Skip to main content

Activin, TGF-β and Menin in Pituitary Tumorigenesis

  • Chapter
SuperMEN1

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 668))

Abstract

Pituitary adenomas are common monoclonal neoplasms accounting for approximately one-fifth of primary intracranial tumors. Prolactin-secreting pituitary adenomas (prolactinomas) are the most common form of pituitary tumors in humans. They are associated with excessive release of the hormone prolactin and increased tumor growth, giving rise to severe endocrine disorders and serious clinical concerns for the patients. Recent studies indicated that the activin/TGF-β family of growth factors plays a prominent role in regulating pituitary tumor growth and prolactin secretion from anterior pituitary lactotrope cells. Furthermore, these studies highlighted the tumor suppressor menin and the protein Smads as central regulators of these biological processes in the pituitary. Alterations in the activin/TGF-β downstream signaling pathways are critical steps towards tumor formation and progression. This chapter will review the role and intracellular molecular mechanisms of action by which activin, TGF-β, Smads and menin act in concert to prevent pituitary tumor cell growth and control hormonal synthesis by the anterior pituitary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Heaney AP, Melmed S. Molecular targets in pituitary tumours. Nat Rev Cancer 2004; 4:285–295.

    Article  CAS  PubMed  Google Scholar 

  2. Ben-Jonathan N, Hnasko R. Dopamine as a prolactin (PRL) inhibitor. Endocr Rev 2001;22:724–763.

    Article  CAS  PubMed  Google Scholar 

  3. Asa SL, Ezzat S. The cytogenesis and pathogenesis of pituitary adenomas. Endocr Rev 1998; 19: 798–827.

    Article  CAS  PubMed  Google Scholar 

  4. Kaji H, Canaff L, Lebrun JJ et al. Inactivation of menin, a Smad3-interacting protein, blocks transforming growth factor type β signaling. Proc Natl Acad Sci USA 2001; 98:3837–3842.

    Article  CAS  PubMed  Google Scholar 

  5. Lacerte A, Lee EH, Reynaud R et al. Activin inhibits pituitary prolactin expression and cell growth through Smads, Pit-1 and menin. Mol Endocrinol 2004; 18:1558–1569.

    Article  CAS  PubMed  Google Scholar 

  6. Faglia G. Epidemiology and pathogenesis of pituitary adenomas. Acta Endocrinol (Copenh) 1993; 129 (Suppl 1):1–5.

    Google Scholar 

  7. Shimon I, Melmed S. Genetic basis of endocrine disease:pituitary tumor pathogenesis. J Clin Endocrinol Metab 1997; 82:1675–1681.

    CAS  Google Scholar 

  8. Spada A, Vallar L, Faglia G. G-proteins and hormonal signalling in human pituitary tumors: genetic mutations and functional alterations. Frontiers in Neuroendocrinology 1993; 14:214–232.

    Article  CAS  PubMed  Google Scholar 

  9. Ledent C, Parma J, Pirson I et al. Positive control of proliferation by the cyclic AMP cascade: an oncogenic mechanism of hyper-functional adenoma. J Endocrinol Invest 1995; 18:120–122.

    CAS  PubMed  Google Scholar 

  10. Weil RJ, Vortmeyer AO, Huang S et al. 11q13 allelic loss in pituitary tumors in patients with multiple endocrine neoplasia syndrome type 1. Clin Cancer Res 1998; 4:1673–1678.

    CAS  PubMed  Google Scholar 

  11. Eubanks PJ, Sawicki MP, Samara GJ et al. Putative tumor-suppressor gene on chromosome 11 is important in sporadic endocrine tumor formation. Am J Surg 1994; 167:180–185.

    Article  CAS  PubMed  Google Scholar 

  12. Wautot V, Vercherat C, Lespinasse J et al. Germline mutation profile of MEN1 in multiple endocrine neoplasia type 1: search for correlation between phenotype and the functional domains of the MEN1 protein. Hum Murat 2002; 20:35–47.

    Article  CAS  Google Scholar 

  13. Boggild MD, Jenkinson S, Pistorello M et al. Molecular genetic studies of sporadic pituitary tumors. J Clin Endocrinol Metab 1994; 78:387–392.

    Article  CAS  PubMed  Google Scholar 

  14. Thakker RV, Pook MA, Wooding C et al. Association of somatotrophinomas with loss of alleles on chromosome 11 and with gsp mutarions J Clin Invest 1993; 91:2815–2821.

