Pathogenesis of bone lesions in rheumatoid arthritis. Curr Rheumatol Rep 2002; 4(3):226–231.

    Article  PubMed  Google Scholar 

  21. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 1993; 259(5091):87–91.

    Article  CAS  PubMed  Google Scholar 

  22. Mohler KM, Torrance DS, Smith CA et al. Soluble tumor necrosis factor (TNF) receptors are effective therapeutic agents in lethal endotoxemia and function simultaneously as both TNF carriers and TNF antagonists. J Immunol 1993; 151(3): 1548–1561.

    CAS  PubMed  Google Scholar 

  23. Harriman G, Harper LK, Schaible TF. Summary of clinical trials in rheumatoid arthritis using infliximab, an anti-TNFalpha treatment. Ann Rheum Dis 1999; 58(Suppl 1):161–64.

    Google Scholar 

  24. Wong M, Ziring D, Korin Y et al. TNF α blockade in human diseases: Mechanisms and future directions. Clin Immunol 2007; 126(2): 121–136.

    Article  PubMed  Google Scholar 

  25. Palladino MA, Bahjat FR, Theodorakis EA et al. Anti-TNF-α therapies: the next generation. Nat Rev Drug Discov 2003; 2(9):736–746.

    Article  CAS  PubMed  Google Scholar 

  26. Slifman NR, Gershon SK, Lee JH et al. Listeria monocytogenes infection as a complication of treatment with tumor necrosis factor alpha-neutralizing agents. Arthritis Rheum 2003; 48(2):319–324.

    Article  CAS  PubMed  Google Scholar 

  27. De Rosa FG, Shaz D, Campagna AC et al. Invasive pulmonary aspergillosis soon after therapy with infliximab, a tumor necrosis factor-alpha-neutralizing antibody: a possible healthcare-associated case? Infect Control Hosp Epidemiol 2003; 24(7):477–482.

    Article  PubMed  Google Scholar 

  28. Tai TL, O’Rourke KP, McWeeney M et al. Pneumocystis carinii pneumonia following a second infusion of infliximab. Rheumatology (Oxford) 2002; 41(8):951–952.

    Google Scholar 

  29. Lee JH, Slifman NR, Gershon SK et al. Life-threatening histoplasmosis complicating immunotherapy with tumor necrosis factor alpha antagonists infliximab and etanercept. Arthritis Rheum 2002; 46(10):2565–2570.

    Article  CAS  PubMed  Google Scholar 

  30. Gomez-Reino JJ, Carmona L, Angel Descalzo M. Risk of tuberculosis in patients treated with tumor necrosis factor antagonists due to incomplete prevention of reactivation of latent infection. Arthritis Rheum 2007; 57(5):756–761.

    Article  CAS  PubMed  Google Scholar 

  31. Ellerin T, Rubin RH, Weinblatt ME. Infections and anti-tumor necrosis factor alpha therapy. Arthritis Rheum 2003; 48(11):3013–3022.

    Article  CAS  PubMed  Google Scholar 

  32. Charles PJ, Smeenk RJ, De Jong J et al. Assessment of antibodies to double-stranded DNA induced in rheumatoid arthritis patients following treatment with infliximab, a monoclonal antibody to tumor necrosis factor alpha: findings in open-label and randomized placebo-controlled trials. Arthritis Rheum 2000; 43(11):2383–2390.

    Article  CAS  PubMed  Google Scholar 

  33. Hyrich KL, Silman AJ, Watson KD et al. Anti-tumour necrosis factor alpha therapy in rheumatoid arthritis: an update on safety. Ann Rheum Dis 2004; 63(12):1538–1543.

    Article  CAS  PubMed  Google Scholar 

  34. Gilaberte Y, Coscojuela C, Vazquez C et al. Perforating folliculitis associated with tumour necrosis factor-alpha inhibitors administered for rheumatoid arthritis. Br J Dermatol 2007; 156(2):368–371.

    Article  CAS  PubMed  Google Scholar 

  35. Morgan MB, Truitt CA, Taira J et al. Fibronectin and the extracellular matrix in the perforating disorders of the skin. Am J Dermatopathol 1998; 20(2):147–154.

    Article  CAS  PubMed  Google Scholar 

  36. Benedict CA. Viruses and the TNF-related cytokines, an evolving battle. Cytokine Growth Factor Rev 2003; 14(3–4):349–357.

    Article  CAS  PubMed  Google Scholar 

  37. Benedict CA, Banks TA, Ware CF. Death and survival: viral regulation of TNF signaling pathways. Curr Opin Immunol 2003; 15(1):59–65.

