Skip to main content

Neuroprotection and Glatiramer Acetate: The Possible Role in the Treatment of Multiple Sclerosis

  • Conference paper

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 541))

Abstract

Multiple Sclerosis (MS) is the most common inflammatory demyelinating disease of the central nervous system (CNS). It is believed to be an immune-mediated disorder in which the myelin sheath or the oligodendrocyte is targeted by the immune system in genetically susceptible people. Oligodendrocytes synthesize and maintain the axonal myelin sheath of up to 40 neighbouring nerve axons in the CNS. Compact myelin consists of a condensed membrane, spiralled around axons to form the insulating segmented sheath needed for saltatory axonal conduction: voltage-gated sodium channels cluster at the unmyelinated nodes of Ranvier, between myelin segments, from where the action potential is propagated and spreads down the myelinated nerve segment to trigger another action potential at the next node.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Waxman S.G. Demyelinating diseases — new pathological insights, new therapeutic targets. N Eng J Med. 338, 323–5 (1998).

    CAS  Google Scholar 

  2. Charcot J.M. Lectures on the diseases of the nervous system (translated by R.M. May). London: New Sydenham Society (1877).

    Google Scholar 

  3. Doinikow B. Über De-Regenerationserscheinungen an Achsenzylindern bei der multiplen Sklerose. Z Ges Neurol Psychiat 27, 151–78 (1915).

    Article  Google Scholar 

  4. Trapp B.D., Peterson J., Ransohoff R.M., Rudick R., Mork S., Bo L. Axonal transsection in the lesions of multiple sclerosis. N Engl J Med 338, 278–85 (1998).

    Article  PubMed  CAS  Google Scholar 

  5. Perry V.H., Anthony DC. Axon damage and repair in multiple sclerosis. Phil Trans R Soc London B 354, 1641–7 (1999).

    Article  CAS  Google Scholar 

  6. Filippi M., Grossman R.I. MRI techniques to monitor MS evolution. The present and the future. Neurology 58, 1147–53 (2002).

    Article  PubMed  Google Scholar 

  7. Urenjak J., Williams S.R., Gadian D.J., Noble M. Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J Neurosci 13, 981–9 (1993).

    PubMed  CAS  Google Scholar 

  8. Davie C.A., Hawkins C.P., Baker G.J., Brennan A., Tofts P.S., Miller D.H., McDonald W.I. Serial proton magnetic resonance spectroscopy in acute multiple sclerosis lesions. Brain 117, 49–58 (1994).

    Article  PubMed  Google Scholar 

  9. Fu L., Matthews P.M., De Stephano N., Worsley K.J., Narayanan S., Francis G.S., Antel J.P., Wolfson C., Arnold D.L. Imaging axonal damage in normal appearing white matter. Brain 121, 103–13 (1998).

    Article  PubMed  Google Scholar 

  10. van Waesberghe J.H., van Walderveen M.A., Castelijns J.A., Scheltens P., Lycklama a Nijeholt G.J., Polman C.H., Barkhof F. Patterns of lesion development in multiple sclerosis: longitudinal observations with T1-weighted spin-echo and magnetization transfer. Am J Neuroradiol 19, 675–83 (1998).

    PubMed  Google Scholar 

  11. Brück W., Bitsch A., Kolenda H., Brück Y., Stiefel M., Lassmann H. Inflammatory central nervous system emyelination: correlation of magnetic resonance imaging findings with lesion pathology. Ann Neurol 42, 783–93 (1997).

    Article  PubMed  Google Scholar 

  12. van Waesberghe J.H., Kamphorst W., De Groot C.J., van Walderveen M.A., Castelijns J.A., Ravid R., Lycklama a Nijeholt G.J., van der Valk P., Polman C.H., Thompson A.J., Barkhof F. Axonal loss in multiple sclerosis lesions: magnetic resonance imaging insights into substrates of disability. Ann Neurol 46, 747–54 (1999).

    Article  PubMed  Google Scholar 

  13. Barde Y.A., Edgar D., Thoenen H. Newneurotrophic factors. Ann Rev Physiol 45, 601–12 (1983).

    Article  CAS  Google Scholar 

  14. Baloh R.H., Enomoto H., Johnson E.M., Milbrandt J. The GDNF family ligands and receptors — implications for neural development. Curr Opin Neurobiol 10, 103–10 (2000).