    Article  CAS  PubMed  Google Scholar 

  15. Herman V, Fagin J, Gonsky R et al. Clonal origin of pituitary adenomas. J Clin Endocrinol Metab 1990; 71:1427–1433.

    Article  CAS  PubMed  Google Scholar 

  16. Bates AS, Farrell WE, Bicknell EJ et al. Allelic deletion in pituitary adenomas reflects aggressive biological activity and has potential value as a prognostic marker. J Clin Endocrinol Metab 1997; 82:818–824.

    Article  CAS  PubMed  Google Scholar 

  17. Dong Q, Debelenko LV, Chandrasekharappa SC et al. Loss of heterozygosity at 11q13: analysis of pituitary tumors, lung carcinoids, lipomas and other uncommon tumors in subjects with familial multiple endocrine neoplasia type 1. J Clin Endocrinol Metab 1997; 82:1416–1420.

    Article  CAS  PubMed  Google Scholar 

  18. Crabtree JS, Scacheri PC, Ward JM et al. A mouse model of multiple endocrine neoplasia, type 1, develops multiple endocrine tumors. Proc Natl Acad Sci USA 2001; 98:1118–1123.

    Article  CAS  PubMed  Google Scholar 

  19. Zhuang Z, Ezzat SZ, Vortmeyer AO et al. Mutations of the MENI tumor suppressor gene in pituitary tumors. Cancer Res 1997; 57:5446–5451.

    CAS  PubMed  Google Scholar 

  20. Poncin J, Stevenaert A, Beckers A. Somatic MEN1 gene mutation does not contribute significantly to sporadic pituitary tumorigenesis. Eur J Endocrinol 1999; 140:573–576.

    Article  CAS  PubMed  Google Scholar 

  21. Theodoropoulou M, Cavallari I, Barzon L et al. Differential expression of menin in sporadic pituitary adenomas. Endocr Relat Cancer 2004; 11:333–344.

    Article  CAS  PubMed  Google Scholar 

  22. Burgess J, Shepherd J, Parameswaran V et al. Prolactinomas in a large kindred with multiple endocrine neoplasia type 1: clinical features and inheritance pattern. J Clin Endocrinol Metab 1996; 81: 1841–1845.

    Article  CAS  PubMed  Google Scholar 

  23. Verges B, Boureille F, Goudet P et al. Pituitary disease in MEN type 1 (MENl): data from the France-Belgium MEN1 multicenter study J Clin Endocrinol Metab 2002; 87:457–465.

    Article  CAS  PubMed  Google Scholar 

  24. Beckers A, Betea D, Socin HV et ale The treatment of sporadic versus MEN1 related pituitary adenomas. J Intern Med 2003; 253:599–605.

    Article  CAS  PubMed  Google Scholar 

  25. Massague J. The transforming growth facror-β family. Annu Rev Cell Biol 1990; 6:597–641.

    Article  CAS  PubMed  Google Scholar 

  26. Massague J. TGF-β signal transduction. Annu Rev Biochem 1998; 67:753–791.

    Article  CAS  PubMed  Google Scholar 

  27. Vale W, Rivier J, Vaughan J et al. Purification and characterization of an FSH releasing protein from porcine ovarian follicular fluid. Nature 1986; 321:776–779.

    Article  CAS  PubMed  Google Scholar 

  28. Ling N, Ying SY, Ueno N et al. Pituitary FSH is released by a heterodimer of the β-subunits from the two forms of inhibin. Nature 1986; 321:779–782.

    Article  CAS  PubMed  Google Scholar 

  29. Vale W, Rivier C, Hsueh A et al. Chemical and biological characterization of the inhibin family of protein hormones. Recent Prog Horm Res 1988; 44:1–34.

    CAS  PubMed  Google Scholar 

  30. Chen YG, Lui HM, Lin SL et al. Regulation of cell proliferation, apoptosis and carcinogenesisby activin. Exp Biol Med (Maywood) 2002; 227:75–87.

    CAS  Google Scholar 

  31. Lebrun JJ, Vale WW. Activin and inhibin have antagonistic effects on ligand-dependent heteromerization of the type I and type II activin receptors and human erythroid differentiation. Mol Cell Biol 1997; 17: 1682–1691.

    CAS  PubMed  Google Scholar 

  32. McCarthy SA, Bicknell R. Inhibition of vascular endothelial cell growth by activin—A. J Biol Chem 1993; 268:23066–23071.

    CAS  PubMed  Google Scholar 

  33. Brosh N, Sternberg D, Honigwachs-Sha’anani J et al. The plasmacytoma growth inhibitor restrictin-P is an antagonist of interleukin 6 and interleukin 11. Identification as a stroma-derived activin A. J Biol Chem 1995; 270:29594–29600.