    Article  CAS  PubMed  Google Scholar 

  38. Brunetti CR, Paulose-Murphy M, Singh R et al. A secreted high-affinity inhibitor of human TNF from Tanapox virus. Proc Natl Acad Sci USA 2003; 100(8):4831–4836.

    Article  CAS  PubMed  Google Scholar 

  39. Rahman MM, Barrett JW, Brouckaert P et al. Variation in ligand binding specificities of a novel class of poxvirus-encoded tumor necrosis factor-binding protein. J Biol Chem 2006; 281 (32):22517–22526.

    Article  CAS  PubMed  Google Scholar 

  40. Cunnion KM. Tumor necrosis factor receptors encoded by poxviruses. Mol Genet Metab 1999; 67(4):278–282.

    Article  CAS  PubMed  Google Scholar 

  41. Xu X, Nash P, McFadden G. Myxoma virus expresses a TNF receptor homolog with two distinct functions. Virus Genes 2000; 21(1–2):97–109.

    Article  CAS  PubMed  Google Scholar 

  42. Hu FQ, Smith CA, Pickup DJ. Cowpox virus contains two copies of an early gene encoding a soluble secreted form of the Type II TNF receptor. Virology 1994; 204(1):343–356.

    Article  CAS  PubMed  Google Scholar 

  43. Smith CA, Hu FQ, Smith TD et al. Cowpox virus genome encodes a second soluble homologue of cellular TNF receptors, distinct from CrmB, that binds TNF but not LT alpha. Virology 1996; 223(1):132–147.

    Article  CAS  PubMed  Google Scholar 

  44. Loparev VN, Parsons JM, Knight JC et al. A third distinct tumor necrosis factor receptor of orthopox-viruses. Proc Natl Acad Sci USA 1998; 95(7):3786–3791.

    Article  CAS  PubMed  Google Scholar 

  45. Saraiva M, Alcami A. CrmE, a novel soluble tumor necrosis factor receptor encoded by poxviruses. J Virol 2001; 75(1):226–233.

    Article  CAS  PubMed  Google Scholar 

  46. Panus JF, Smith CA, Ray CA et al. Cowpox virus encodes a fifth member of the tumor necrosis factor receptor family: a soluble, secreted CD30 homologue. Proc Natl Acad Sci USA 2002; 99(12):8348–8353.

    Article  CAS  PubMed  Google Scholar 

  47. Alejo A, Ruiz-Arguello MB, Ho Y et al. A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus. Proc Natl Acad Sci USA 2006; 103(15):5995–6000.

    Article  CAS  PubMed  Google Scholar 

  48. Gileva IP, Nepomnyashchikh TS, Antonets DV et al. Properties of the recombinant TNF-binding proteins from variola, monkeypox and cowpox viruses are different. Biochim Biophys Acta 2006; 1764(11):1710–1718.

    CAS  PubMed  Google Scholar 

  49. Smith VP, Alcami A. Expression of secreted cytokine and chemokine inhibitors by ectromelia virus. J Virol 2000; 74(18):8460–8471.

    Article  CAS  PubMed  Google Scholar 

  50. Alcami A, Khanna A, Paul NL et al. Vaccinia virus strains Lister, USSR and Evans express soluble and cell-surface tumour necrosis factor receptors. J Gen Virol 1999; 80(Pt 4):949–959.

    CAS  PubMed  Google Scholar 

  51. Reading PC, Khanna A, Smith GL. Vaccinia virus CrmE encodes a soluble and cell surface tumor necrosis factor receptor that contributes to virus virulence. Virology 2002; 292(2):285–298.

    Article  CAS  PubMed  Google Scholar 

  52. Graham SC, Bahar MW, Abrescia NG et al. Structure of CrmE, a virus-encoded tumour necrosis factor receptor. J Mol Biol 2007; 372(3):660–671.

    Article  CAS  PubMed  Google Scholar 

  53. Schreiber M, McFadden G. The myxoma virus TNF-receptor homologue (T2) inhibits tumor necrosis factor-alpha in a species-specific fashion. Virology 1994; 204(2):692–705.

    Article  CAS  PubMed  Google Scholar 

  54. Macen JL, Graham KA, Lee SF et al. Expression of the myxoma virus tumor necrosis factor receptor homologue and M11L genes is required to prevent virus-induced apoptosis in infected rabbit T-lymphocytes. Virology 1996; 218(1):232–237.

    Article  CAS  PubMed  Google Scholar 

  55. Schreiber M, Sedger L, McFadden G. Distinct domains of M-T2, the myxoma virus tumor necrosis factor (TNF) receptor homolog, mediate extracellular TNF binding and intracellular apoptosis inhibition. J Virol 1997; 71(3):2171–2181.

    CAS  PubMed  Google Scholar 

  56. Fessier SP, Chin YR, Horwitz MS. Inhibition of tumor necrosis factor (TNF) signal transduction by the adenovirus group C RID complex involves downregulation of surface levels of TNF receptor 1. J Virol 2004; 78(23):13113–13121.

    Article  Google Scholar 

  57. Chin YR, Horwitz MS. Mechanism for removal of tumor necrosis factor receptor 1 from the cell surface by the adenovirus RIDalpha/beta complex. J Virol 2005; 79(21): 13606–13617.

    Article  CAS  PubMed  Google Scholar 

  58. Shisler J, Yang C, Walter B et al. The adenovirus E3-10.4K/14.5K complex mediates loss of cell surface Fas (CD95) and resistance to Fas-induced apoptosis. J Virol 1997; 71(11):8299–8306.

    CAS  PubMed  Google Scholar 

  59. Benedict CA, Norris PS, Prigozy TI et al. Three adenovirus E3 proteins cooperate to evade apoptosis by tumor necrosis factor-related apoptosis-inducing ligand receptor-1 and-2. J Biol Chem 2001; 276(5):3270–3278.

    Article  CAS  PubMed  Google Scholar 

  60. Tollefson AE, Toth K, Doronin K et al. Inhibition of TRAIL-induced apoptosis and forced internalization of TRAIL receptor 1 by adenovirus proteins. J Virol 2001; 75(19):8875–8887.

    Article  CAS  PubMed  Google Scholar 

  61. Tollefson AE, Stewart AR, Yei SP et al. The 10,400-and 14,500-dalton proteins encoded by region E3 of adenovirus form a complex and function together to down-regulate the epidermal growth factor receptor. J Virol 1991; 65(6):3095–3105.

    CAS  PubMed  Google Scholar 

  62. Delgado-Lopez F, Horwitz MS. Adenovirus RIDalphabeta complex inhibits lipopolysaccharide signaling without altering TLR4 cell surface expression. J Virol 2006; 80(13):6378–6386.

    Article  CAS  PubMed  Google Scholar 

  63. Efrat S, Fejer G, Brownlee M et al. Prolonged survival of pancreatic islet allografts mediated by adenovirus immunoregulatory transgenes. Proc Natl Acad Sci USA 1995; 92(15):6947–6951.

    Article  CAS  PubMed  Google Scholar 

  64. Efrat S, Serreze D, Svetlanov A et al. Adenovirus early region 3(E3) immunomodulatory genes decrease the incidence of autoimmune diabetes in NOD mice. Diabetes 2001; 50(5):980–984.

    Article  CAS  PubMed  Google Scholar 

  65. Pierce MA, Chapman HD, Post CM et al. Adenovirus early region 3 antiapoptotic 10.4K, 14.5K and 14.7K genes decrease the incidence of autoimmune diabetes in NOD mice. Diabetes 2003; 52(5):1119–1127.

    Article  CAS  PubMed  Google Scholar 

  66. Filippova M, Song H, Connolly JL et al. The human papillomavirus 16 E6 protein binds to tumor necrosis factor (TNF) Rl and protects cells from TNF-induced apoptosis. J Biol Chem 2002; 277(24):21730–21739.

    Article  CAS  PubMed  Google Scholar 

  67. Yuan H, Fu F, Zhuo J et al. Human papillomavirus Type 16 E6 and E7 oncoproteins upregulate C-IAP2 gene expression and confer resistance to apoptosis. Oncogene 2005; 24(32):5069–5078.

    Article  CAS  PubMed  Google Scholar 

  68. Baillie J, Sahlender DA, Sinclair JH. Human cytomegalovirus infection inhibits tumor necrosis factor alpha (TNF-α) signaling by targeting the 55-kilodalton TNF-α receptor. J Virol 2003; 77(12):7007–7016.

    Article  CAS  PubMed  Google Scholar 

  69. Popkin DL, Virgin HWt. Murine cytomegalovirus infection inhibits tumor necrosis factor alpha responses in primary macrophages. J Virol 2003; 77(18):10125–10130.

    Article  CAS  PubMed  Google Scholar 

  70. Doedens JR, Giddings TH Jr, Kirkegaard K. Inhibition of endoplasmic reticulum-to-Golgi traffic by poliovirus protein 3A: genetic and ultrastructural analysis. J Virol 1997; 71 (12):9054–9064.

    CAS  PubMed  Google Scholar 

  71. Neznanov N, Kondratova A, Chumakov KM et al. Poliovirus protein 3A inhibits tumor necrosis factor (TNF)-induced apoptosis by eliminating the TNF receptor from the cell surface. J Virol 2001; 75(21):10409–10420.

