Skip to main content

Escape from Cellular Quiescence

  • Chapter
  • First Online:

Part of the book series: Current Cancer Research ((CUCR))

Abstract

Quiescent: From Latin quies, referring to a state of being at rest, dormant, inactive, quiet, still (Merriam-Webster, 2009, Online Dictionary: http://www.merriam-webster.com/dictionary/quiescent). This term refers to a state of dormancy as opposed to a proliferative state. However, quiescent cells are in any other regard metabolically active. In many tissues with relative fast cell renewal rates the primary function of a small group of undifferentiated cells is limited to self-renewal (stem cells). These cells remain quiescent most of the time dividing only occasionally. In other tissues, key cell types perform fundamental tissue functions while remaining quiescent. Both stem cells and cells from tissues that renew via simple duplication can remain quiescent for long periods of time while retaining the capacity to re-enter the cell cycle. This chapter will discuss the mechanisms emerging as responsible for the maintenance of quiescence as well as those pathways that mediate quiescence entry and exit. We will also review signaling pathways deregulated during infection by Simian Virus 40 (SV40) and oncogenic transformation, which result in unscheduled exit from quiescence into the cell cycle, with focus on SV40 small t antigen.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albanese C, Johnson J, Watanabe G, Eklund N, Vu D, Arnold A, Pestell RG (1995) Transforming p21ras mutants and c-Ets-2 activate the cyclin D1 promoter through distinguishable regions. J Biol Chem 270: 23589–23597.

    Article  PubMed  CAS  Google Scholar 

  • Ali SH, DeCaprio JA (2001) Cellular transformation by SV40 large T antigen: interaction with host proteins. Semin Cancer Biol 11: 15–23.

    Article  PubMed  CAS  Google Scholar 

  • Arnold HK, Sears RC (2006) Protein phosphatase 2A regulatory subunit B56alpha associates with c-myc and negatively regulates c-myc accumulation. Mol Cell Biol 26: 2832–2844.

    Article  PubMed  CAS  Google Scholar 

  • Berthet C, Kaldis P (2007) Cell-specific responses to loss of cyclin-dependent kinases. Oncogene 26: 4469–4477.

    Article  PubMed  CAS  Google Scholar 

  • Blais A, Dynlacht BD (2004) Hitting their targets: an emerging picture of E2F and cell cycle control. Curr Opin Genet Dev 14: 527–532.

    Article  PubMed  CAS  Google Scholar 

  • Blais A, Dynlacht BD (2007) E2F-associated chromatin modifiers and cell cycle control. Curr Opin Cell Biol 19: 658–662.

    Article  PubMed  CAS  Google Scholar 

  • Blasco MA, Hahn WC (2003) Evolving views of telomerase and cancer. Trends Cell Biol 13: 289–294.

    Article  PubMed  CAS  Google Scholar 

  • Blow JJ, Hodgson B (2002) Replication licensing – defining the proliferative state? Trends Cell Biol 12: 72–78.

    Article  PubMed  CAS  Google Scholar 

  • Boehm JS, Hession MT, Bulmer SE, Hahn WC (2005) Transformation of human and murine fibroblasts without viral oncoproteins. Mol Cell Biol 25: 6464–6474.

    Article  PubMed  CAS  Google Scholar 

  • Bouchard C, Marquardt J, Bras A, Medema RH, Eilers M (2004) Myc-induced proliferation and transformation require Akt-mediated phosphorylation of FoxO proteins. EMBO J 23: 2830–2840.

    Article  PubMed  CAS  Google Scholar 

  • Burgering BM, Medema RH (2003) Decisions on life and death: FOXO Forkhead transcription factors are in command when PKB/Akt is off duty. J Leukoc Biol 73: 689–701.

    Article  PubMed  CAS  Google Scholar 

  • Calbó J, Parreño M, Sotillo E, Yong T, Mazo A, Garriga J, Graña X (2002) G1 cyclin/CDK coordinated phosphorylation of endogenous pocket proteins differentially regulates their interactions with E2F4 and E2F1 and gene expression. J Biol Chem 277: 50263–50274.