    Article  CAS  PubMed  Google Scholar 

  34. Valderrama-Carvajal H, Cocolakis E, Lacerte A et al. Activin/TGF-β induce apoptosis through Smad-dependent expression of the lipid phosphatase SHIP. Nat Cell Biol 2002; 4:963–969.

    Article  CAS  PubMed  Google Scholar 

  35. Kalkhoven E, Roelen BA, de Winter JP et al. Resistance to transforming growth factor β and activin due to reduced receptor expression in human breast tumor cell lines. Cell Growth Differ 1995; 6:1151–1161.

    CAS  PubMed  Google Scholar 

  36. Liu QY Niranjan B, Gomes P et al. Inhibitory effects of activin on the growth and morpholgenesis of primary and transformed mammary epithelial cells. Cancer Res 1996; 56:1155–1163.

    CAS  PubMed  Google Scholar 

  37. Cocolakis E, Lemay S, Ali S et al. The p38 MAPK pathway is required for cell growth inhibition of human breast cancer cells in response to activin. J Biol Chem 2001; 276:18430–18436.

    Article  CAS  PubMed  Google Scholar 

  38. Yasuda H, Mine T, Shibata H et al. Activin A: an autocrine inhibitor of initiation of DNA synthesis in rat hepatocytes. J Clin Invest 1993; 92:1491–1496.

    Article  CAS  PubMed  Google Scholar 

  39. Xu J, McKeehan K, Matsuzaki K et al. Inhibin antagonizes inhibition of liver cell growth by activin by a dominant-negative mechanism. J Biol Chem 1995; 270:6308–6313.

    Article  CAS  PubMed  Google Scholar 

  40. Zauberman A, Oren M, Zipori D. Involvement of p21(WAF1/Cip1), CDK4 and Rb in activin A mediated signaling leading to hepatoma cell growth inhibition. Oncogene 1997; 15:1705–1711.

    Article  CAS  PubMed  Google Scholar 

  41. Takabe K, Lebrun JJ, Nagashima Y et al. Interruption of activin A autocrine regulation by antisense oligodeoxynucleotides accelerates liver tumor cell proliferation. Endocrinology 1999; 140:3125–3132.

    Article  CAS  PubMed  Google Scholar 

  42. Chen W, Woodruff TK, Mayo KE. Activin A-induced HepG2 liver cell apoptosis: involvement of activin receptors and smad proteins. Endocrinology 2000; 141:1263–1272.

    Article  CAS  PubMed  Google Scholar 

  43. Ho J, de Guise C, Kim C et al. Activin induces hepatocyte cell growth arrest through induction of the cyclin-dependent kinase inhibitor p15INK4B and Sp1. Cell Signal 2004; 16:693–701.

    Article  CAS  PubMed  Google Scholar 

  44. Zhou Y Sun H, Danila DC et al. Truncated activin type I receptor Alk4 isoforms are dominant negative receptors inhibiting activin signaling. Mol Endocrinol 2000; 14:2066–2075.

    Article  CAS  PubMed  Google Scholar 

  45. Shi Y, Wang YF, Jayaraman L et al. Crystal structure of a Smad MH1 domain bound to DNA: insights on DNA binding in TGF-β signaling. Cell 1998; 94:585–594.

    Article  CAS  PubMed  Google Scholar 

  46. Massague J, Wotton D. Transcriptional control by the TGF-β/Smad signaling system. EMBO J 2000; 19:1745–1754.

    Article  CAS  PubMed  Google Scholar 

  47. Chen X, Weisberg E, Fridmacher V et al. Smad4 and FAST-1 in the assembly of activin-responsive factor. Nature 1997; 389:85–89.

    Article  CAS  PubMed  Google Scholar 

  48. Hata A, Seoane J, Lagna G et al. OAZ uses distinct DNA-and protein-binding zinc fingers in separate BMP-Smad and Olf signaling pathways. Cell 2000; 100:229–240.

    Article  CAS  PubMed  Google Scholar 

  49. Hahn SA, Hoque AT, Moskaluk CA et al. Homozygous deletion map at 18q21.1 in pancreatic cancer. Cancer Res 1996; 56: 490–494.

    CAS  PubMed  Google Scholar 

  50. Moskaluk CA, Kern SE. Cancer gets Mad: DPC4 and other TGFβ pathway genes in human cancer. Biochim Biophys Acta 1996; 1288:M31–33.

    CAS  PubMed  Google Scholar 

  51. Hahn SA, Bartsch D, Schroers A et al. Mutations of the DPC4/Smad4 gene in biliary tract carcinoma. Cancer Res 1998; 58:1124–1126.

    CAS  PubMed  Google Scholar 

  52. Eppert K, Scherer SW Ozcelik H et al. MADR2 maps to 18q21 and encodes a TGFβ-regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell 1996; 86:543–552.

    Article  CAS  PubMed  Google Scholar 

  53. Riggins GJ, Kinzler KW, Vogelstein B et al. Frequency of Smad gene mutations in human cancers. Cancer Res 1997; 57:2578–2580.

    CAS  PubMed  Google Scholar 

  54. Takagi Y, Koumura H, Futamura M et al. Somatic alterations of the SMAD-2 gene in human colorectal cancers. Br J Cancer 1998; 78:1152–1155.

    CAS  PubMed  Google Scholar 

  55. Uchida K, Nagatake M, Osada H et al. Somatic in vivo alterations of the JV18-1 gene at 18q21 in human lung cancers. Cancer Res 1996; 56:5583–5585.

    CAS  PubMed  Google Scholar 

  56. . Kim SK, Fan Y, Papadimitrakopoulou V et al. DPC4, a candidate tumor suppressor gene, is altered infrequently in head and neck squamous cell carcinoma. Cancer Res 1996; 56:2519–2521.

    CAS  PubMed  Google Scholar 

  57. Yakicier MC, Irmak MB, Romano A et al. Smad2 and Smad4 gene mutations in hepatocellular carcinoma. Oncogene 1999; 18:4879–4883.

    Article  CAS  PubMed  Google Scholar 

  58. Luisi S, Florio P, Reis F et al. Expression and secretion of activin A: possible physiological and clinical implications. Eur J Endocrinology 2001; 145:225–236.

    Article  CAS  Google Scholar 

  59. Lebrun JJ, Chen Y, Vale WW. Receptor serine kinases and signaling by activins and inhibins. In: Aono T, Sugino H, Vale WW eds. Inhibin, activin and follistatin: Regulatory functions in system and cell biology. New York: Springer-Verlag, 1997:1–21.

    Google Scholar 

  60. De Guise C, Lacerte A, Rafiei S et al. Activin inhibits the human Pit-1 gene promoter through the p38 kinase pathway in a Srnad-independent manner. Endocrinology 2006; 147:4351–4362.

    Article  PubMed  Google Scholar 

  61. Murata T, Ying S. Transforming growth factor-β and activin inhibit basal secretion of prolactin in a pituitary monolayer culture system. Proc Soc Exp Biol Med 1991; 198:599–605.

    CAS  PubMed  Google Scholar 

  62. Danila DC, Inder WJ, Zhang X et al. Activin effects on neoplastic proliferation of human pituitary tumors. J Clin Endocrinol Metab 2000; 85:1009–1015.

    Article  CAS  PubMed  Google Scholar 

  63. Su GH, Bansal R, Murphy KM et al. ACVR1B (ALK4, activin receptor type 1B) gene mutations in pancreatic carcinoma. Proc Natl Acad Sci USA 2001; 98:3254–3257.

    Article  CAS  PubMed  Google Scholar 

  64. Alexander JM, Bikkal HA, Zervas NT et al. Tumor-specific expression and alternate splicing of messenger ribonucleic acid encoding activin/transforming growth facror-β receptors in human pituitary adenomas. J Clin Endocrinol Metab 1996; 81:783–790.

    Article  CAS  PubMed  Google Scholar 

  65. Zhou Y, Sun H, Danila DC et al. Truncated activin type I receptor Alk4 isoforms are dominant negative receptors inhibiting activin signaling. Mol Endocrinol 2000; 14:2066–2075.

    Article  CAS  PubMed  Google Scholar 

  66. Bilezikjian LM, Blount AL, Corrigan AZ et al. Actions of activins, inhibins and follistatins: implications in anterior pituitary function. Clin Exp Pharmacol Physiol 2001; 28:244–248.

    Article  CAS  PubMed  Google Scholar 

  67. Otsuka F, Shimasaki S. A novel function of bone morphogenetic protein-15 in the pituitary: selective synthesis and secretion of FSH by gonadotropes. Endocrinology 2002; 143:4938–4941.

    Article  CAS  PubMed  Google Scholar 

  68. Lewis KA, Gray PC, Blount AL et al. βglycan binds inhibin and can mediate functional antagonism of activin signalling. Nature 2000; 404:411–414.

    Article  CAS  PubMed  Google Scholar 

  69. Bilezikjian LM, Corrigan AZ, Blount AL et al. Regulation and actions of Smad7 in the modulation of activin, inhibin and transforming growth factor-β signaling in anterior pituitary cells. Endocrinology 2001; 142:1065–1072.

    Article  CAS  PubMed  Google Scholar 

  70. Bilezikjian LM, Corrigan AZ, Blount AL et al. Pituitary follistatin and inhibin subunit messenger ribonucleic acid levels are differentially regulated by local and hormonal factors. Endocrinology 1996; 137:4277–4284.

    Article  CAS  PubMed  Google Scholar 

  71. Abraham EJ, Faught WJ, Frawley LS. Transforming growth factor β1 is a paracrine inhibitor of prolactin gene expression. Endocrinology 1998; 139:5174–5181.

    Article  CAS  PubMed  Google Scholar 

  72. Cocolakis E, Dai M, Drevet L et al. Smad signaling antagonizes STAT5-mediated gene transcription and mammary epithelial cell differentiation. J Biol Chem 2008; 283:1293–1307.

    Article  CAS  PubMed  Google Scholar 

  73. Bertolino P, Tong WM, Galendo D et al. Heterozygous Menl mutant mice develop a range of endocrine tumors mimicking multiple endocrine neoplasia type 1. Mol Endocrinol 2003; 17:1880–1892.

    Article  CAS  PubMed  Google Scholar 

  74. Bertolino P, Radovanovic I, Casse H et al. Genetic ablation of the tumor suppressor menin causes lethality at mid-gestation with defects in multiple organs. Mech Dev 2003; 120:549–560.

    Article  CAS  PubMed  Google Scholar 

  75. Namihira H, Sato M, Murao K et al. The multiple endocrine neoplasia type 1 gene product, menin, inhibits the human prolactin promoter activity. Journal of Molecular Endocrinology 2002; 29:297–304.

    Article  CAS  PubMed  Google Scholar 

  76. Kaji H, Canaff L, Lebrun J-J et al. Inactivation of menin, a Smad3-interacting protein, blocks transforming growth factor type β Signaling. Proc Natl Acad Sci USA 2001; 98:3837–3842.

    Article  CAS  PubMed  Google Scholar 

  77. Keech C, Gutierrez-Hartmann A. Analysisof rat prolactin promoter sequences that mediate pituitary-specific and 3′: 5′-cyclic adenosine monophosphate-regulated gene expression in vivo. Mol Endocrinol 1989; 3:832–839.

    Article  CAS  PubMed  Google Scholar 

  78. Keech C, Gutierrez-Hartmann A. Insulin activation of rat prolactin promoter activity. Mol Cell Endocrinol 1991; 78:55–60.

    Article  CAS  PubMed  Google Scholar 

  79. Tashjian AH jr, Yasumura Y, Levine L et al. Establishment of clonal strains of rat pituitary tumor cells that secrete growth hormone. Endocrinology 1968; 82:342–352.

    Article  CAS  PubMed  Google Scholar 

  80. Song JY, Jin L, Lloyd RV. Effects of estradiol on prolactin and growth hormone messenger RNAs in cultured normal and neoplastic (MtT/W15 and GH3) rat pituitary cells. Cancer Res 1989; 49:1247–1253.

    CAS  PubMed  Google Scholar 

  81. Sowa H, Kaji H, Hendy GN et al. Menin is required for bone morphogenetic protein 2-and transforming growth factor β-regulated osteoblastic differentiation through interaction with Smads and Runx2. J Biol Chem 2004; 279:40267–40275.

    Article  CAS  PubMed  Google Scholar 

  82. Macias-Silva M, Abdollah S, Hoodless PA et al. MADR2 is a substrate of the TGFβ receptor and its phosphorylation is required for nuclear accumulation and signaling. Cell 1996; 87:1215–1224.

    Article  CAS  PubMed  Google Scholar 

  83. Liu X, Sun Y, Constantinescu SN et al. Transforming growth factor β-induced phosphorylation of Smad3 is required for growth inhibition and transcriptional induction in epithelial cells. Proc Natl Acad Sci USA 1997; 94:10669–10674.

    Article  CAS  PubMed  Google Scholar 

  84. Stroschein SL, Wang W, Zhou S et al. Negative feedback regulation of TGF-β signaling by the SnoN oncoprotein. Science 1999; 286:771–774.

    Article  CAS  PubMed  Google Scholar 

  85. Luo K, Stroschein SL, Wang W et al. The Ski oncoprotein interacts with the Smad proteins to repress TGFβ signaling. Genes Dev 1999; 13:2196–2206.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Lebrun, JJ. (2009). Activin, TGF-β and Menin in Pituitary Tumorigenesis. In: Balogh, K., Patocs, A. (eds) SuperMEN1. Advances in Experimental Medicine and Biology, vol 668. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1664-8_7

Download citation

Publish with us

Policies and ethics