    Article  PubMed  CAS  Google Scholar 

  15. Ip N.Y. The neurotrophins and neuropoietic cytokines: two families of growth factors acting on neural and hematopoietic cells. Ann N Y Acad Sci 540, 97–106 (1998).

    Article  Google Scholar 

  16. Heck S., Lezoualch F., Engert S., Behl C. Insulin-like growth factor-1-mediated neuroprotection against oxidative stress is associated with activation of nuclear factor kappa. B J Biol Chem 274, 9828–35 (1999).

    Article  CAS  Google Scholar 

  17. Lindvall O., Kokaia Z., Bengzon J., Elmer E., Kokaia M. Neurotrophins and brain insults. Trends Neurosci 17, 490–6 (1994).

    Article  PubMed  CAS  Google Scholar 

  18. Mitsumoto H., Ikeda K., Klinkosz B., Cedarbaum J.M., Wong V., Lindsay R.M. Arrest of motor neuron disease in wobbler mice cotreated with CNTF and BDNF. Science 265, 1107–10 (1994).

    Article  PubMed  CAS  Google Scholar 

  19. Schnell L., Schneider R., Kolbeck R., Barde Y.A., Schwab M.E. Neurotrophin-3 enhances sprouting of corticospinal tract during development and after adult spinal cord lesion. Nature 367, 170–3 (1994).

    Article  PubMed  CAS  Google Scholar 

  20. Kumar S., Kahn M.A., Dinh L., de Vellis J. NT-3-mediated TrkC receptor activation promotes proliferation and cell survival of rodent progenitor oligodendrocyte cells in vitro and in vivo. J Neurosci Res 54, 754–65 (1998).

    Article  PubMed  CAS  Google Scholar 

  21. Laudiero L.B., Aloe L., Levi-Montalcini R., Buttinelli C, Schilter D., Gillessen S., Otten U. Multiple sclerosis patients express increased levels of beta-nerve growth factor in cerebrospinal fluid. Neurosci Lett 147, 9–12 (1992).

    Article  PubMed  CAS  Google Scholar 

  22. Villoslada P., Hauser S.L., Bartke I., Unger J., Heald N., Rosenberg D., Cheung S.W., Mobley W.C., Fisher S., Genain C.P. Human nerve growth factor protects common marmosets against autoimmune encephalomyelitis by switching the balance of T helper cell type 1 and 2 cytokines within the central nervous system. J Exp Med 191, 1799–806 (2000).

    Article  PubMed  CAS  Google Scholar 

  23. Wekerle H., Kojiina K., Lannes-Vieira J., Laßmann H., Linington C. Animal models. Ann Neurol 36,S47–53 (1994).

    Article  PubMed  CAS  Google Scholar 

  24. Schwartz M., Moalem G., Leibowitz-Amit R., Cohen I.R. Innate and adaptive immune responses can be beneficial for CNS repair. Trends Neurosci 22, 295–9 (1999).

    Article  PubMed  CAS  Google Scholar 

  25. Moalem G., Leibowitz-Amit R., Yoles E., Mor F., Cohen I.Schwartz M. Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nature Med 5, 49–55 (1999).

    Article  PubMed  CAS  Google Scholar 

  26. Cohen I.R. The cognitive paradigm and the immunological homunculus. Immunol Today 13, 490–4 (1992).

    Article  PubMed  CAS  Google Scholar 

  27. Rapalino O., Lazarov-Spiegler O., Agranov E., Velan G.J., Yoles E., Fraidakis M., Solomon A., Gepstein R., Katz A., Belkin M., Hadani M., Schwartz M. Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat Med 4:814–21 (1998).

    Article  PubMed  CAS  Google Scholar 

  28. Serpe C.J., Kohm A.P. Huppenbauer C.B., Sanders V.J., Jones K.J. Exacerbation of facial motor-neuron loss after facial nerve transection in severe combined immunodeficient (SCID) mice. J Neurosci RC7, 1–5 (1999).

    Google Scholar 

  29. Kerschensteiner M., Stadelmann C, Dechant G., Wekerle H., Hohlfeld R. Neurotrophic cross-talk between the nervous system and immune system: Implications for inflammatory and degenerative neurological diseases. Ann Neurol (in press)

    Google Scholar 

  30. Hohlfeld R., Kerschensteiner M., Stadelmann C, Lassmann H., Wekerle H. The neuroprotective effect of inflammation: implications for the therapy of multiple sclerosis. J Neuroimmunol 107, 161–6 (2000).

    Article  PubMed  CAS  Google Scholar 

  31. Steinman L. Multiple Sclerosis: a two-stage disease. Nat Immunol 2, 762–4 (2001).

    Article  PubMed  CAS  Google Scholar 

  32. Warrington A.E., Asakura K., Bieber A.J., Ciric B., Van Keulen V., Kaveri S.V., Kyle R.A., Pease L.R., Rodriguez M. Human monoclonal antibodies reactive to oligodendrocytes promote remyelination in a model of multiple sclerosis. Proc Natl Acad Sci USA 97, 6820–5 (2000).

    Article  PubMed  CAS  Google Scholar 

  33. Wekerle H. Linington C, Lassmann H., Meyermann R. Cellular immune reactivity within the CNS. Trends Neurosci 9, 271–9 (1986).

    Article  Google Scholar 

  34. Torcia M., Bracci-Laudiero L., Lucibello M., Nencioni L., Labardi D., Rubartelli A., Cozzolino F., Aloe L., Garaci E. Nerve growth factor is an autocrine survival factor for memory B lymphocytes. Cell 85, 345–56 (1996).

    Article  PubMed  CAS  Google Scholar 

  35. Lewin G.R., Barde Y.A. Physiology of the neurotrophins. Annu Rev Neurosci 19, 289–317 (1996).

    Article  PubMed  CAS  Google Scholar 

  36. Klein R., Nanduri V., Jing S., Lamballe F., Tapley P., Bryant S., Cordon-Cardo C, Jones K.R., Reichardt L.F., Barbacid M. The trkB tyrosine protein kinase is a receptor for brain-derived neurotrophic factor and neurotrophin-3. Cell 66, 395–403 (1991).

    Article  PubMed  CAS  Google Scholar 

  37. Kerschensteiner M., Gallmeier E., Behrens L., Leal V.V., Misgeld T., Klinkert W.E., Kolbeck R., Hoppe E., Oropeza-Wekerle R.L., Bartke I., Stadelmann C, Lassmann H., Wekerle H., Hohlfeld R. Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? J Exp Med 189, 865–70 (1999).

    Article  PubMed  CAS  Google Scholar 

  38. Batchelor P.E., Liberatore G.T., Wong J.Y., Porritt M.J., Frerichs F., Donnan G.A., Howells D.W. Activated macrophages and microglia induce dopaminergic sprouting in the injured striatum and express brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. J Neurosci 19, 1708–16 (1999).

    PubMed  CAS  Google Scholar 

  39. Besser M., Wank R. Cutting edge: clonally restricted production of the neurotrophins brain-derived neurotrophic factor and neurotrophin-3 mRNA by human immune cells and Th1/Th2-polarized expression of their receptors. J Immunol 162, 6303–6 (1999).

    PubMed  CAS  Google Scholar 

  40. Labouyrie E., Dubus P., Groppi A., Mahon F.X., Ferrer J., Parrens M., Reiffers J., de Mascare A., Merlio J.P. Expression of neurotrophins and their receptors in human bone marrow. Am J Pathol 154, 405–15 (1999).

    Article  PubMed  CAS  Google Scholar 

  41. Stadelmann C, Kerschensteiner M, Misgeld T., Bruck W., Hohlfeld R., Lassmann H. BDNF and gpl45trkB in multiple sclerosis brain lesions: neuroprotective interactions between immune and neuronal cells? Brain 125, 75–85 (2002).

    Article  PubMed  Google Scholar 

  42. Gravel C., Gotz R., Lorrain A., Sendtner M. Adenoviral gene transfer of ciliary neurotrophic factor and brain-derived neurotrophic factor leads to long-term survival of axotomized motor neurons. Nat Med 3, 765–70 (1997).

    Article  PubMed  CAS  Google Scholar 

  43. Kobayashi N.R., Fan D.P., Giehl K.M., Bedard A.M., Wiegand S.J., Tetzlaff W. BDNF and NT-4/5 prevent atrophy of rat rubrospinal neurons after cervical axotomy, stimulate GAP-43 and Talphal-tubulin mRNA expression, and promote axonal regeneration. J Neurosci 17, 9583–95 (1997).

    PubMed  CAS  Google Scholar 

  44. Sagot Y.,. Rossé T., Vejsada R., Perrelet D., Kato A.C Differential effects of neurotrophic factors on motoneuron retrograde labeling in a murine model of motoneuron disease. J Neurosci 18, 1132–41 (1998).

    Google Scholar 

  45. Weibel D., Kreutzberg G.W., Schwab M.E Brain-derived neurotrophic factor (BDNF) prevents lesion-induced axonal die-back in young rat optic nerve. Brain Res 679, 249–54 (1995).

    Article  PubMed  CAS  Google Scholar 

  46. Mamounas L.A., Altar C.A., Blue M.E., Kaplan D.R., Tessarollo L., Lyons W.E. BDNF promotes the regenerative sprouting, but not survival, of injured serotonergic axons in the adult rat brain. J Neurosci 20, 771–82 (2000).

    PubMed  CAS  Google Scholar 

  47. McTigue D.M., Homer P.J., Stokes B.T., Gage F.H. Neurotrophin-3 and brain-derived neurotrophic factor induce oligodendrocyte proliferation and myelination of regenerating axons in the contused adult rat spinal cord. J Neurosci 18, 5354–65 (1998).

    PubMed  CAS  Google Scholar 

  48. Neumann H., Misgeld T., Matsumuro K., Wekerle H. Neurotrophins inhibit major histocompatibility class II inducibility of microglia: involvement of the p75 neurotrophin receptor. Proc Natl Acad Sci USA 95, 5779–84 (1998).

    Article  PubMed  CAS  Google Scholar 

  49. Compston A. Future prospects for the management of multiple sclerosis. Ann Neurol 36,S146–50 (1994).

    Article  PubMed  Google Scholar 

  50. Sagot Y., Vejsada R., Kato A.C. Clinical and molecular aspects of motor-neuron diseases: Animal models, neurotrophic factors and Bcl-2 oncoprotein. Trends Pharmacol Sci 18, 330–7 (1997).

    PubMed  CAS  Google Scholar 

  51. Kramer R., Zhang Y., Gehrmann J., Gold R., Thoenen H., Wekerle H. Gene transfer through the blood-nerve barrier: NGF-engineered neuritogenic T lymphocytes attenuate experimental autoimmune neuritis. Nat Med 1, 1162–6 (1995).

    Article  PubMed  CAS  Google Scholar 

  52. Flügel A., Matsumuro K., Neumann H., Klinkert W.E., Birnbacher R., Lassmann H., Otten U., Wekerle H. Anti-inflammatory activity of nerve growth factor in experimental autoimmune encephalomyelitis: inhibition of monocyte transendothelial migration. Eur J Immunol 31, 11–22 (2001).

    Article  PubMed  Google Scholar 

  53. Teitelbaum D., Arnon R., Sela M. Copolymer 1: from basic research to clinical application. Cell Mol Life Sci 53, 24–28 (1997).

    Article  PubMed  CAS  Google Scholar 

  54. Arnon R., Sela M., Teitelbaum D. New insights into the mechanism of action of copolymer 1 in experimental allergic encephalomyelitis and multiple sclerosis. J Neurol 243 (Suppl 1),S8–13 (1996).

    Article  PubMed  CAS  Google Scholar 

  55. Teitelbaum D., Webb C, Bree M., Meshorer A., Arnon R., Sela M. Suppression of experimental allergic encephalomyelitis in Rhesus monkeys by a synthetic basic copolymer. Clin Immunol Immunopathol 3, 256–62 (1974).

    Article  PubMed  CAS  Google Scholar 

  56. Teitelbaum D., Webb C, Meshorer A., Arnon R., Sela M. Suppression by several synthetic polypeptides of experimental allergic encephalomyelitis induced in guinea pigs and rabbits with bovine and human basic encephalitogen. Eur J Immunol 3, 273–9 (1973).

    Article  PubMed  CAS  Google Scholar 

  57. Teitelbaum D., Webb C, Meshorer A., Amon R., Sela M. Protection against experimental allergic encephalomyelitis. Nature 240, 564–6 (1974).

    Article  Google Scholar 

  58. Teitelbaum D., Meshorer A., Hirshfeld T., Arnon R., Sela M. Suppression of experimental allergic encephalomyelitis by a synthetic polypeptide. Eur J Immunol 1, 242–8 (1971).

    Article  PubMed  CAS  Google Scholar 

  59. Teitelbaum D., Sela M., Arnon R. Copolymer 1 from the laboratory to FDA. Isr J Med Sci 33, 280–4 (1997).

    PubMed  CAS  Google Scholar 

  60. Abramsky O., Teitelbaum D., Arnon R. Effect of a synthetic polypeptide (COP 1) on patients with multiple sclerosis and with acute disseminated encephalomeylitis. Preliminary report. J Neurol Sci 31, 433–8 (1977).

    Article  PubMed  CAS  Google Scholar 

  61. Bornstein M.B., Miller A.I., Slagle S., Arnon R., Sela M., Teitelbaum D. Clinical trials of copolymer I in multiple sclerosis. Ann N Y Acad Sci 436, 366–72 (1984).

    Article  PubMed  CAS  Google Scholar 

  62. Bomstein M.B., Miller A.I., Teitelbaum D., Arnon R., Sela M. Multiple sclerosis: trial of a synthetic polypeptide. Ann Neurol 11, 317–9 (1982).

    Article  Google Scholar 

  63. Bornstein M.B., Miller A., Slagle S., Weitzman M., Drexler E., Keilson M. et al. A placebo-controlled, double-blind, randomized, two-center, pilot trial of Cop 1 in chronic progressive multiple sclerosis. Neurology 41, 533–539 (1999).

    Article  Google Scholar 

  64. Johnson K.P. A review of the clinical efficacy profile of copolymer 1: new U.S. phase III trial data. J Neurol 243(Suppl 1),S3–S7 (1996).

    Article  PubMed  CAS  Google Scholar 

  65. Johnson K.P., Brooks B.R., Cohen J.A., Ford C.C., Goldstein J., Lisak R.P. et al. Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. The Copolymer 1 Multiple Sclerosis Study Group. Neurology 45, 1268–76 (1995).

    Article  PubMed  CAS  Google Scholar 

  66. Neuhaus O., Farina C., Wekerle H., Hohlfeld R. Mechanisms of action of glatiramer acetate in multiple sclerosis. Neurology 56, 702–8 (2001).

    Article  PubMed  CAS  Google Scholar 

  67. Brosnan C.F., Litwak M., Neighbour P.A., Lyman W.D., Carter T.H., Bornstein M.B. et al. Immunogenic potentials of copolymer I in normal human lymphocytes. Neurology 35, 1754–9 (1985).

    Article  PubMed  CAS  Google Scholar 

  68. Qin Y., Zhang D.Q., Prat A., Pouly S., Antel J. Characterization of T cell lines derived from glatirameracetate-treated multiple sclerosis patients. J Neuroimmunol 108, 201–6 (2000).

    Article  PubMed  CAS  Google Scholar 

  69. Burns J., Krasner L.J., Guerrero F. Human cellular immune response to copolymer I and myelin basic protein. Neurology 136, 92–4 (1986).

    Article  Google Scholar 

  70. Duda P.W., Schmied M.C., Cook S.L., Krieger J.I., Hafler D.A. Glatiramer acetate (Copaxone) induces degenerate, Th2-polarized immune responses in patients with multiple sclerosis. J Clin Invest 105, 967–76 (2000).

    Article  PubMed  CAS  Google Scholar 

  71. Farina C, Then Bergh F., Albrecht H., Meinl E., Yassouridis A., Neuhaus O., Hohlfeld R. Treatment of multiple sclerosis with Copaxone (COP): Elispot assay detects COP-induced interleukin-4 and interferon-gamma response in blood cells. Brain 124, 705–19 (2001).

    Article  PubMed  CAS  Google Scholar 

  72. Duda P.W., Krieger J.I., Schmied M.C., Balentine C, Hafler D.A. Human and murine CD4 T cell reactivity to a complex antigen: recognition of the synthetic random polypeptide glatiramer acetate. J Immunol 165, 7300–7 (2000).

    PubMed  CAS  Google Scholar 

  73. Brenner T., Arnon R., Sela M., Abramsky O., Meiner Z., Riven-Krietman R. et al. Humoral and cellular immune responses to Copolymer 1 in multiple sclerosis patients treated with Copaxone. J Neuroimmunol 115, 152–60 (2001).

    Article  PubMed  CAS  Google Scholar 

  74. Ziemssen T., Neuhaus O., Farina C, Hartung H.P., Hohlfeld R. Treatment of multiple sclerosis with glatiramer acetate-new information about ist mechanisms of action, pharmacokinetics, adverse effects and clinical studies [German], Nervenarzt 73, 321–31 (2002).

    Article  PubMed  CAS  Google Scholar 

  75. Fridkis-Hareli M., Strominger J.L. Promiscuous binding of synthetic copolymer 1 to purified HLA-DR molecules. J Immunol 160, 4386–97 (1998).

    PubMed  CAS  Google Scholar 

  76. Ragheb S, Lisak R.P. The lymphocyte proliferative response to glatiramer acetate in normal humans is dependent on both major histocompatibility complex (MHC). J Neurol 247 (Suppl 3):111/119 [abstract] (2000).

    Google Scholar 

  77. Aharoni R., Teitelbaum D., Arnon R., Sela M. Copolymer 1 acts against the immunodominant epitope 82-100 of myelin basic protein by T cell receptor antagonism in addition to major histocompatibility complex blocking. Proc Natl Acad Sci USA 96, 634–9 (1999).

    Article  PubMed  CAS  Google Scholar 

  78. Gran B., Tranquill L.R., Chen M., Bielekova B., Zhou W., Dhib-Jalbut S. et al. Mechanisms of immunomodulation by glatiramer acetate. Neurology 55, 1704–14 (2000).

    Article  PubMed  CAS  Google Scholar 

  79. Nishimura Y., Chen Y.Z., Kanai T., Yokomizo H., Matsuoka T., Matsushita S. Modification of human T-cell responses by altered peptide ligands: a new approach to antigen-specific modification. Intern Med 37, 804–17 (1998).

    Article  PubMed  CAS  Google Scholar 

  80. Teitelbaum D., Milo R., Arnon R., Sela M. Synthetic copolymer 1 inhibits human T-cell lines specific for myelin basic protein. Proc Natl Acad Sci USA 89, 137–41 (1992).

    Article  PubMed  CAS  Google Scholar 

  81. Webb C, Teitelbaum D., Arnon R., Sela M. In vivo and in vitro immunological cross-reactions between basic encephalitogen and synthetic basic polypeptides capable of suppressing experimental allergic encephalomyelitis. Eur J Immunol 3, 279–86 (1973).

    Article  PubMed  CAS  Google Scholar 

  82. Teitelbaum D., Aharoni R., Arnon R., Sela M. Specific inhibition of the T-cell response to myelin basic protein by the synthetic copolymer Cop 1. Proc Natl Acad Sci USA 85, 9724–8 (1988).

    Article  PubMed  CAS  Google Scholar 

  83. Neuhaus O., Farina C, Yassouridis A., Wiendl H., Then Bergh F., Dose T. et al. Multiple sclerosis: comparison of copolymer-1-reactive T cell lines from treated and untreated subjects reveals cytokine shift from T helper 1 to T helper 2 cells. Proc Natl Acad Sci USA 97, 7452–7 (2000).

    Article  PubMed  CAS  Google Scholar 

  84. Aharoni R., Teitelbaum D., Sela M., Arnon R. Bystander suppression of experimental autoimmune encephalomyelitis by T cell lines and clones of the Th2 type induced by copolymer 1. J Neuroimmunol 91, 135–46 (1998).

    Article  PubMed  CAS  Google Scholar 

  85. Aharoni R., Teitelbaum D., Sela M, Arnon R. Copolymer 1 induces T cells of the T helper type 2 that crossreact with myelin basic protein and suppress experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 94, 10821–6 (1997).

    Article  PubMed  CAS  Google Scholar 

  86. Miller A., Shapiro S., Gershtein R., Kinarty A., Rawashdeh H., Honigman S. et al. Treatment of multiple sclerosis with copolymer-1 (Copaxone): implicating mechanisms of Thl to Th2/Th3 immune-deviation. J Neuroimmunol 92, 113–21 (1998).

    Article  PubMed  CAS  Google Scholar 

  87. Dabbert D., Rosner S., Kramer M., Scholl U., Tumani H., Mader M. et al. Glatiramer acetate (copolymer-1)-specific, human T cell lines: cytokine profile and suppression of T cell lines reactive against myelin basic protein. Neurosci Lett 289, 205–8 (2000).

    Article  PubMed  CAS  Google Scholar 

  88. Paul W.E., Seder R.A. Lymphocyte responses and cytokines. Cell 76, 241–51 (1994).

    Article  PubMed  CAS  Google Scholar 

  89. Allen J.E., Maizels R.M. Thl-Th2: reliable paradigm or dangerous dogma? Immunol Today 18, 387–92 (1997).

    Article  PubMed  CAS  Google Scholar 

  90. Mosmann T.R., Sad S. The- expanding universe of T-cell subsets: Thl, Th2 and more. Immunol Today 17, 138–46 (1996).

    Article  PubMed  CAS  Google Scholar 

  91. Farina C, Wagenpfeil S., Hohlfeld R. Immunological assay for assessing the efficacy of glatiramer acetate (Copaxone) in MS. A pilot study. J Neurol 249, 1587–92 (2002).

    Article  PubMed  CAS  Google Scholar 

  92. Chen M., Conway K., Johnson K.P., Martin R., Dhib-Jalbut S. Sustained immunological effects of Glatiramer acetate in patients with multiple sclerosis treated for over 6 years. J Neurol Sci 201, 71–7 (2002).

    Article  PubMed  CAS  Google Scholar 

  93. Karandikar N.J., Crawford M.P., Yan X., Ratts R.B., Brenchley J.M., Ambrozak D.R., Lovett-Racke A.E., Frohman E.M., Stastny P., Douek D.C., Koup R.A., Racke M.K. Glatiramer acetate (Copaxone) therapy induces CD8(+) T cell responses in patients with multiple sclerosis. J Clin Invest 109, 641–9 (2002).

    PubMed  CAS  Google Scholar 

  94. Ure D.R., Rodriguez M. Polyreactive antibodies to glatiramer acetate promote myelin repair in murine model of demyelinating disease. FASEB J 16, 1260–2 (2002).

    PubMed  CAS  Google Scholar 

  95. Ziemssen T., Kümpfel T., Klinkert W.E., Neuhaus O., Hohlfeld R. Glatiramer acetate-specific T-helper 1-and 2-type cell lines produce BDNF: implications for multiple sclerosis therapy. Brain-derived neurotrophic factor. Brain 125, 2381–91 (2002).

    Article  PubMed  Google Scholar 

  96. Aharoni R., Teitelbaum D., Leitner O., Meshorer A., Sela M., Arnon R. Specific Th2 cells accumulate in the central nervous system of mice protected against experimental autoimmune encephalomyelitis by copolymer 1. Proc Natl Acad Sci USA 97, 11472–7 (2000).

    Article  PubMed  CAS  Google Scholar 

  97. Kipnis J., Yoles E., Porat Z., Cohen A., Mor F., Sela M., Schwartz M. T cell immunity to copolymer 1 confers neuroprotection on the damaged optic nerve: possible therapy for optic neuropathies. Proc Natl Acad Sci USA 97, 7446–51 (2000).

    Article  PubMed  CAS  Google Scholar 

  98. Schori H., Kipnis J., Yoles E., WoldeMussie E., Ruiz G., Wheeler L.A., Schwartz M. Vaccination for protection of retinal ganglion cells against death from glutamate cytotoxicity and ocular hypertension: implications for glaucoma. Proc Natl Acad Sci USA 98, 3398–403 (2001).

    Article  PubMed  CAS  Google Scholar 

  99. Offen D. et al. Treatment with glatiramer acetate induces neuroprotective effects in chronic MOG-induced EAE. J Neurol 249 Suppl. 1 [abstract] (2002)Bornstein M.B., Miller A., Slagle S., Weitzman M., Crystal H., Drexler E. et al. A pilot trial of Cop 1 in exacerbating-remitting multiple sclerosis. N Engl J Med 317, 408–14 (1987).

    Article  Google Scholar 

  100. Kurtzke J.F. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33, 1444–52 (1983).

    Article  PubMed  CAS  Google Scholar 

  101. Johnson K.P., Brooks B.R., Cohen J.A., Ford C.C., Goldstein J., Lisak R.P. et al. Extended use of glatiramer acetate (Copaxone) is well tolerated and maintains its clinical effect on multiple sclerosis relapse rate and degree of disability. Copolymer 1 Multiple Sclerosis Study Group. Neurology 50, 701–8 (1998).

    Article  PubMed  CAS  Google Scholar 

  102. Johnson K.P., Brooks B.R., Ford C.C., Goodman A., Guarnaccia J., Lisak R.P. et al. Sustained clinical benefits of glatiramer acetate in relapsing multiple sclerosis patients observed for 6 years. Copolymer 1 Multiple Sclerosis Study Group. Mult Scler 6, 255–66 (2000).

    PubMed  CAS  Google Scholar 

  103. Ge Y., Grossman R.I., Udupa J.K., Fulton J., Constantinescu C.S., Gonzales-Scarano F. et al. Glatiramer acetate (Copaxone) treatment in relapsing-remitting MS: quantitative MR assessment. Neurology 54, 813–7 (2000).

    Article  PubMed  CAS  Google Scholar 

  104. Mancardi G.L., Sardanelli F., Parodi R.C., Melani E., Capello E., Inglese M. et al. Effect of copolymer-1 on serial gadolinium-enhanced MRI in relapsing remitting multiple sclerosis. Neurology 50, 1127–1133 (1998).

    Article  PubMed  CAS  Google Scholar 

  105. Wolinsky J.S., Nurayana P.A., Johnson K.P., and the Copolymer 1 Multiple Sclerosis study group and the MRI Analysis Center. United States open-label glatiramer acetate extension trial for relapsing multiple sclerosis. Mult Scler 7, 33–41 (2001).

    PubMed  CAS  Google Scholar 

  106. Comi G., Filippi M., Wolinsky J.S. European Canadian multicenter, double-blind, randomized, placebo-controlled study of the effects of glatiramer acetate on magnetic resonance imaging-measured disease activity and burden in patients with relapsing multiple sclerosis. European/Canadian Glatiramer Acetate Study Group. Ann Neurol 49, 290–7 (2001).

    Article  PubMed  CAS  Google Scholar 

  107. Filippi M., Rovaris M., Rocca M.A., Sormani M.P., Wolinsky J.S., Comi G. European/Canadian Glatiramer Acetate Study Group. Glatiramer acetate reduces the proportion of new MS lesions evolving into “black holes”. Neurology 57, 731–3 (2001).

    Article  PubMed  CAS  Google Scholar 

  108. Ziemssen T., Neuhaus O., Hohlfeld R. Risk-Benefit Assessment of Glatiramer Acetate in Multiple Sclerosis. Drug Safety 24, 979–90 (2001).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this paper

Cite this paper

Ziemssen, T. (2004). Neuroprotection and Glatiramer Acetate: The Possible Role in the Treatment of Multiple Sclerosis. In: Vécsei, L. (eds) Frontiers in Clinical Neuroscience. Advances in Experimental Medicine and Biology, vol 541. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8969-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8969-7_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4740-8

  • Online ISBN: 978-1-4419-8969-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics