Skip to main content

Mast Cell Biology: Introduction and Overview

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 716))

Abstract

In recent years, the field of mast cell biology has expanded well beyond the boundaries of atopic disorders and anaphy laxis, on which it has been historically focused. The biochemical and signaling events responsible for the development and regulation of mast cells has been increasingly studied, aided in large part by novel breakthroughs in laboratory techniques used to study these cells. The result of these studies has been a more comprehensive definition of mast cells that includes added insights to their overall biology as well as the various disease states that can now be traced to defects in mast cells. This introductory chapter outlines and highlights the various topics of mast cell biology that will be discussed in further detail in subsequent chapters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kirshenbaum AS, Goff JP, Semere T et al. Demonstration that human mast cells arise from a progenitor cell population that is CD34+, c-kit+ and expresses aminopeptidase N (CD13). Blood 1999; 94(7):2333–2342.

    PubMed  CAS  Google Scholar 

  2. Tsai M, Grimbaldeston M, Galli SJ. Mast cells and immunoregulation/immunomodulation. In: Gilfillan AM, Metcalfe DD, eds. Mast Cell Biology: Contemporary and Emerging Topics. Austin/New York: Landes Bioscience/Springer Science+Business Media; 2011:186–211.

    Google Scholar 

  3. Metcalfe DD, Baram D, Mekori YA. Mast cells. Physiol Rev 1997; 77(4):1033–1079.

    CAS  Google Scholar 

  4. Hallgren J, Gurish, MF. Mast cell progenitor trafficking and maturation. In: Gilfillan AM, Metcalfe DD, eds. Mast Cell Biology: Contemporary and Emerging Topics. Austin/New York: Landes Bioscience/Springer Science+Business Media; 2011:14–28.

    Google Scholar 

  5. Jensen BM, Akin C, Gilfillan AM. Pharmacological targeting of the KIT growth factor receptor: a therapeutic consideration for mast cell disorders. Br J Pharmacol 2008; 154(8):1572–1582.

    Article  PubMed  CAS  Google Scholar 

  6. Ekoff M, Nilsson G. Mast cell apoptosis and survial. In: Gilfillan AM, Metcalfe DD, eds. Mast Cell Biology: Contemporary and Emerging Topics. Austin/New York: Landes Bioscience/Springer Science+Business Media; 2011:47–60.

    Google Scholar 

  7. Gilfillan AM, Rivera J. The tyrosine kinase network regulating mast cell activation. Immunol Rev 2009; 228(1):149–169.

    Article  PubMed  CAS  Google Scholar 

  8. Rivera J, Gilfillan AM. Molecular regulation of mast cell activation. J Allergy Clin Immunol 2006; 117(6):1214–1225; quiz 1226.

    Article  PubMed  CAS  Google Scholar 

  9. Blank U. The mechanisms of exocytosis in mast cells. In: Gilfillan AM, Metcalfe DD, eds. Mast Cell Biology: Contemporary and Emerging Topics. Austin/New York: Landes Bioscience/Springer Science+Business Media; 2011:107–122.

    Google Scholar 

  10. Holgate ST. The role of mast cells and basophils in inflammation. Clin Exp Allergy 2000; 30Suppl 1:28–32.

    Article  PubMed  Google Scholar 

  11. Holgate ST, Peters-Golden M, Panettieri RA et al. Roles of cysteinyl leukotrienes in airway inflammation, smooth muscle function and remodeling. J Allergy Clin Immunol 2003; 111(1 Suppl): S18–S34; discussion S34-16.

    Article  PubMed  CAS  Google Scholar 

  12. Moiseeva EP, Bradding P. Mast cells in lung inflammation. In: Gilfillan AM, Metcalfe DD, eds. Mast Cell Biology: Contemporary and Emerging Topics. Austin/New York: Landes Bioscience/Springer Science+Business Media; 2011:235–269.

    Google Scholar 

  13. Kushnir-Sukhov NM, Brown JM, Wu Y et al. Human mast cells are capable of serotonin synthesis and release. J Allergy Clin Immunol 2007; 119(2):498–499.

