Skip to main content

Animal Models for FXTAS

  • Chapter
  • First Online:
The Fragile X-Associated Tremor Ataxia Syndrome (FXTAS)

Abstract

The use of model organisms is essential in order to understand the pathogenesis of many types of human disease, and this is particularly true for the study of genetic diseases such as fragile X syndrome and fragile X-associated tremor/ataxia syndrome (FXTAS). In reverse genetics, the functional study of a gene starts with the question of how a possible phenotype may derive from a specific genetic sequence (disease-causing mutation in a gene). As a first step, a gene function is purposefully altered and the effect on the normal development and/or behavior of the model organism is analyzed. In addition to providing knowledge about the cellular and molecular mechanisms underlying specific genes and their functions, animal models of human disease also provide systems for developing and validating therapeutic strategies.

The choice of which animal model is most suitable to mimic a particular disease depends on a range of factors, including anatomical, physiological, and pathological similarity; presence of orthologs of genes of interest; and conservation of basic cell biological and metabolic processes. In this chapter, we will discuss two model organisms, a mammalian vertebrate (mouse) and an invertebrate model (fly), which have been generated to study the pathogenesis of FXTAS and the effects of potential therapeutic interventions. Both mouse and fly models have proven invaluable for the study of the pathophysiology of FXTAS, including insights into the role of mutant mRNA in this disease (i.e., RNA gain-of-function mechanisms, see Chapter 6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen, E. G. et al. 2004. A study of the distributional characteristics of FMR1 transcript levels in 238 individuals. Hum Genet 114: 439–447.

    Article  PubMed  CAS  Google Scholar 

  • Bacalman, S. et al. 2006. Psychiatric phenotype of the fragile X-associated tremor/ataxia syndrome (FXTAS) in males: newly described fronto-subcortical dementia. J Clin Psychiatry 67: 87–94.

    Article  PubMed  Google Scholar 

  • Bergink, S. et al. 2006. The DNA repair-ubiquitin-associated HR23 proteins are constituents of neuronal inclusions in specific neurodegenerative disorders without hampering DNA repair. Neurobiol Dis 23: 708–716.

    Article  PubMed  CAS  Google Scholar 

  • Bilen, J., Bonini, N. M. 2005. Drosophila as a model for human neurodegenerative disease. Annu Rev Genet 39: 153–171.

    Article  PubMed  CAS  Google Scholar 

  • Bontekoe, C. J. M. et al. 1997. FMR1 premutation allele is stable in mice. Eur J Hum Genet 5: 293–298.

    PubMed  CAS  Google Scholar 

  • Bontekoe, C. J. et al. 2001. Instability of a (CGG)(98) repeat in the Fmr1 promoter. Hum Mol Genet 10: 1693–1699.

    Article  PubMed  CAS  Google Scholar 

  • Bourgeois, J. A. et al. 2007. Cognitive, anxiety and mood disorders in the fragile X-associated tremor/ataxia syndrome. Gen Hosp Psychiatry 29: 349–356.

    Article  PubMed  Google Scholar 

  • Brouwer, J. R. et al. 2007. Elevated Fmr1 mRNA levels and reduced protein expression in a mouse model with an unmethylated fragile X full mutation. Exp Cell Res 313: 244–253.

    Article  PubMed  CAS  Google Scholar 

  • Brouwer, J. R. et al. 2008a. Altered hypothalamus-pituitary-adrenal gland axis regulation in the expanded CGG-repeat mouse model for fragile X-associated tremor/ataxia syndrome. Psychoneuroendocrinology 33: 863–873.

    Article  PubMed  CAS  Google Scholar 

  • Brouwer, J. R. et al. 2008b. CGG-repeat length and neuropathological and molecular correlates in a mouse model for fragile X-associated tremor/ataxia syndrome. J Neurochem 107: 1671–1682.

    Article  PubMed  CAS  Google Scholar 

  • Chan, H. Y. et al. 2002. Genetic modulation of polyglutamine toxicity by protein conjugation pathways in drosophila. Hum Mol Genet 11: 2895–2904.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y., Tassone, F., Berman, R. F., Hagerman, P. J., Hagerman, R. J., Willemsen, R., Pessah, I. N. 2010 Jan 1. Murine hippocampal neurons expressing Fmr1 gene premutations show early developmental deficits and late degeneration. Hum Mol Genet 19(1): 196–208.

    Google Scholar 

  • Cornish, K. M. et al. 2008. Age-dependent cognitive changes in carriers of the fragile X syndrome. Cortex 44: 628–636.

    Article  PubMed  Google Scholar 

  • Cummings, C. J. et al. 2001. Over-expression of inducible Hsp70 chaperone suppresses neuropathology and improves motor function in SCA1 mice. Hum Mol Genet 10: 1511–1518.