    Article  PubMed  Google Scholar 

  • Chen W, Hahn WC (2003) SV40 early region oncoproteins and human cell transformation. Histol Histopathol 18: 541–550.

    PubMed  CAS  Google Scholar 

  • Chen W, Possemato R, Campbell KT, Plattner CA, Pallas DC, Hahn WC (2004) Identification of specific PP2A complexes involved in human cell transformation. Cancer Cell 5: 127–136.

    Article  PubMed  CAS  Google Scholar 

  • Coller HA, Sang L, Roberts JM (2006) A new description of cellular quiescence. PLoS Biol 4: e83.

    Article  PubMed  CAS  Google Scholar 

  • Connell-Crowley L, Elledge SJ, Harper JW (1998) G1 cyclin-dependent kinases are sufficient to initiate DNA synthesis in quiescent human fibroblasts. Curr Biol 8: 65–68.

    Article  PubMed  CAS  Google Scholar 

  • Dannenberg JH, van Rossum A, Schuijff L, te Riele H (2000) Ablation of the retinoblastoma gene family deregulates G(1) control causing immortalization and increased cell turnover under growth-restricting conditions. Genes Dev 14: 3051–3064.

    Article  PubMed  CAS  Google Scholar 

  • Diehl JA, Cheng M, Roussel MF, Sherr CJ (1998) Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev 12: 3499–3511.

    Article  PubMed  CAS  Google Scholar 

  • Diffley JF (2004) Regulation of early events in chromosome replication. Curr Biol 14: R778–R786.

    Article  PubMed  CAS  Google Scholar 

  • Eddy BE, Borman GS, Grubbs GE, Young RD (1962) Identification of the oncogenic substance in rhesus monkey kidney cell culture as simian virus 40. Virology 17: 65–75.

    Article  PubMed  CAS  Google Scholar 

  • Elenbaas B, Spirio L, Koerner F, Fleming MD, Zimonjic DB, Donaher JL, Popescu NC, Hahn WC, Weinberg RA (2001) Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev 15: 50–65.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez PC, Frank SR, Wang L, Schroeder M, Liu S, Greene J, Cocito A, Amati B (2003) Genomic targets of the human c-Myc protein. Genes Dev 17: 1115–1129.

    Article  PubMed  CAS  Google Scholar 

  • Ferrari R, Berk AJ, Kurdistani SK (2009) Viral manipulation of the host epigenome for oncogenic transformation. Nat Rev Genet 10: 290–294.

    Article  PubMed  CAS  Google Scholar 

  • Ferrari R, Pellegrini M, Horwitz GA, Xie W, Berk AJ, Kurdistani SK (2008) Epigenetic reprogramming by adenovirus e1a. Science 321: 1086–1088.

    Article  PubMed  CAS  Google Scholar 

  • Geng Y, Yu Q, Sicinska E, Das M, Schneider JE, Bhattacharya S, Rideout WM, Bronson RT, Gardner H, Sicinski P (2003) Cyclin E ablation in the mouse. Cell 114: 431–443.

    Article  PubMed  CAS  Google Scholar 

  • Gerber P (1963) Tumors induced in hamsters by simian virus 40: persistent subviral infection. Science 140: 889–890.

    Article  PubMed  CAS  Google Scholar 

  • Girardi AJ, Sweet BH, Slotnick VB, Hilleman MR (1962) Development of tumors in hamsters inoculated in the neonatal period with vacuolating virus, SV-40. Proc Soc Exp Biol Med 109: 649–660.

    PubMed  CAS  Google Scholar 

  • Graña X, Garriga J, Mayol X (1998) Role of the retinoblastoma protein family, pRB, p107 and p130 in the negative control of cell growth. Oncogene 17: 3365–3383.

    Article  PubMed  Google Scholar 

  • Hahn WC (2002) Immortalization and transformation of human cells. Mol Cell 13: 351–361.

    CAS  Google Scholar 

  • Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA (1999) Creation of human tumour cells with defined genetic elements. Nature 400: 464–468.