    Article  CAS  PubMed  Google Scholar 

  72. Ghosh AK, Majumder M, Steele R et al. Hepatitis C virus NS5A protein protects against TNF-α mediated apoptotic cell death. Virus Res 2000; 67(2):173–178.

    Article  CAS  PubMed  Google Scholar 

  73. Park KJ, Choi SH, Choi DH et al. 1 Hepatitis C virus NS5A protein modulates c-Jun N-terminal kinase through interaction with tumor necrosis factor receptor-associated factor 2. J Biol Chem 2003; 278(33):30711–30718.

    Article  CAS  PubMed  Google Scholar 

  74. Majumder M, Ghosh AK, Steele R et al. Hepatitis C virus NS5A protein impairs TNF-mediated hepatic apoptosis, but not by an anti-FAS antibody, in transgenic mice. Virology 2002; 294(1):94–105.

    Article  CAS  PubMed  Google Scholar 

  75. Chung YL, Sheu ML, Yen SH. Hepatitis C virus NS5A as a potential viral Bcl-2 homologue interacts with Bax and inhibits apoptosis in hepatocellular carcinoma. Int J Cancer 2003; 107(1):65–73.

    Article  CAS  PubMed  Google Scholar 

  76. Behrens SE, Tomei L, De Francesco R. Identification and properties of the RNA-dependent RNA polymerase of hepatitis C virus. EMBO J 1996; 15(1):12–22.

    CAS  PubMed  Google Scholar 

  77. Karin M, Lin A. NF-kappaB at the crossroads of life and death. Nat Immunol 2002; 3(3):221–227.

    Article  CAS  PubMed  Google Scholar 

  78. DiPerna G, Stack J, Bowie AG et al. Poxvirus protein NIL targets the I-kappaB kinase complex, inhibits signaling to NF-kappaB by the tumor necrosis factor superfamily of receptors and inhibits NF-kappaB and IRF3 signaling by toll-like receptors. J Biol Chem 2004; 279(35):36570–36578.

    Article  CAS  PubMed  Google Scholar 

  79. Aoyagi M, Zhai D, Jin C et al. Vaccinia virus NIL protein resembles a B-cell lymphoma-2 (Bcl-2) family protein. Protein Sci 2007; 16(1): 118–124.

    Article  CAS  PubMed  Google Scholar 

  80. Cooray S, Bahar MW, Abrescia NG et al. Functional and structural studies of the vaccinia virus virulence factor Nl reveal a Bcl-2-like anti-apoptotic protein. J Gen Virol 2007; 88(Pt 6):1656–1666.

    Article  CAS  PubMed  Google Scholar 

  81. Zhang Z, Abrahams MR, Hunt LA et al. The vaccinia virus NIL protein influences cytokine secretion in vitro after infection. Ann N Y Acad Sci 2005; 1056:69–86.

    Article  CAS  PubMed  Google Scholar 

  82. Shisler JL, Jin XL. The vaccinia virus K1L gene product inhibits host NF-kappaB activation by preventing I kappa B alpha degradation. J Virol 2004; 78(7):3553–3560.

    Article  CAS  PubMed  Google Scholar 

  83. Bradley RR, Terajima M. Vaccinia virus K1L protein mediates host-range function in RK-13 cells via ankyrin repeat and may interact with a cellular GTPase-activating protein. Virus Res 2005; 114(1–2):104–112.

    Article  Google Scholar 

  84. Tait SW, Reid EB, Greaves DR et al. Mechanism of inactivation of NF-kappa B by a viral homologue of I kappa B alpha. Signal-induced release of i kappa b alpha results in binding of the viral homologue to NF-kappa B. J Biol Chem 2000; 275(44):34656–34664.

    Article  CAS  PubMed  Google Scholar 

  85. Granja AG, Nogal ML, Hurtado C et al. The viral protein A238L inhibits TNF-a expression through a CBP/p300 transcriptional coactivators pathway. J Immunol 2006; 176(1):451–462.

    CAS  PubMed  Google Scholar 

  86. Choi SH, Park KJ, Ahn BY et al. Hepatitis C virus nonstructural 5B protein regulates tumor necrosis factor alpha signaling through effects on cellular I kappa B kinase. Mol Cell Biol 2006; 26(8):3048–3059.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grant McFadden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Rahman, M.M., Lucas, A.R., McFadden, G. (2009). Viral TNF Inhibitors as Potential Therapeutics. In: Fallon, P.G. (eds) Pathogen-Derived Immunomodulatory Molecules. Advances in Experimental Medicine and Biology, vol 666. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1601-3_5

Download citation

Publish with us

Policies and ethics