    Article  PubMed  CAS  Google Scholar 

  • de Fougerolles, A. et al. 2007. Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov 6: 443–453.

    Article  PubMed  Google Scholar 

  • Entezam, A. et al. 2007. Regional FMRP deficits and large repeat expansions into the full mutation range in a new fragile X premutation mouse model. Gene 395: 125–134.

    Article  PubMed  CAS  Google Scholar 

  • Entezam, A., Usdin, K. 2007. ATR protects the genome against CGG*CGG-repeat expansion in fragile X premutation mice. Nucleic Acids Res 36: 1050–1056.

    Article  PubMed  Google Scholar 

  • Fernandez-Funez, P. et al. 2000. Identification of genes that modify ataxin-1-induced neurodegeneration. Nature 408: 101–106.

    Article  PubMed  CAS  Google Scholar 

  • Greco, C. M. et al. 2002. Neuronal intranuclear inclusions in a new cerebellar tremor/ataxia syndrome among fragile X carriers. Brain 125: 1760–1771.

    Article  PubMed  CAS  Google Scholar 

  • Greco, C. M. et al. 2006. Neuropathology of fragile X-associated tremor/ataxia syndrome (FXTAS). Brain 129: 243–255.

    Article  PubMed  CAS  Google Scholar 

  • Greco, C. M. et al. 2007. Testicular and pituitary inclusion formation in fragile X associated tremor/ataxia syndrome. J Urol 177: 1434–1437.

    Article  PubMed  CAS  Google Scholar 

  • Grigsby, J. et al. 2008. Cognitive profile of fragile X premutation carriers with and without fragile X-associated tremor/ataxia syndrome. Neuropsychology 22: 48–60.

    Article  PubMed  Google Scholar 

  • Hagerman, R. J. et al. 2001. Intention tremor, parkinsonism, and generalized brain atrophy in male carriers of fragile X. Neurology 57: 127–130.

    Article  PubMed  CAS  Google Scholar 

  • Hagerman, P. J., Hagerman, R. J. 2004. Fragile X-associated tremor/ataxia syndrome (FXTAS). Ment Retard Dev Disabil Res Rev 10: 25–30.

    Article  PubMed  Google Scholar 

  • Handa, V. et al. 2003. The fragile X syndrome repeats form RNA hairpins that do not activate the interferon-inducible protein kinase, PKR, but are cut by dicer. Nucleic Acids Res 31: 6243–6248.

    Article  PubMed  CAS  Google Scholar 

  • Hessl, D. et al. 2005. Abnormal elevation of FMR1 mRNA is associated with psychological symptoms in individuals with the fragile X premutation. Am J Med Genet B Neuropsychiatr Genet 139B: 115–121.

    Article  PubMed  CAS  Google Scholar 

  • Hessl, D. et al. 2006. Amygdala dysfunction in men with the fragile X premutation. Brain 130(2): 404–416.

    Article  PubMed  Google Scholar 

  • Hunter, J. E. et al. 2008. Investigation of phenotypes associated with mood and anxiety among male and female fragile X premutation carriers. Behav Genet 38(5): 493–502.

    Article  PubMed  Google Scholar 

  • Iwahashi, C. et al. 2006. Protein composition of the intranuclear inclusions of FXTAS. Brain 129: 256–271.

    Google Scholar 

  • Iyer, R. R. et al. 2000. DNA polymerase III proofreading mutants enhance the expansion and deletion of triplet repeat sequences in Escherichia coli. J Biol Chem 275: 2174–2184.

    Article  PubMed  CAS  Google Scholar 

  • Jacquemont, S. et al. 2004. Aging in individuals with the FMR1 mutation. Am J Ment Retard 109: 154–164.

    Article  PubMed  CAS  Google Scholar 

  • Jakupciak, J. P., Wells, R. D. 1999. Genetic instabilities in (CTG.CAG) repeats occur by recombination. J Biol Chem 274: 23468–23479.

    Article  PubMed  CAS  Google Scholar 

  • Jin, P. et al. 2003. RNA-mediated neurodegeneration caused by the fragile X premutation rCGG repeats in drosophila. Neuron 39: 739–747.

    Article  PubMed  CAS  Google Scholar 

  • Jin, P. et al. 2007. Pur alpha binds to rCGG repeats and modulates repeat-mediated neurodegeneration in a drosophila model of fragile X tremor/ataxia syndrome. Neuron 55: 556–564.

    Article  PubMed  CAS  Google Scholar 

  • Jin, P., Warren, S. T. 2003. New insights into fragile X syndrome: from molecules to neurobehaviors. Trends Biochem Sci 28: 152–158.

    Article  PubMed  CAS  Google Scholar 

  • Kazemi-Esfarjani, P., Benzer, S. 2000. Genetic suppression of polyglutamine toxicity in drosophila. Science 287: 1837–1840.

    Article  PubMed  CAS  Google Scholar 

  • Kenneson, A. et al. 2001. Reduced FMRP and increased FMR1 transcription is proportionally associated with CGG repeat number in intermediate-length and premutation carriers. Hum Mol Genet 10: 1449–1454.

    Article  PubMed  CAS  Google Scholar 

  • Khalili, K. et al. 2003. Pur alpha is essential for postnatal brain development and developmentally coupled cellular proliferation as revealed by genetic inactivation in the mouse. Mol Cell Biol 23: 6857–6875.

    Article  PubMed  CAS  Google Scholar 

  • Krol, J. et al. 2007. Ribonuclease dicer cleaves triplet repeat hairpins into shorter repeats that silence specific targets. Mol Cell 25: 575–586.

    Article  PubMed  CAS  Google Scholar 

  • Ladd, P. D. et al. 2007. An antisense transcript spanning the CGG repeat region of FMR1 is upregulated in premutation carriers but silenced in full mutation individuals. Hum Mol Genet 16: 3174–3187.

    Article  PubMed  CAS  Google Scholar 

  • Lavedan, C. N. et al. 1997. Trinucleotide repeats (CGG)22TGG(CGG)43TGG(CGG)21 from the fragile X gene remain stable in transgenic mice. Hum Genet 100: 407–414.

    Article  PubMed  CAS  Google Scholar 

  • Lavedan, C. et al. 1998. Long uninterrupted CGG repeats within the first exon of the human FMR1 gene are not intrinsically unstable in transgenic mice. Genomics 50: 229–240.

    Article  PubMed  CAS  Google Scholar 

  • Louis, E. et al. 2006. Parkinsonism, dysautonomia, and intranuclear inclusions in a fragile X carrier: a clinical-pathological study. Mov Disord 27: 193–201.

    Google Scholar 

  • Peier, A., Nelson, D. 2002. Instability of a premutation-sized CGG repeat in FMR1 YAC transgenic mice. Genomics 80: 423–432.

    Article  PubMed  CAS  Google Scholar 

  • Primerano, B. et al. 2002. Reduced FMR1 mRNA translation efficiency in fragile X patients with premutations. RNA 8: 1–7.

    Article  Google Scholar 

  • Sofola, O. A. et al. 2007a. Argonaute-2 dependent rescue of a drosophila model of FXTAS by FRAXE premutation repeat. Hum Mol Genet 16: 2326–2332.

    Article  PubMed  CAS  Google Scholar 

  • Sofola, O. A. et al. 2007b. RNA-binding proteins hnRNP A2/B1 and CUGBP1 suppress fragile X CGG premutation repeat-induced neurodegeneration in a drosophila model of FXTAS. Neuron 55: 565–571.

    Article  PubMed  CAS  Google Scholar 

  • Tassone, F. et al. 2000. Elevated levels of FMR1 mRNA in carrier males: A new mechanism of involvement in the Fragile-X syndrome. Am J Hum Genet 66: 6–15.

    Google Scholar 

  • Tassone, F. et al. 2004. Intranuclear inclusions in neural cells with premutation alleles in fragile X associated tremor/ataxia syndrome. J Med Genet 41: E43.

    Article  PubMed  CAS  Google Scholar 

  • Van Dam, D. et al. 2005. Cognitive decline, neuromotor and behavioural disturbances in a mouse model for Fragile-X-associated tremor/ataxia syndrome (FXTAS). Behav Brain Res 162: 233–239.

    Article  PubMed  Google Scholar 

  • Warrick, J. M. et al. 1998. Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in drosophila. Cell 93: 939–949.

    Article  PubMed  CAS  Google Scholar 

  • White, P. J. et al. 1999. Stability of the human fragile X (CGG)(n) triplet repeat array in saccharomyces cerevisiae deficient in aspects of DNA metabolism. Mol Cell Biol 19: 5675–5684.

    PubMed  CAS  Google Scholar 

  • Willemsen, R. et al. 2003. The FMR1 CGG repeat mouse displays ubiquitin-positive intranuclear neuronal inclusions; implications for the cerebellar tremor/ataxia syndrome. Hum Mol Genet 12: 949–959.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rob Willemsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Willemsen, R., Li, Y., Berman, R.F., Brouwer, J.R., Oostra, B.A., Jin, P. (2010). Animal Models for FXTAS. In: Tassone, F., Berry-Kravis, E. (eds) The Fragile X-Associated Tremor Ataxia Syndrome (FXTAS). Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5805-1_8

Download citation

Publish with us

Policies and ethics