    Article  PubMed  CAS  Google Scholar 

  • Hahn WC, Dessain SK, Brooks MW, King JE, Elenbaas B, Sabatini DM, DeCaprio JA, Weinberg RA (2002) Enumeration of the simian virus 40 early region elements necessary for human cell transformation. Mol Cell Biol 22: 2111–2123.

    Article  PubMed  CAS  Google Scholar 

  • Hahn WC, Weinberg RA (2002) Rules for making human tumor cells. N Engl J Med 347: 1593–1603.

    Article  PubMed  CAS  Google Scholar 

  • Hallstrom TC, Mori S, Nevins JR (2008) An E2F1-dependent gene expression program that determines the balance between proliferation and cell death. Cancer Cell 13: 11–22.

    Article  PubMed  CAS  Google Scholar 

  • Hallstrom TC, Nevins JR (2009) Balancing the decision of cell proliferation and cell fate. Cell Cycle 8: 532–535.

    Article  PubMed  CAS  Google Scholar 

  • Henry DO, Moskalenko SA, Kaur KJ, Fu M, Pestell RG, Camonis JH, White MA (2000) Ral GTPases contribute to regulation of cyclin D1 through activation of NF-kappaB. Mol Cell Biol 20: 8084–8092.

    Article  PubMed  CAS  Google Scholar 

  • Horwitz GA, Zhang K, McBrian MA, Grunstein M, Kurdistani SK, Berk AJ (2008) Adenovirus small e1a alters global patterns of histone modification. Science 321: 1084–1085.

    Article  PubMed  CAS  Google Scholar 

  • Itahana K, Dimri GP, Hara E, Itahana Y, Zou Y, Desprez PY, Campisi J (2002) A role for p53 in maintaining and establishing the quiescence growth arrest in human cells. J Biol Chem 277: 18206–18214.

    Article  PubMed  CAS  Google Scholar 

  • Jinno S, Yageta M, Nagata A, Okayama H (2002) Cdc6 requires anchorage for its expression. Oncogene 21: 1777–1784.

    Article  PubMed  CAS  Google Scholar 

  • Johnson JE, Broccoli D (2007) Telomere maintenance in sarcomas. Curr Opin Oncol 19: 377–382.

    Article  PubMed  Google Scholar 

  • Johnson DG, Schwarz JK, Cress WD, Nevins JR (1993) Expression of transcription factor E2F1 induces quiescent cells to enter S phase. Nature 365: 349–352.

    Article  PubMed  CAS  Google Scholar 

  • Kaldis P, Russo AA, Chou HS, Pavletich NP, Solomon MJ (1998) Human and yeast cdk-activating kinases (CAKs) display distinct substrate specificities. Mol Biol Cell 9: 2545–2560.

    PubMed  CAS  Google Scholar 

  • Kato J, Matsuoka M, Polyak K, Massague J, Sherr CJ (1994) Cyclic AMP-induced G1 phase arrest mediated by an inhibitor (p27Kip1) of cyclin-dependent kinase 4 activation. Cell 79: 487–496.

    Article  PubMed  CAS  Google Scholar 

  • Keniry M, Parsons R (2008) The role of PTEN signaling perturbations in cancer and in targeted therapy. Oncogene 27: 5477–5485.

    Article  PubMed  CAS  Google Scholar 

  • Lee YM, Sicinski P (2006) Targeting cyclins and cyclin-dependent kinases in cancer: lessons from mice, hopes for therapeutic applications in human. Cell Cycle 5: 2110–2114.

    Article  PubMed  CAS  Google Scholar 

  • Leone G, DeGregori J, Sears R, Jakoi L, Nevins JR (1997) Myc and Ras collaborate in inducing accumulation of active cyclin E/Cdk2 and E2F [published erratum appears in Nature 1997 Jun 26;387(6636):932]. Nature 387: 422–426.

    Article  PubMed  CAS  Google Scholar 

  • Leone G, Sears R, Huang E, Rempel R, Nuckolls F, Park CH, Giangrande P, Wu L, Saavedra HI, Field SJ, Thompson MA, Yang H, Fujiwara Y, Greenberg ME, Orkin S, Smith C, Nevins JR (2001) Myc requires distinct E2F activities to induce S phase and apoptosis. Mol Cell 8: 105–113.