    Article  PubMed  CAS  Google Scholar 

  14. Stevens RL, Adachi R. Protease-proteoglycan complexes of mouse and human mast cells and importance of their beta-tryptase-heparin complexes in inflammation and innate immunity. Immunol Rev 2007; 217:155–167.

    Article  PubMed  CAS  Google Scholar 

  15. Schwartz LB.Tryptase: a clinical indicator ofmast cell-dependent events. Allergy Proc 1994; 15(3):119–123.

    Google Scholar 

  16. Irani AM, Schwartz LB. Human mast cell heterogeneity. Allergy Proc 1994; 15(6):303–308.

    Article  PubMed  CAS  Google Scholar 

  17. Caughey GH. Mast cell proteases as protective and inflammatory mediators. In: Gilfillan AM, Metcalfe DD, eds. Mast Cell Biology: Contemporary and Emerging Topics. Austin/New York: Landes Bioscience/Springer Science+Business Media; 2011:212–234.

    Google Scholar 

  18. Boyce JA. Mast cells and eicosanoid mediators: a system of reciprocal paracrine and autocrine regulation. Immunol Rev 2007; 217:168–185.

    Article  PubMed  CAS  Google Scholar 

  19. Boyce JA. Eicosanoid mediators of mast cells: receptors, regulation of synthesis and pathobiologic implications. Chem Immunol Allergy 2005; 87:59–79.

    Article  PubMed  CAS  Google Scholar 

  20. Kasperska-Zajac A, Brzoza Z, Rogala B. Platelet activating factor as a mediator and therapeutic approach in bronchial asthma. Inflammation 2008; 31(2):112–120.

    Article  PubMed  CAS  Google Scholar 

  21. Olivera A, Rivera J. An emerging role for the lipid mediator sphingosine-1-phosphate in mast cell effector function and allergic disease. In: Gilfillan AM, Metcalfe DD, eds. Mast Cell Biology: Contemporary and Emerging Topics. Austin/New York: Landes Bioscience/Springer Science+Business Media; 2011:123–142.

    Google Scholar 

  22. Rivera J, Proia RL, Olivera A. The alliance of sphingosine-1-phosphate and its receptors in immunity. Nat Rev Immunol 2008; 8(10):753–763.

    Article  PubMed  CAS  Google Scholar 

  23. Zhang S, Anderson DF, Bradding P et al. Human mast cells express stem cell factor. J Pathol 1998; 186(1):59–66.

    Article  PubMed  CAS  Google Scholar 

  24. Okayama Y. Mast cell-derived cytokine expression induced via Fc receptors and Toll-like receptors. Chem Immunol Allergy 2005; 87:101–110.

    Article  PubMed  CAS  Google Scholar 

  25. Katsanos GS, Anogeianaki A, Orso C et al. Mast cells and chemokines. J Biol Regul Homeost Agents 2008; 22(3):145–151.

    PubMed  CAS  Google Scholar 

  26. Kulka M, Fukuishi N, Metcalfe DD. Human mast cells synthesize and release angiogenin, a member of the ribonuclease A (RNase A) superfamily. J Leukoc Biol 2009; 86(5):1217–1226.

    Article  PubMed  CAS  Google Scholar 

  27. Freeman TA, Parvizi J, Dela Valle CJ et al. Mast cells and hypoxia drive tissue metaplasia and heterotopic ossification in idiopathic arthrofibrosis after total knee arthroplasty. Fibrogenesis Tissue Repair 3(1):17.

    Google Scholar 

  28. Theoharides TC, Zhang B, Kempuraj D et al. IL-33 augments substance P-induced VEGF secretion from human mast cells and is increased in psoriatic skin. Proc Natl Acad Sci USA 107(9):4448–4453.

    Google Scholar 

  29. Stone KD, Prussin C, Metcalfe DD. IgE, mast cells, basophils and eosinophils. J Allergy Clin Immunol 125(2 Suppl 2):S73–S80.

    Google Scholar 

  30. Shelburne CP, Abraham SN. The mast cell in innate and adaptive immunity. In: Gilfillan AM, Metcalfe DD, eds. Mast Cell Biology: Contemporary and Emerging Topics. Austin/New York: Landes Bioscience/Springer Science+Business Media; 2011:162–185.

    Google Scholar 

  31. Ribatti D, Crivellato E. Mast cells, angiogenesis and cancer. In: Gilfillan AM, Metcalfe DD, eds. Mast Cell Biology: Contemporary and Emerging Topics. Austin/New York: Landes Bioscience/Springer Science+Business Media; 2011:270–288.

    Google Scholar 

  32. Okayama Y, Kawakami T. Development, migration and survival of mast cells. Immunol Res 2006; 34(2):97–115.

    Article  PubMed  CAS  Google Scholar 

  33. Kraft S, Kinet JP. New developments in FcepsilonRI regulation, function and inhibition. Nat Rev Immunol 2007; 7(5):365–378.

    Article  PubMed  CAS  Google Scholar 

  34. Kashiwakura J, Otani IM, Kawakami T. Monomeric IgE and mast cell development, survival and function. In: Gilfillan AM, Metcalfe DD, eds. Mast Cell Biology: Contemporary and Emerging Topics. Austin/New York: Landes Bioscience/Springer Science+Business Media; 2011:29–46.

    Google Scholar 

  35. Kawakami T, Galli SJ. Regulation of mast-cell and basophil function and survival by IgE. Nat Rev Immunol 2002; 2(10):773–786.

    Article  PubMed  CAS  Google Scholar 

  36. Kawakami T, Kitaura J. Mast cell survival and activation by IgE in the absence of antigen: a consideration of the biologic mechanisms and relevance. J Immunol 2005; 175(7):4167–4173.

    PubMed  CAS  Google Scholar 

  37. Gilfillan AM, Tkaczyk C. Integrated signalling pathways for mast-cell activation. Nat Rev Immunol 2006; 6(3):218–230.

    Article  PubMed  CAS  Google Scholar 

  38. Kuehn HS, Gilfillan AM. G protein-coupled receptors and the modification of FcεRI-mediated mast cell activation. Immunol Lett 2007; 113(2):59–69.

    Article  PubMed  CAS  Google Scholar 

  39. Tkaczyk C, Horejsi V, Iwaki S et al. NTAL phosphorylation is a pivotal link between the signaling cascades leading to human mast cell degranulation following Kit activation and FcεRI aggregation. Blood 2004; 104(1):207–214.

    Article  PubMed  CAS  Google Scholar 

  40. Hundley TR, Gilfillan AM, Tkaczyk C et al. Kit and FcεRI mediate unique and convergent signals for release of inflammatory mediators from human mast cells. Blood 2004; 104(8):2410–2417.

    Article  PubMed  CAS  Google Scholar 

  41. Kuehn HS, Radinger M, Brown JM et al. Btk-dependent Rac activation and actin rearrangement following FcεRI aggregation promotes enhanced chemotactic responses of mast cells. J Cell Sci 2010; 123(Pt 15):2576–2585.

    Article  PubMed  CAS  Google Scholar 

  42. Qiao H, Andrade MV, Lisboa FA et al. FcεR1 and toll-like receptors mediate synergistic signals to markedly augment production of inflammatory cytokines in murine mast cells. Blood 2006; 107(2):610–618.

    Article  PubMed  CAS  Google Scholar 

  43. Allakhverdi Z, Smith DE, Comeau MR et al. Cutting edge: The ST2 ligand IL-33 potently activates and drives maturation of human mast cells. J Immunol 2007; 179(4):2051–2054.

    PubMed  CAS  Google Scholar 

  44. Ho LH, Ohno T, Oboki K et al. IL-33 induces IL-13 production by mouse mast cells independently of IgE-FcεRI signals. J Leukoc Biol 2007; 82(6):1481–1490.

    Article  PubMed  CAS  Google Scholar 

  45. Metcalfe DD, Peavy RD, Gilfillan AM. Mechanisms of mast cell signaling in anaphylaxis. J Allergy Clin Immunol 2009; 124(4):639–646; quiz 647–638.

    Article  PubMed  CAS  Google Scholar 

  46. Wilson BS, Oliver JM, Lidke DS. Spatio-temporal signaling in mast cells. In: Gilfillan AM, Metcalfe DD, eds. Mast Cell Biology: Contemporary and Emerging Topics. Austin/New York: Landes Bioscience/Springer Science+Business Media; 2011:91–106.

    Google Scholar 

  47. Sengupta P, Baird B, Holowka D. Lipid rafts, fluid/fluid phase separation and their relevance to plasma membrane structure and function. Semin Cell Dev Biol 2007; 18(5):583–590.

    Article  PubMed  CAS  Google Scholar 

  48. Wilson BS, Steinberg SL, Liederman K et al. Markers for detergent-resistant lipid rafts occupy distinct and dynamic domains in native membranes. Mol Biol Cell 2004; 15(6):2580–2592.

    Article  PubMed  CAS  Google Scholar 

  49. Holowka D, Sheets ED, Baird B. Interactions between FcεRI and lipid raft components are regulated by the actin cytoskeleton. J Cell Sci 2000; 113(Pt 6):1009–1019.

    PubMed  CAS  Google Scholar 

  50. Wilson BS, Pfeiffer JR, Oliver JM. FcεRI signaling observed from the inside of the mast cell membrane. Mol Immunol 2002; 38(16–18):1259–1268.

    Article  PubMed  CAS  Google Scholar 

  51. Yamashita Y, Charles N, Furumoto Y et al. Cutting edge: genetic variation influences FcεRI-induced mast cell activation and allergic responses. J Immunol 2007; 179(2):740–743.

    PubMed  CAS  Google Scholar 

  52. Parravicini V, Gadina M, Kovarova M et al. Fyn kinase initiates complementary signals required for IgE-dependent mast cell degranulation. Nat Immunol 2002; 3(8):741–748.

    PubMed  CAS  Google Scholar 

  53. Choi WS, Hiragun T, Lee JH et al. Activation of RBL-2H3 mast cells is dependent on tyrosine phosphorylation of phospholipase D2 by Fyn and Fgr. Mol Cell Biol 2004; 24(16):6980–6992.

    Article  PubMed  CAS  Google Scholar 

  54. Hong H, Kitaura J, Xiao W et al. The Src family kinase Hck regulates mast cell activation by suppressing an inhibitory Src family kinase Lyn. Blood 2007; 110(7):2511–2519.

    Article  PubMed  CAS  Google Scholar 

  55. Silverman MA, Shoag J, Wu J et al. Disruption of SLP-76 interaction with Gads inhibits dynamic clustering of SLP-76 and FcepsilonRI signaling in mast cells. Mol Cell Biol 2006; 26(5):1826–1838.

    Article  PubMed  CAS  Google Scholar 

  56. Gu H, Saito K, Klaman LD et al. Essential role for Gab2 in the allergic response. Nature 2001; 412(6843):186–190.

    Article  PubMed  CAS  Google Scholar 

  57. Yu M, Lowell CA, Neel BG et al. Scaffolding adapter Grb2-associated binder 2 requires Sykto transmit signals from FcεRI. J Immunol 2006; 176(4):2421–2429.

    PubMed  CAS  Google Scholar 

  58. Iwaki S, Spicka J, Tkaczyk C et al. Kit-and FcεRI-induced differential phosphorylation of the transmembrane adaptor molecule NTAL/LAB/LAT2 allows flexibility in its scaffolding function in mast cells. Cell Signal 2008; 20(1):195–205.

    Article  PubMed  CAS  Google Scholar 

  59. Linnekin D. Early signaling pathways activated by c-Kit in hematopoietic cells. Int J Biochem Cell Biol 1999; 31(10):1053–1074.

    Article  PubMed  CAS  Google Scholar 

  60. Ozawa K, Yamada K, Kazanietz MG et al. Different isozymes of protein kinase C mediate feedback inhibition of phospholipase C and stimulatory signals for exocytosis in rat RBL-2H3 cells. J Biol Chem 1993; 268(4):2280–2283.

    PubMed  CAS  Google Scholar 

  61. Furuichi T, Yoshikawa S, Miyawaki A et al. Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400. Nature 1989; 342(6245):32–38.

    Article  PubMed  CAS  Google Scholar 

  62. Ma HT, Beaven MA. Regulators of Ca2+ signaling in mast cells: potential targets for treatment of mast-cell related diseases? In: Gilfillan AM, Metcalfe DD, eds. Mast Cell Biology: Contemporary and Emerging Topics. Austin/New York: Landes Bioscience/Springer Science+Business Media; 2011:62–90.

    Google Scholar 

  63. Liou J, Kim ML, Heo WD et al. STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 2005; 15(13):1235–1241.

    Article  PubMed  CAS  Google Scholar 

  64. Roos J, DiGregorio PJ, Yeromin AV et al. STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 2005; 169(3):435–445.

    Article  PubMed  CAS  Google Scholar 

  65. Feske S, Gwack Y, Prakriya M et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 2006; 441(7090):179–185.

    Article  PubMed  CAS  Google Scholar 

  66. Vig M, Peinelt C, Beck A et al. CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 2006; 312(5777):1220–1223.

    Article  PubMed  CAS  Google Scholar 

  67. Ma HT, Beaven MA. Regulation of Ca2+ signaling with particular focus on mast cells. Crit Rev Immunol 2009; 29(2):155–186.

    PubMed  CAS  Google Scholar 

  68. Kim MS, Radinger M, Gilfillan AM. The multiple roles of phosphoinositide 3-kinase in mast cell biology. Trends Immunol 2008; 29(10):493–501.

    Article  PubMed  CAS  Google Scholar 

  69. Ali K, Bilancio A, Thomas M et al. Essential role for the p110δ phosphoinositide 3-kinase in the allergic response. Nature 2004; 431(7011): 1007–1011.

    Article  PubMed  CAS  Google Scholar 

  70. Laffargue M, Calvez R, Finan P et al. Phosphoinositide 3-kinase γ is an essential amplifier of mast cell function. Immunity 2002; 16(3):441–451.

    Article  PubMed  CAS  Google Scholar 

  71. Tkaczyk C, Beaven MA, Brachman SM et al. The phospholipase C γ1-dependent pathway of FcεRI-mediated mast cell activation is regulated independently of phosphatidylinositol 3-kinase. J Biol Chem 2003; 278(48):48474–48484.

    Article  PubMed  CAS  Google Scholar 

  72. Iwaki S, Tkaczyk C, Satterthwaite AB et al. Btk plays a crucial role in the amplification of FcεRI-mediated mast cell activation by kit. J Biol Chem 2005; 280(48):40261–40270.

    Article  PubMed  CAS  Google Scholar 

  73. Karra L, Levi-Schaffer F. Down-regulation of mast cell responses through ITIM containing inhibitory receptors. In: Gilfillan AM, Metcalfe DD, eds. Mast Cell Biology: Contemporary and Emerging Topics. Austin/New York: Landes Bioscience/Springer Science+Business Media; 2011:143–161.

    Google Scholar 

  74. Karra L, Berent-Maoz B, Ben-Zimra M et al. Are we ready to downregulate mast cells? Curr Opin Immunol 2009; 21(6):708–714.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Gilfillan, A.M., Austin, S.J., Metcalfe, D.D. (2011). Mast Cell Biology: Introduction and Overview. In: Gilfillan, A.M., Metcalfe, D.D. (eds) Mast Cell Biology. Advances in Experimental Medicine and Biology, vol 716. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9533-9_1

Download citation

Publish with us

Policies and ethics