    Article  PubMed  CAS  Google Scholar 

  • Leung JY, Ehmann GL, Giangrande PH, Nevins JR (2008) A role for Myc in facilitating transcription activation by E2F1. Oncogene 27: 4172–4179.

    Article  PubMed  CAS  Google Scholar 

  • Lin AW, Barradas M, Stone JC, van Aelst L, Sarrano M, Lowe SW (1998) Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signalling. Genes Dev 12: 3008–3019.

    Google Scholar 

  • Litovchick L, Sadasivam S, Florens L, Zhu X, Swanson SK, Velmurugan S, Chen R, Washburn MP, Liu XS, DeCaprio JA (2007) Evolutionarily conserved multisubunit RBL2/p130 and E2F4 protein complex represses human cell cycle-dependent genes in quiescence. Mol Cell 26: 539–551.

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Matsuura I (2005) Inhibition of Smad antiproliferative function by CDK phosphorylation. Cell Cycle 4: 63–66.

    PubMed  CAS  Google Scholar 

  • Mailand N, Diffley JF (2005) CDKs promote DNA replication origin licensing in human cells by protecting Cdc6 from APC/C-dependent proteolysis. Cell 122: 915–926.

    Article  PubMed  CAS  Google Scholar 

  • Malumbres M, Barbacid M (2001) To cycle or not to cycle: a critical decision in cancer. Nat Rev Cancer 1: 222–231.

    Article  PubMed  CAS  Google Scholar 

  • Malumbres M, Barbacid M (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9: 153–166.

    Article  PubMed  CAS  Google Scholar 

  • Medema RH, Kops GJ, Bos JL, Burgering BM (2000) AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 404: 782–787.

    Article  PubMed  CAS  Google Scholar 

  • Mirza AM, Gysin S, Malek N, Nakayama K, Roberts JM, McMahon M (2004) Cooperative regulation of the cell division cycle by the protein kinases RAF and AKT. Mol Cell Biol 24: 10868–10881.

    Article  PubMed  CAS  Google Scholar 

  • Moreno CS, Ramachandran S, Ashby DG, Laycock N, Plattner CA, Chen W, Hahn WC, Pallas DC (2004) Signaling and transcriptional changes critical for transformation of human cells by simian virus 40 small tumor antigen or protein phosphatase 2A B56gamma knockdown. Cancer Res 64: 6978–6988.

    Article  PubMed  CAS  Google Scholar 

  • Moroy T, Geisen C (2004) Cyclin E. Int J Biochem Cell Biol 36: 1424–1439.

    Article  PubMed  CAS  Google Scholar 

  • Mulligan G, Jacks T (1998) The retinoblastoma gene family: cousins with overlapping interests. Trends Genet 14: 223–229.

    Article  PubMed  CAS  Google Scholar 

  • Nevis KR, Cordeiro-Stone M, Cook JG (2009) Origin licensing and p53 status regulate Cdk2 activity during G(1). Cell Cycle 8: 1952–1963.

    Article  PubMed  CAS  Google Scholar 

  • Ohtsubo M, Roberts JM (1993) Cyclin-dependent regulation of G1 in mammalian fibroblasts. Science 259: 1908–1912.

    Article  PubMed  CAS  Google Scholar 

  • Owen TA, Soprano DR, Soprano KJ (1989) Analysis of the growth factor requirements for stimulation of WI-38 cells after extended periods of density-dependent growth arrest. J Cell Physiol 139: 424–431.

    Article  PubMed  CAS  Google Scholar 

  • Pallas DC, Shahrik LK, Martin BL, Jaspers S, Miller TB, Brautigan DL, Roberts TM (1990) Polyoma small and middle T antigens and SV40 small t antigen form stable complexes with protein phosphatase 2A. Cell 60: 167–176.

    Article  PubMed  CAS  Google Scholar 

  • Pallas DC, Weller W, Jaspers S, Miller TB, Lane WS, Roberts TM (1992) The third subunit of protein phosphatase 2A (PP2A), a 55-kilodalton protein which is apparently substituted for by T antigens in complexes with the 36- and 63-kilodalton PP2A subunits, bears little resemblance to T antigens. J Virol 66: 886–893.

    PubMed  CAS  Google Scholar 

  • Pardee AB (1974) A restriction point for control of normal animal cell proliferation. Proc Natl Acad Sci U S A 71: 1286–1290.

    Article  PubMed  CAS  Google Scholar 

  • Pipas JM (2009) SV40: cell transformation and tumorigenesis. Virology 384: 294–303.

    Article  PubMed  CAS  Google Scholar 

  • Porras A, Bennett J, Howe A, Tokos K, Bouck N, Henglein B, Sathyamangalam S, Thimmapaya B, Rundell K (1996) A novel simian virus 40 early-region domain mediates transactivation of the cyclin A promoter by small-t antigen and is required for transformation in small-t antigen-dependent assays. J Virol 70: 6902–6908.

    PubMed  CAS  Google Scholar 

  • Porras A, Gaillard S, Rundell K (1999) The simian virus 40 small-t and large-T antigens jointly regulate cell cycle reentry in human fibroblasts. J Virol 73: 3102–3107.

    PubMed  CAS  Google Scholar 

  • Quelle DE, Ashmun RA, Shurtleff SA, Kato JY, Bar SD, Roussel MF, Sherr CJ (1993) Overexpression of mouse D-type cyclins accelerates G1 phase in rodent fibroblasts. Genes Dev 7: 1559–1571.

    Article  PubMed  CAS  Google Scholar 

  • Resnitzky D, Gossen M, Bujard H, Reed SI (1994) Acceleration of the G1/S phase transition by expression of cyclins D1 and E with an inducible system. Mol Cell Biol 14: 1669–1679.

    PubMed  CAS  Google Scholar 

  • Rowland BD, Bernards R (2006) Re-evaluating cell-cycle regulation by E2Fs. Cell 127: 871–874.

    Article  PubMed  CAS  Google Scholar 

  • Sage J, Mulligan GJ, Attardi LD, Miller A, Chen S, Williams B, Theodorou E, Jacks T (2000) Targeted disruption of the three Rb-related genes leads to loss of G(1) control and immortalization. Genes Dev 14: 3037–3050.

    Article  PubMed  CAS  Google Scholar 

  • Sang L, Coller HA, Roberts JM (2008) Control of the reversibility of cellular quiescence by the transcriptional repressor HES1. Science 321: 1095–1100.

    Article  PubMed  CAS  Google Scholar 

  • Santamaria D, Barriere C, Cerqueira A, Hunt S, Tardy C, Newton K, Caceres JF, Dubus P, Malumbres M, Barbacid M (2007) Cdk1 is sufficient to drive the mammalian cell cycle. Nature 448: 811–815.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt M, Fernandez de Mattos S, van der Horst A, Klompmaker R, Kops GJ, Lam EW, Burgering BM, Medema RH (2002) Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D. Mol Cell Biol 22: 7842–7852.

    Article  PubMed  CAS  Google Scholar 

  • Serrano M, Blasco MA (2007) Cancer and ageing: convergent and divergent mechanisms. Nat Rev Mol Cell Biol 8: 715–722.

    Article  PubMed  CAS  Google Scholar 

  • Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88: 593–602.

    Google Scholar 

  • Sherr CJ, DePinho RA (2000) Cellular senescence: mitotic clock or culture shock? Cell 102: 407–410.

    Article  PubMed  CAS  Google Scholar 

  • Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13: 1501–1512.

    Article  PubMed  CAS  Google Scholar 

  • Sherr CJ, Roberts JM (2004) Living with or without cyclins and cyclin-dependent kinases. Genes Dev 18: 2699–2711.

    Article  PubMed  CAS  Google Scholar 

  • Skoczylas C, Fahrbach KM, Rundell K (2004) Cellular targets of the SV40 small-t antigen in human cell transformation. Cell Cycle 3: 606–610.

    Article  PubMed  CAS  Google Scholar 

  • Skoczylas C, Henglein B, Rundell K (2005) PP2A-dependent transactivation of the cyclin A promoter by SV40 ST is mediated by a cell cycle-regulated E2F site. Virology 332: 596–601.

    Article  PubMed  CAS  Google Scholar 

  • Sontag E, Fedorov S, Kamibayashi C, Robbins D, Cobb M, Mumby M (1993) The interaction of SV40 small tumor antigen with protein phosphatase 2A stimulates the map kinase pathway and induces cell proliferation. Cell 75: 887–897.

    Article  PubMed  CAS  Google Scholar 

  • Sontag E, Sontag JM, Garcia A (1997) Protein phosphatase 2A is a critical regulator of protein kinase C zeta signaling targeted by SV40 small t to promote cell growth and NF-kappaB activation. EMBO J 16: 5662–5671.

    Article  PubMed  CAS  Google Scholar 

  • Sotillo E, Garriga J, Kurimchak A, Cook J, Grana X (2008) Cyclin E and SV40 small T antigen cooperate to bypass quiescence and contribute to transformation by activating CDK2 in human fibroblasts. J Biol Chem 283: 11280–11292.

    Article  PubMed  CAS  Google Scholar 

  • Sotillo E, Garriga J, Padgaonkar A, Kurimchak A, Cook J, Grana X (2009) Coordinated activation of the origin licensing factor CDC6 and CDK2 in resting human fibroblasts expressing SV40 small T antigen and cyclin E. J Biol Chem 284: 14126–14135.

    Article  PubMed  CAS  Google Scholar 

  • Stewart SA, Weinberg RA (2006) Telomeres: cancer to human aging. Annu Rev Cell Dev Biol 22: 531–557.

    Article  PubMed  CAS  Google Scholar 

  • Virshup DM, Shenolikar S (2009) From promiscuity to precision: protein phosphatases get a makeover. Mol Cell 33: 537–545.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe G, Howe A, Lee RJ, Albanese C, Shu IW, Karnezis AN, Zon L, Kyriakis J, Rundell K, Pestell RG (1996) Induction of cyclin D1 by simian virus 40 small tumor antigen. Proc Natl Acad Sci U S A 93: 12861–12866.

    Article  PubMed  CAS  Google Scholar 

  • Yang SI, Lickteig RL, Estes R, Rundell K, Walter G, Mumby MC (1991) Control of protein phosphatase 2A by simian virus 40 small-t antigen. Mol Cell Biol 11: 1988–1995.

    PubMed  CAS  Google Scholar 

  • Yeh E, Cunningham M, Arnold H, Chasse D, Monteith T, Ivaldi G, Hahn WC, Stukenberg PT, Shenolikar S, Uchida T, Counter CM, Nevins JR, Means AR, Sears R (2004) A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nat Cell Biol 6: 308–318.

    Article  PubMed  CAS  Google Scholar 

  • Yuan TL, Cantley LC (2008) PI3K pathway alterations in cancer: variations on a theme. Oncogene 27: 5497–5510.

    Article  PubMed  CAS  Google Scholar 

  • Zetterberg A, Larsson O (1985) Kinetic analysis of regulatory events in G1 leading to proliferation or quiescence of Swiss 3T3 cells. Proc Natl Acad Sci U S A 82: 5365–5369.

    Article  PubMed  CAS  Google Scholar 

  • Zhao JJ, Gjoerup OV, Subramanian RR, Cheng Y, Chen W, Roberts TM, Hahn WC (2003) Human mammary epithelial cell transformation through the activation of phosphatidylinositol 3-kinase. Cancer Cell 3: 483–495.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Manuel Serrano, David G. Johnson, Alison Kurimchak, and Judit Garriga for critically reading this manuscript and helpful suggestions. Work in this lab has been supported by a grant project under CA095569 and a Career Development Award (K02 AI01823) to XG of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Graña .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sotillo, E., Graña, X. (2010). Escape from Cellular Quiescence. In: Enders, G. (eds) Cell Cycle Deregulation in Cancer. Current Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1770-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1770-6_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1769-0

  • Online ISBN: 978-1-4419-1770-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics