Skip to main content

The Mast Cell in Innate and Adaptive Immunity

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 716))

Abstract

Mast cells (MCs) were once considered only as effector cells in pathogenic IgE- and IgG-mediated responses such as allergy. However, developments over the last 15 years have suggested that MCs have evolved in vertebrates as beneficial effector cells that are involved in the very first inflammatory responses generated during infection. This pro-inflammatory environment has been demonstrated to be important for initiating innate responses in many different models of infection and more recently, in the development of adaptive immunity as well. Interestingly this latter finding has led to the discovery that small MC-activating compounds can behave as adjuvants in vaccine formulations. Thus, our continued understanding of the MC in the context of infectious disease is likely to not only expand our scope of the MC in the normal processes of immunity, but provide new therapeutic targets to combat disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Medzhitov R, Janeway CA Jr. Innate immunity: impact on the adaptive immune response. Curr Opin Immunol 1997; 9(1):4–9.

    Article  PubMed  CAS  Google Scholar 

  2. Gourley TS, Wherry EJ, Masopust D et al. Generation and maintenance of immunological memory. Semin Immunol 2004; 16(5):323–333.

    Article  PubMed  CAS  Google Scholar 

  3. Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat Immunol 2004; 5(10):987–995.

    Article  PubMed  CAS  Google Scholar 

  4. Lee DM, Friend DS, Gurish MF et al. Mast cells: a cellular link between autoantibodies and inflammatory arthritis. Science 2002; 297(5587):1689–1692.

    Article  PubMed  CAS  Google Scholar 

  5. Secor VH, Secor WE, Gutekunst CA et al. Mast cells are essential for early onset and severe disease in a murine model of multiple sclerosis. J Exp Med 2000; 191(5):813–822.

    Article  PubMed  CAS  Google Scholar 

  6. Chen R, Fairley JA, Zhao ML et al. Macrophages, but not T and B-lymphocytes, are critical for subepidermal blister formation in experimental bullous pemphigoid: macrophage-mediated neutrophil infiltration depends on mast cell activation. J Immunol 2002; 169(7):3987–3992.

    PubMed  CAS  Google Scholar 

  7. Leal-Berumen I, Conlon P, Marshall JS. IL-6 production by rat peritoneal mast cells is not necessarily preceded by histamine release and can be induced by bacterial lipopolysaccharide. J Immunol 1994; 152(11):5468–5476.

    PubMed  CAS  Google Scholar 

  8. Malaviya R, Ikeda, T, Ross E et al. Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-alpha. Nature 1996; 381(6577):77–80.

    Article  PubMed  CAS  Google Scholar 

  9. Echtenacher B, Mannel DN, Hultner L. Critical protective role of mast cells in a model of acute septic peritonitis. Nature 1996; 381(6577):75–77.

    Article  PubMed  CAS  Google Scholar 

  10. Kitamura Y. Heterogeneity of mast cells and phenotypic change between subpopulations. Annu Rev Immunol 1989; 7:59–76.

    Article  PubMed  CAS  Google Scholar 

  11. Kawakami T, Galli SJ. Regulation of mast-cell and basophil function and survival by IgE. Nat Rev Immunol 2002; 2(10):773–786.

    Article  PubMed  CAS  Google Scholar 

  12. Galli SJ, Zsebo KM, Geissler EN. The kit ligand, stem cell factor. Adv Immunol 1994; 55:1–96.

    Article  PubMed  CAS  Google Scholar 

  13. Metcalfe DD, Baram D, Mekori YA. Mast cells. Physiol Rev 1997; 77(4):1033–1079.

    CAS  Google Scholar 

  14. Rosenkranz AR, Coxon A, Maurer M et al. Impaired mast cell development and innate immunity in Mac-1 (CD11b/CD18, CR3)-deficient mice. J Immunol 1998; 161(12):6463–6467.

    PubMed  CAS  Google Scholar 

  15. Wasserman SI. Mast cell-mediated inflammation in asthma. Ann Allergy 1989; 63(6 Pt 2):546–550.

    PubMed  CAS  Google Scholar 

  16. Janssens AS, Heide R, den Hollander JC et al. Mast cell distribution in normal adult skin. J Clin Pathol 2005; 58(3):285–289.

    Article  PubMed  CAS  Google Scholar 

  17. Chiu H, Lagunoff D. Histochemical comparison of vertebrate mast cells. Histochem J 1972; 4(2):135–144.

    Article  PubMed  CAS  Google Scholar 

  18. Sottovia-Filho D. Morphology and histochemistry of the mast cells of snakes. J Morphol 1974; 142(1):109–116.

    Article  PubMed  CAS  Google Scholar 

  19. Selye H, ed The Mast Cells. London: Butterworth; 1965.

    Google Scholar 

  20. Paulsen SMSB, Robertsen B. Selective staining and disintegration of intestinal eosinophilic granule cells in Atlantic salmon after intraperitoneal injection of the zinc chelator dithizone. J Fish Biol 2001; 58:768–775.

    Article  CAS  Google Scholar 

  21. Murray HM LCT, Douglas SE. Immunocytochemical localization of pleurocidin to the cytoplasmic granules of eosinophilic granule cells from the winter flounder gill. J Fish Biol 2007; 70:336–345.

    Article  CAS  Google Scholar 

  22. Dezfuli BS, Giari L. Mast cells in the gills and intestines of naturally infected fish: evidence of migration and degranulation. J Fish Dis 2008.

    Google Scholar 

  23. Silphaduang U, Noga EJ. Peptide antibiotics in mast cells of fish. Nature 2001; 414(6861):268–269.

    Article  PubMed  CAS  Google Scholar 

  24. Silphaduang U, Colorni A, Noga EJ. Evidence for widespread distribution of piscidin antimicrobial peptides in teleost fish. Dis Aquat Organ 2006; 72(3):241–252.

    Article  PubMed  CAS  Google Scholar 

  25. Dobson JT, Seibert J, Teh EM et al. Carboxypeptidase A5 identifies a novel mast cell lineage in the zebrafish providing new insight into mast cell fate determination. Blood 2008; 112(7):2969–2972.

    Article  PubMed  CAS  Google Scholar 

  26. Shelburne CP, Nakano H, St John AL et al. Mast cells augment adaptive immunity by orchestrating dendritic cell trafficking through infected tissues. Cell Host Microbe 2009; 6(4):331–342.

    Article  PubMed  CAS  Google Scholar 

  27. Powell MD, Wright, GM, Burka JF. Eosinophilic granule cells in the gill of rainbow trout, Oncorhynchus mykiss: evidence of migration? J Fish Biol 1990; 37:495–497.

    Article  Google Scholar 

  28. Reite OB. Mast cell/eosinophilic granule cells of salmonids: staining properties and responses to noxious agents. Fish Shellfish Immunol 1997; 7:567–584.

    Article  Google Scholar 

  29. Holland JW RAF. Studies on the eosinophilic granule cells in the gills of rainbow trout, Oncorhynchus mykiss. Comp Biochem Physiol C 1998; 120:321–328.

    PubMed  CAS  Google Scholar 

  30. Noya M, Lamas J. Response of eosinophilic granule cells of gilthead seabream (Sparus aurata, Teleostei) to bacteria and bacterial products. Cell Tissue Res 1997; 287(1):223–230.

    Article  PubMed  CAS  Google Scholar 

  31. Sher A, Hein A, Moser G et al. Complement receptors promote the phagocytosis of bacteria by rat peritoneal mast cells. Lab Invest 1979; 41(6):490–499.

    PubMed  CAS  Google Scholar 

  32. Sher A, McIntyre SL. Receptors for C3 on rat peritoneal mast cells. J Immunol 1977; 119(2):722–725.

    PubMed  CAS  Google Scholar 

  33. Malaviya R, Ross EA, MacGregor JI et al. Mast cell phagocytosis of Fim-H-expressing enterobacteria. J Immunol 1994; 152(4):1907–1914.

    PubMed  CAS  Google Scholar 

  34. Malaviya R, Gao Z, Thankavel K et al. The mast cell tumor necrosis factor alpha response to FimH-expressing Excherichia coli is mediated by the glycosylphosphatidylinositol-anchored molecule CD48. PNAS 1999; 96:8110–8115.

    Article  PubMed  CAS  Google Scholar 

  35. Kulka M, Alexopoulou L, Flavell RA et al. Activation of mast cells by double-stranded RNA: evidence for activation through Toll-like receptor 3. J Allergy Clin Immunol 2004; 114(1):174–182.

    Article  PubMed  CAS  Google Scholar 

  36. Matsushima H, Yamada N, Matsue H et al. TLR3-, TLR7-and TLR9-mediated production of proinflammatory cytokines and chemokines from murine connective tissue type skin-derived mast cells but not from bone marrow-derived mast cells. J Immunol 2004; 173:531–541.

    PubMed  CAS  Google Scholar 

  37. Zhu FG, Marshall JS. CpG-containing oligodeoxynucleotides induce TNF-alpha and IL-6 production but not degranulation from murine bone marrow-derived mast cells. J Leukoc Biol 2001; 69(2):253–262.

    PubMed  CAS  Google Scholar 

  38. McCurdy JD, Olynych TJ, Malier LH et al. Cutting edge: distinct Toll-like receptor 2 activators selectively induce different classes of mediator production from human mast cells. J Immunol 2003; 170(4):1625–1629.

    PubMed  CAS  Google Scholar 

  39. Mrabet-Dahbi S, Metz M, Dudeck A et al. Murine mast cells secrete a unique profile of cytokines and prostaglandins in response to distinct TLR2 ligands. Exp Dermatol 2009; 18(5):437–444.

    Article  PubMed  CAS  Google Scholar 

  40. Supajatura V, Ushio H, Nakao A et al. Differential responses of mast cell Toll-like receptors 2 and 4 in allergy and innate immunity. J Clin Invest 2002; 109(10):1351–1359.

    PubMed  CAS  Google Scholar 

  41. Supajatura V, Ushio H, Nakao A et al. Protective roles of mast cells against enterobacterial infection are mediated by Toll-like receptor 4. J Immunol 2001; 167(4):2250–2256.

    PubMed  CAS  Google Scholar 

  42. Orinska Z, Bulanova E, Budagian V et al. TLR3-induced activation of mast cells modulates CD8+ T-cell recruitment. Blood 2005; 106(3):978–987.

    Article  PubMed  CAS  Google Scholar 

  43. Heib V, Becker M, Warger T et al. Mast cells are crucial for early inflammation, migration of Langerhans cells and CTL responses following topical application of TLR7 ligand in mice. Blood 2007; 110(3):946–953.

    Article  PubMed  CAS  Google Scholar 

  44. Olynych TJ, Jakeman DL, Marshall JS. Fungal zymosan induces leukotriene production by human mast cells through a dectin-1-dependent mechanism. J Allergy Clin Immunol 2006; 118(4):837–843.

    Article  PubMed  CAS  Google Scholar 

  45. Nakamura Y, Kambe N, Saito M et al. Mast cells mediate neutrophil recruitment and vascular leakage through the NLRP3 inflammasome in histamine-independent urticaria. J Exp Med 2009; 206(5):1037–1046.

    Article  PubMed  CAS  Google Scholar 

  46. McKee AS, Munks MW, MacLeod MK et al. Alum induces innate immune responses through macrophage and mast cell sensors, but these sensors are not required for alum to act as an adjuvant for specific immunity. J Immunol 2009; 183(7):4403–4414.

    Article  PubMed  CAS  Google Scholar 

  47. Vines CM, Prossnitz ER. Mechanisms of G protein-coupled receptor-mediated degranulation. FEMS Microbiol Lett 2004; 236(1):1–6.

    PubMed  CAS  Google Scholar 

  48. Skokowa J, Ali SR, Felda O et al. Macrophages induce the inflammatory response in the pulmonary Arthus reaction through G alpha i2 activation that controls C5aR and Fc receptor cooperation. J Immunol 2005; 174(5):3041–3050.

    PubMed  CAS  Google Scholar 

  49. Gommerman JL, Oh DY, Zhou X et al. A role for CD21/CD35 and CD19 in responses to acute septic peritonitis: a potential mechanism for mast cell activation. J Immunol 2000; 165(12):6915–6921.

    PubMed  CAS  Google Scholar 

  50. Edelson BT, Strieker TP, Li Z et al. Novel collectin/C1q receptor mediates mast cell activation and innate immunity. Blood 2006; 107(1):143–150.

    Article  PubMed  CAS  Google Scholar 

  51. el-Lati SG, Dahinden CA, Church MK. Complement peptides C3a-and C5a-induced mediator release from dissociated human skin mast cells. J Invest Dermatol 1994; 102(5):803–806.

    Article  PubMed  CAS  Google Scholar 

  52. Legier DF, Loetscher M, Jones SA et al. Expression of high-and low-affinity receptors for C3a on the human mast cell line, HMC-1. Eur J Immunol 1996; 26(4):753–758.

    Article  Google Scholar 

  53. Prodeus AP, Zhou X, Maurer M et al. Impaired mast cell-dependent natural immunity in complement C3-deficient mice. Nature 1997; 390(6656):172–175.

    Article  PubMed  CAS  Google Scholar 

  54. Jasani B, Kreil G, Mackler BF et al. Further studies on the structural requirements for polypeptide-mediated histamine release from rat mast cells. Biochem J 1979; 181(3):623–632.

    PubMed  CAS  Google Scholar 

  55. Shanahan F, Denburg JA, Fox J et al. Mast cell heterogeneity: effects of neuroenteric peptides on histamine release. J Immunol 1985; 135(2):1331–1337.

    PubMed  CAS  Google Scholar 

  56. Hagermark O, Hokfelt T, Pernow B. Flare and itch induced by substance P in human skin. J Invest Dermatol 1978; 71(4):233–235.

    Article  PubMed  CAS  Google Scholar 

  57. Theoharides TC, Betchaku T, Douglas WW. Somatostatin-induced histamine secretion in mast cells. Characterization of the effect. Eur J Pharmacol 1981; 69(2):127–137.

    Article  PubMed  CAS  Google Scholar 

  58. Piotrowski W, Foreman JC. Some effects of calcitonin gene-related peptide in human skin and on histamine release. Br J Dermatol 1986; 114(1):37–46.

    Article  PubMed  CAS  Google Scholar 

  59. Theoharides TC, Singh LK, Boucher W et al. Corticotropin-releasing hormone induces skin mast cell degranulation and increased vascular permeability, a possible explanation for its proinflammatory effects. Endocrinology 1998; 139(1):403–413.

    Article  PubMed  CAS  Google Scholar 

  60. Fjellner B, Hagermark O. Studies on pruritogenic and histamine-releasing effects of some putative peptide neurotransmitters. Acta Derm Venereol 1981; 61(3):245–250.

    PubMed  CAS  Google Scholar 

  61. Kurose M, Saeki K. Histamine release induced by neurotensin from rat peritoneal mast cells. Eur J Pharmacol 1981; 76(2–3):129–136.

    Article  PubMed  CAS  Google Scholar 

  62. Piliponsky AM, Chen CC, Nishimura T et al. Neurotensin increases mortality and mast cells reduce neurotensin levels in a mouse model of sepsis. Nat Med 2008; 14(4):392–398.

    Article  PubMed  CAS  Google Scholar 

  63. Moriyama M, Sato T, Inoue H et al. The neuropeptide neuromedin U promotes inflammation by direct activation of mast cells. J Exp Med 2005; 202(2):217–224.

    Article  PubMed  CAS  Google Scholar 

  64. Befus AD, Mowat C, Gilchrist M et al. Neutrophil defensins induce histamine secretion from mast cells: mechanisms of action. J Immunol 1999; 163(2):947–953.

    PubMed  CAS  Google Scholar 

  65. Niyonsaba F, Ushio H, Hara M et al. Antimicrobial Peptides Human ta-Defensins and Cathelicidin LL-37 Induce the Secretion of a Pruritogenic Cytokine IL-31 by Human Mast Cells. J Immunol 2010.

    Google Scholar 

  66. Niyonsaba F, Someya A, Hirata M et al. Evaluation of the effects of peptide antibiotics human beta-defensins-1/-2 and LL-37 on histamine release and prostaglandin D(2) production from mast cells. Eur J Immunol 2001; 31(4):1066–1075.

    Article  PubMed  CAS  Google Scholar 

  67. Chen X, Niyonsaba F, Ushio H et al. Antimicrobial peptides human beta-defensin (hBD)-3 and hBD-4 activate mast cells and increase skin vascular permeability. Eur J Immunol 2007; 37(2):434–444.

    Article  PubMed  CAS  Google Scholar 

  68. Carraway RE, Cochrane DE, Granier C et al. Parallel secretion of endogenous 5-hydroxytryptamine and histamine from mast cells stimulated by vasoactive peptides and compound 48/80. Br J Pharmacol 1984; 81(2):227–229.

    PubMed  CAS  Google Scholar 

  69. Ansel JC, Brown JR, Payan DG et al. Substance P selectively activates TNF-alpha gene expression in murine mast cells. J Immunol 1993; 150(10):4478–4485.

    PubMed  CAS  Google Scholar 

  70. Kulka M, Sheen CH, Tancowny BP et al. Neuropeptides activate human mast cell degranulation and chemokine production. Immunology 2008; 123(3):398–410.

    Article  PubMed  CAS  Google Scholar 

  71. Tatemoto K, Nozaki Y, Tsuda R et al. Immunoglobulin E-independent activation of mast cell is mediated by Mrg receptors. Biochem Biophys Res Commun 2006; 349(4):1322–1328.

    Article  PubMed  CAS  Google Scholar 

  72. Forsberg E, Pejler G, Ringvall M et al. Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme. Nature 1999; 400(6746):773–776.

    Article  PubMed  CAS  Google Scholar 

  73. Humphries DE, Wong GW, Friend DS et al. Heparin is essential forthe storage of specific granule proteases in mast cells. Nature 1999; 400(6746):769–772.

    Article  PubMed  CAS  Google Scholar 

  74. Riley JF. Histamine in tissue mast cells. Science 1953; 118(3064):332.

    Article  PubMed  CAS  Google Scholar 

  75. Kapeller-Adler R. Histamine Catabolism in Vitro and in Vivo. Fed Proc 1965;24:757–765.

    PubMed  CAS  Google Scholar 

  76. Gurish MF, Austen KF. The diverse roles of mast cells. J Exp Med 2001; 194(1):F1–F5.

    Article  PubMed  CAS  Google Scholar 

  77. Huang C, Sali A, Stevens RL. Regulation and function of mast cell proteases in inflammation. J Clin Immunol 1998; 18(3):169–183.

    Article  PubMed  CAS  Google Scholar 

  78. Compton SJ, Cairns JA, Holgate ST et al. The role of mast cell tryptase in regulating endothelial cell proliferation, cytokine release and adhesion molecule expression: tryptase induces expression of mRNA for IL-1 beta and IL-8 and stimulates the selective release of IL-8 from human umbilical vein endothelial cells. J Immunol 1998; 161(4):1939–1946.

    PubMed  CAS  Google Scholar 

  79. Gordon JR, Galli SJ. Mast cells as a source of both preformed and immunologically inducible TNF-alpha/cachectin. Nature 1990; 346(6281):274–276.

    Article  PubMed  CAS  Google Scholar 

  80. Stevens RL, Adachi R. Protease-proteoglycan complexes of mouse and human mast cells and importance of their beta-tryptase-heparin complexes in inflammation and innate immunity. Immunol Rev 2007; 217:155–167.

    Article  PubMed  CAS  Google Scholar 

  81. Kunder CA, St John AL, Li G et al. Mast cell-derived particles deliver peripheral signals to remote lymph nodes. J Exp Med 2009; 206(11):2455–2467.

    Article  PubMed  CAS  Google Scholar 

  82. Di Nardo A, Vitiello A, Gallo RL. Cutting edge: mast cell antimicrobial activity is mediated by expression of cathelicidin antimicrobial peptide. J Immunol 2003; 170(5):2274–2278.

    PubMed  Google Scholar 

  83. Burd PR, Rogers HW, Gordon JR et al. Interleukin 3-dependent and-independent mast cells stimulated with IgE and antigen express multiple cytokines. J Exp Med 1989; 170(1):245–257.

    Article  PubMed  CAS  Google Scholar 

  84. Lin TJ, Garduno R, Boudreau RT et al. Pseudomonas aeruginosa activates human mast cells to induce neutrophil transendothelial migration via mast cell-derived IL-1 alpha and beta. J Immunol 2002; 169(8):4522–4530.

    PubMed  CAS  Google Scholar 

  85. Plaut M, Pierce JH, Watson CJ et al. Mast cell lines produce lymphokines in response to cross-linkage of Fc epsilon RI or to calcium ionophores. Nature 1989; 339(6219):64–67.

    Article  PubMed  CAS  Google Scholar 

  86. Tachimoto H, Ebisawa M, Hasegawa T et al. Reciprocal regulation of cultured human mast cell cytokine production by IL-4 and IFN-gamma. J Allergy Clin Immunol 2000; 106(1 Pt 1):141–149.

    Article  PubMed  CAS  Google Scholar 

  87. Hultner L, Kolsch S, Stassen M et al. In activated mast cells, IL-1 up-regulates the production of several Th2-related cytokines including IL-9. J Immunol 2000; 164(11):5556–5563.

    PubMed  CAS  Google Scholar 

  88. Varadaradjalou S, Feger F, Thieblemont N et al. Toll-like receptor 2 (TLR2) and TLR4 differentially activate human mast cells. Eur J Immunol 2003; 33:899–906.

    Article  PubMed  CAS  Google Scholar 

  89. Wakahara S, Fujii Y, Nakao T et al. Gene expression profiles for Fc epsilon RI, cytokines and chemokines upon Fc epsilon RI activation in human cultured mast cells derived from peripheral blood. Cytokine 2001; 16(4):143–152.

    Article  PubMed  CAS  Google Scholar 

  90. Matsushima H, Yamada N, Matsue H et al. TLR3-, TLR7-and TLR9-mediatedproduction of proinflammatory cytokines and chemokines from murine connective tissue type skin-derived mast cells but not from bone marrow-derived mast cells. J Immunol 2004; 173(1):531–541.

    PubMed  CAS  Google Scholar 

  91. Stassen M, Arnold M, Hultner L et al. Murine bone marrow-derived mast cells as potent producers of IL-9: costimulatory function of IL-10 and kit ligand in the presence of IL-1. J Immunol 2000; 164(11):5549–5555.

    Google Scholar 

  92. Varadaradjalou S, Feger F, Thieblemont N et al. Toll-like receptor 2 (TLR2) and TLR4 differentially activate human mast cells. Eur J Immunol 2003; 33(4):899–906.

    Article  PubMed  CAS  Google Scholar 

  93. Kendall JC, Li XH, Galli SJ et al. Promotion of mouse fibroblast proliferation by IgE-dependent activation of mouse mast cells: role for mast cell tumor necrosis factor-alpha and transforming growth factor-beta 1. J Allergy Clin Immunol 1997; 99(1 Pt 1):113–123.

    PubMed  CAS  Google Scholar 

  94. Nakajima T, Inagaki N, Tanaka H et al. Marked increase in CC chemokine gene expression in both human and mouse mast cell transcriptomes following Fcepsilon receptor I cross-linking: an interspecies comparison. Blood 2002; 100(12):3861–3868.

    Article  PubMed  CAS  Google Scholar 

  95. Dezfuli BS, Arrighi S, Domeneghini C et al. Immunohistochemical detection of neuromodulators in the intestine of Salmo trutta L. naturally infected with Cyathocephalus truncatus Pallas (Cestoda). J Fish Dis 2000; 23:265–273.

    Article  CAS  Google Scholar 

  96. Sveinbjornsson BOR, Paulsen S. Immunocytochemical localization of lysozyme in intestinal eosinophilic granule cells (EGCs) of Atlantic salmon, Salmo salar L. J Fish Dis 1996; 19:349–355.

    Article  CAS  Google Scholar 

  97. Powell MD, Briand HA, Wright GM et al. Ultrastructural localization of acid phosphatase in intestinal eosinophilic granule cells (EGCs) of rainbow trout (Onchorhynchus mykiss) following degranulation with capsaicin. Histol Histopathol 1992; 7:301–305.

    PubMed  CAS  Google Scholar 

  98. Ezeasor DN, Stokoe WM. A cytochemical, light and electron microscopic study on the eosinophilic granule cells in the gut of the rainbow trout, Salmo gairdneri. J Fish Biol 1980; 17:619–634.

    Article  CAS  Google Scholar 

  99. Reite OB, Evensen O. Mast cells in the swimbladder of Atlantic salmon, Salmo salar: histochemistry and responses to compound 48/80 and formalin-inactivated Aeromonas salmonicida. Dis Aquat Organ 1994; 20:95–100.

    Article  Google Scholar 

  100. Vallejo AN Jr, Ellis AE. Ultrastructural study of the response of eosinophil granule cells to Aeromonas salmonicida extracellular products and histamine liberators in rainbow trout Salmo gairdneri Richardson. Dev Comp Immunol 1989; 13(2):133–148.

    Article  PubMed  CAS  Google Scholar 

  101. Lamas J, Bruno DW, Santos Y et al. Eosinophilic granule cell response to intraperitoneal injection with Vibrio anguillarum and its extracellular products in rainbow trout, Oncorhynchus mykiss. Fish Shellfish Immunol 1991; 1:187–194.

    Article  Google Scholar 

  102. Lamas J, Santos Y, Bruno DW et al. Non-specific cellular responses of rainbowtroutto Vibrio anguillarum and its extracellular products (ECPs). J Fish Biol 1994; 45:839–854.

    Article  Google Scholar 

  103. Matsuyama T, Iida T. Degranulation of eosinophilic granular cells with possible involvement in neutrophil migration to site of inflammation in tilapia. Dev Comp Immunol 1999; 23(6):451–457.

    Article  PubMed  CAS  Google Scholar 

  104. Paton WD. Compound 48/80: a potent histamine liberator. Br J Pharmacol 1951; 6(3):499–508.

    CAS  Google Scholar 

  105. Kunder CA, St John AL, Li G et al. Mast cell-derived particles deliver peripheral signals to remote lymph nodes. J Exp Med 2009.

    Google Scholar 

  106. Dvorak AM, Hammel I, Schulman ES et al. Differences in the behavior of cytoplasmic granules and lipid bodies during human lung mast cell degranulation. J Cell Biol 1984; 99(5):1678–1687.

    Article  PubMed  CAS  Google Scholar 

  107. Caulfield JP, Lewis RA, Hein A et al. Secretion in dissociated human pulmonary mast cells. Evidence for solubilization of granule contents before discharge. J Cell Biol 1980; 85(2):299–312.

    Article  PubMed  CAS  Google Scholar 

  108. Malaviya R, Ross E, Jakschik BA et al. Mast cell degranulation induced by type 1 fimbriated Escherichia coli in mice. J Clin Invest 1994; 93(4):1645–1653.

    Article  PubMed  CAS  Google Scholar 

  109. McLachlan JB, Hart JP, Pizzo SV et al. Mast cell-derived tumor necrosis factor induces hypertrophy of draining lymph nodes during infection. Nat Immunol 2003; 4(12):1199–1205.

    Article  PubMed  CAS  Google Scholar 

  110. Grimbaldeston MA, Chen CC, Piliponsky AM et al. Mast cell-deficient W-sashc-kit mutant Kit W-sh/W-sh mice as a model for investigating mast cell biology in vivo. Am J Pathol 2005; 167(3):835–848.

    Article  PubMed  CAS  Google Scholar 

  111. Wolters PJ, Mallen-St Clair J, Lewis CC et al. Tissue-selective mast cell reconstitution and differential lung gene expression in mast cell-deficient Kit(W-sh)/Kit(W-sh) sash mice. Clin Exp Allergy 2005; 35(1):82–88.

    Article  PubMed  CAS  Google Scholar 

  112. Malaviya R, Ikeda T, Ross E et al. Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-alpha [see comments]. Nature 1996; 381(6577):77–80.

    Article  PubMed  CAS  Google Scholar 

  113. Maurer M, Wedemeyer J, Metz M et al. Mast cells promote homeostasis by limiting endothelin-1-induced toxicity. Nature 2004; 432(7016):512–516.

    Article  PubMed  CAS  Google Scholar 

  114. Mallen-St Clair J, Pham CT, Villalta SA et al. Mast cell dipeptidyl peptidase I mediates survival from sepsis. J Clin Invest 2004; 113(4):628–634.

    Google Scholar 

  115. Metz M, Piliponsky AM, Chen CC et al. Mast cells can enhance resistance to snake and honeybee venoms. Science 2006; 313(5786):526–530.

    Article  PubMed  CAS  Google Scholar 

  116. Lehrer RI, Ganz T. Antimicrobial peptides in mammalian and insect host defence. Curr Opin Immunol 1999; 11(1):23–27.

    Article  PubMed  CAS  Google Scholar 

  117. Zasloff M. Antimicrobial peptides of multicellular organisms. Nature 2002; 415(6870):389–395.

    Article  PubMed  CAS  Google Scholar 

  118. Hancock RE, Scott MG. The role of antimicrobial peptides in animal defenses. Proc Natl Acad Sci USA 2000;97(16):8856–8861.

    Article  PubMed  CAS  Google Scholar 

  119. Ganz T. Antimicrobial polypeptides in host defense of the respiratory tract. J Clin Invest 2002; 109(6):693–697.

    PubMed  CAS  Google Scholar 

  120. Boman HG. Gene-encoded peptide antibiotics and the concept of innate immunity: an update review. Scand J Immunol 1998; 48(1):15–25.

    Article  PubMed  CAS  Google Scholar 

  121. Noga EJ, Silphaduang U. Piscidins: a novel family of peptide antibiotics from fish. Drug News Perspect 2003; 16(2):87–92.

    Article  PubMed  CAS  Google Scholar 

  122. Colorni A, Ullal A, Heinisch G et al. Activity of the antimicrobial polypeptide piscidin 2 against fish ectoparasites. J Fish Dis 2008; 31(6):423–432.

    Article  PubMed  CAS  Google Scholar 

  123. Sung WS, Lee J, Lee DG. Fungicidal effect of piscidin on Candida albicans: pore formation in lipid vesicles and activity in fungal membranes. Biol Pharm Bull 2008; 31(10):1906–1910.

    Article  PubMed  CAS  Google Scholar 

  124. Di Nardo A, Yamasaki K, Dorschner RA et al. Mast cell cathelicidin antimicrobial peptide prevents invasive group A Streptococcus infection of the skin. J Immunol 2008; 180(11):7565–7573.

    PubMed  Google Scholar 

  125. Chatterjea D, Burns-Guydish SM, Sciuto TE et al. Adoptive transfer of mast cells does not enhance the impaired survival of Kit(W)/Kit(W-v) mice in a model of low dose intraperitoneal infection with bioluminescent Salmonella typhimurium. Immunol Lett 2005; 99(1):122–129.

    Article  PubMed  CAS  Google Scholar 

  126. Higuchi H, Hara M, Yamamoto K et al. Mast cells play a critical role in the pathogenesis of viral myocarditis. Circulation 2008; 118(4):363–372.

    Article  PubMed  Google Scholar 

  127. Fairweather D, Frisancho-Kiss S, Gatewood S et al. Mast cells and innate cytokines are associated with susceptibility to autoimmune heart disease following coxsackievirus B3 infection. Autoimmunity 2004; 37(2):131–145.

    Article  PubMed  CAS  Google Scholar 

  128. Kimman TG, Terpstra GK, Daha MR et al. Pathogenesis of naturally acquired bovine respiratory syncytial virus infection in calves: evidence for the involvement of complement and mast cell mediators. Am J Vet Res 1989; 50(5):694–700.

    PubMed  CAS  Google Scholar 

  129. Jolly S, Detilleux J, Desmecht D. Extensive mast cell degranulation in bovine respiratory syncytial virus-associated paroxystic respiratory distress syndrome. Vet Immunol Immunopathol 2004; 97(3–4):125–136.

    Article  PubMed  CAS  Google Scholar 

  130. Li Q, Peng B, Whitcup SM et al. Endotoxin induced uveitis in the mouse: susceptibility and genetic control. Exp Eye Res 1995; 61(5):629–632.

    Article  PubMed  CAS  Google Scholar 

  131. Bjorling DE, Jerde TJ, Zine MJ et al. Mast cells mediate the severity of experimental cystitis in mice. J Urol 1999; 162(1):231–236.

    Article  PubMed  CAS  Google Scholar 

  132. Hayashi T, Cottam HB, Chan M et al. Mast cell-dependent anorexia and hypothermia induced by mucosal activation of Toll-like receptor 7. Am J Physiol Regul Integr Comp Physiol 2008; 295(1):R123–132.

    Article  PubMed  CAS  Google Scholar 

  133. Jenkins MK, Khoruts A, Ingulli E et al. In vivo activation of antigen-specific CD4 T-cells. Annu Rev Immunol 2001; 19:23–45.

    Article  PubMed  CAS  Google Scholar 

  134. Williams CM, Galli SJ. Mast cells can amplify airway reactivity and features of chronic inflammation in an asthma model in mice. J Exp Med 2000; 192(3):455–462.

    Article  PubMed  CAS  Google Scholar 

  135. Brusselle GG, Kips JC, Tavernier JH et al. Attenuation of allergic airway inflammation in IL-4 deficient mice. Clin Exp Allergy 1994; 24(1):73–80.

    Article  PubMed  CAS  Google Scholar 

  136. Ha TY, Reed ND, Crowle PK. Immune response potential of mast cell-deficient W/Wv mice. Int Arch Allergy Appl Immunol 1986; 80(1):85–94.

    Article  PubMed  CAS  Google Scholar 

  137. Kung TT, Stelts D, Zurcher JA et al. Mast cells modulate allergic pulmonary eosinophilia in mice. Am J Respir Cell Mol Biol 1995; 12(4):404–409.

    PubMed  CAS  Google Scholar 

  138. Jawdat DM, Albert EJ, Rowden G et al. IgE-mediated mast cell activation induces Langerhans cell migration in vivo. J Immunol 2004; 173(8):5275–5282.

    PubMed  CAS  Google Scholar 

  139. Galli SJ, Hammel I. Unequivocal delayed hypersensitivity in mast cell-deficient and beige mice. Science 1984; 226(4675):710–713.

    Article  PubMed  CAS  Google Scholar 

  140. Bryce PJ, Miller ML, Miyajima I et al. Immune Sensitization in the Skin Is Enhanced by Antigen-Independent Effects of IgE. Immunity 2004; 20(4):381–392.

    Article  PubMed  CAS  Google Scholar 

  141. Gregory GD, Bickford A, Robbie-Ryan M et al. MASTering the immune response: mast cells in autoimmunity. Novartis Found Symp 2005; 271:215–225; discussion 225–231.

    Article  PubMed  CAS  Google Scholar 

  142. Jawdat DM, Rowden G, Marshall JS. Mast cells have a pivotal role in TNF-independent lymph node hypertrophy and the mobilization of Langerhans cells in response to bacterial peptidoglycan. J Immunol 2006; 177(3):1755–1762.

    PubMed  CAS  Google Scholar 

  143. Demeure CE, Brahimi K, Hacini F et al. Anopheles mosquito bites activate cutaneous mast cells leading to a local inflammatory response and lymph node hyperplasia. J Immunol 2005; 174(7):3932–3940.

    PubMed  CAS  Google Scholar 

  144. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998; 392(6673):245–252.

    Article  PubMed  CAS  Google Scholar 

  145. Cavanagh LL, Von Andrian UH. Travellers in many guises: the origins and destinations of dendritic cells. Immunol Cell Biol 2002; 80(5):448–462.

    Article  PubMed  Google Scholar 

  146. McLachlan JB, Shelburne CP, Hart JP et al. Mast cell activators: a new class of highly effective vaccine adjuvants. Nat Med 2008; 14(5):536–541.

    Article  PubMed  CAS  Google Scholar 

  147. McGowen AL, Hale LP, Shelburne CP et al. The mast cell activator compound 48/80 is safe and effective when used as an adjuvant for intradermal immunization with Bacillus anthracis protective antigen. Vaccine 2009; 27(27):3544–3552.

    Article  PubMed  CAS  Google Scholar 

  148. Malaviya R, Ikeda T, Ross E et al. Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-alpha. Nature 1996; 381(6577):77–80.

    Article  PubMed  CAS  Google Scholar 

  149. Church MK, Norn S, Pao GJ et al. Non-IgE-dependent bacteria-induced histamine release from human lung and tonsillar mast cells. Clin Allergy 1987; 17(4):341–353.

    Article  PubMed  CAS  Google Scholar 

  150. Brzezinska—Blaszczyk E, Wasiela M. Vaginal bacterial flora activates rat peritoneal mast cells. Int J Immunopathol Pharmacol 2002; 15(3):233–238.

    PubMed  Google Scholar 

  151. Malaviya R, Ross EA, MacGregor JI et al. Mast cell phagocytosis of FimH-expressing enterobacteria. J Immunol 1994; 152(4):1907–1914.

    PubMed  CAS  Google Scholar 

  152. Brzezinska-Blaszczyk E, Gaik A, Czuwaj M et al. Histamine release from human pulmonary mast cells induced by bacterial antigens. Allergol Immunopathol (Madr) 1988; 16(6):375–378.

    CAS  Google Scholar 

  153. Clementsen P, Larsen FO, Milman N et al. Haemophilus influenzae release histamine and enhance histamine release from human bronchoalveolar cells. Examination of patients with chronic bronchitis and controls. Apmis 1995; 103(11):806–812.

    Article  PubMed  CAS  Google Scholar 

  154. Masini E, Bechi P, Dei R et al. Helicobacter pylori potentiates histamine release from rat serosal mast cells induced by bile acids. Dig Dis Sci 1994; 39(7):1493–1500.

    Article  PubMed  CAS  Google Scholar 

  155. Bechi P, Dei R, Di Bello MG et al. Helicobacter pylori potentiates histamine release from serosal rat mast cells in vitro. Dig Dis Sci 1993; 38(5):944–949.

    Article  PubMed  CAS  Google Scholar 

  156. Yamamoto J, Watanabe S, Hirose M et al. Role of mast cells as atrigger of inflammation in Helicobacter pylori infection. J Physiol Pharmacol 1999; 50(1): 17–23.

    PubMed  CAS  Google Scholar 

  157. Lutton DA, Bamford KB, O’Loughlin B et al. Modulatory action of Helicobacter pylori on histamine release from mast cells and basophils in vitro. J Med Microbiol 1995; 42(6):386–393.

    Article  PubMed  CAS  Google Scholar 

  158. Munoz S, Hernandez-Pando R, Abraham SN et al. Mast cell activation by Mycobacterium tuberculosis: mediator release and role of CD48. J Immunol 2003; 170(11):5590–5596.

    PubMed  CAS  Google Scholar 

  159. Barbuti G, Moschioni M, Censini S et al. Streptococcus pneumoniae induces mast cell degranulation. Int J Med Microbiol 2006; 296(4–5):325–329.

    Article  PubMed  CAS  Google Scholar 

  160. Mielcarek N, Hornquist EH, Johansson BR et al. Interaction of Bordetella pertussis with mast cells, modulation of cytokine secretion by pertussis toxin. Cell Microbiol 2001; 3(3): 181–188.

    Article  PubMed  CAS  Google Scholar 

  161. Talkington J, Nickeil SP. Borrelia burgdorferi spirochetes induce mast cell activation and cytokine release. Infect Immun 1999; 67(3):1107–1115.

    PubMed  CAS  Google Scholar 

  162. Talkington J, Nickeil SP. Role of Fc gamma receptors in triggering host cell activation and cytokine release by Borrelia burgdorferi. Infect Immun 2001; 69(1):413–419.

    Article  PubMed  CAS  Google Scholar 

  163. Lin TJ, Maher LH, Gomi K et al. Selective early production of CCL20, or macrophage inflammatory protein 3alpha, by human mast cells in response to Pseudomonas aeruginosa. Infect Immun 2003; 71(1):365–373.

    Article  PubMed  CAS  Google Scholar 

  164. Bergmann U, Scheffer J, Koller M et al. Induction of inflammatory mediators (histamine and leukotrienes) from rat peritoneal mast cells and human granulocytes by Pseudomonas aeruginosa strains from burn patients. Infect Immun 1989; 57(7):2187–2195.

    PubMed  CAS  Google Scholar 

  165. Friedl P, Konig B, Konig W. Effects of mucoid and nonmucoid Pseudomonas aeruginosa isolates from cystic fibrosis patients on inflammatory mediator release from human polymorphonuclear granulocytes and rat mast cells. Immunology 1992; 76(1):86–94.

    PubMed  CAS  Google Scholar 

  166. Sugiyama K. Histamine release from rat mast cells induced by Sendai virus. Nature 1977; 270(5638):614–615.

    Article  PubMed  CAS  Google Scholar 

  167. Brown MG, King CA, Sherren C et al. A dominant role for FcgammaRII in antibody-enhanced dengue virus infection of human mast cells and associated CCL5 release. J Leukoc Biol 2006; 80(6):1242–1250.

    Article  PubMed  CAS  Google Scholar 

  168. King CA, Anderson R, Marshall JS. Dengue virus selectively induces human mast cell chemokine production. J Virol 2002; 76(16):8408–8419.

    Article  PubMed  CAS  Google Scholar 

  169. Burke SM, Issekutz TB, Mohan K et al. Human mast cell activation with virus-associated stimuli leads to the selective chemotaxis of natural killer cells by a CXCL8-dependent mechanism. Blood 2008; 111(12):5467–5476.

    Article  PubMed  CAS  Google Scholar 

  170. Sundstrom JB, Little DM, Villinger F et al. Signaling through Toll-like receptors triggers HIV-1 replication in latently infected mast cells. J Immunol 2004; 172(7):4391–4401.

    PubMed  CAS  Google Scholar 

  171. Taub DD, Mikovits JA, Nilsson G et al. Alterations in mast cell function and survival following in vitro infection with human immunodeficiency viruses-1 through CXCR4. Cell Immunol 2004; 230(2):65–80.

    Article  PubMed  CAS  Google Scholar 

  172. Clementsen P, Bisgaard H, Pedersen M et al. Staphylococcus aureus and influenza A virus stimulate human bronchoalveolar cells to release histamine and leukotrienes. Agents Actions 1989; 27(1–2):107–109.

    Article  PubMed  CAS  Google Scholar 

  173. Catto BA, Lewis FA, Ottesen EA. Cercaria-induced histamine release: a factor in the pathogenesis of schistosome dermatitis? Am J Trop Med Hyg 1980; 29(5):886–889.

    PubMed  CAS  Google Scholar 

  174. Bidri M, Vouldoukis I, Mossalayi MD et al. Evidence for direct interaction between mast cells and Leishmania parasites. Parasite Immunol 1997; 19(10):475–483.

    Article  PubMed  CAS  Google Scholar 

  175. de Oliveira MP, Lima MC, Calheiros AS et al. Leishmania (Viannia) braziliensis: human mast cell line activation induced by logarithmic and stationary promastigote derived-lysates. Exp Parasital 2005; 109(2):72–79.

    Article  CAS  Google Scholar 

  176. Arizmendi-Puga NG, Enciso JA, Ortega-Pierres G et al. Trichinella spiralis: histamine secretion induced by TSL-1 antigens from unsensitized mast cells. Exp Parasitol 2006; 114(2):67–76.

    Article  PubMed  CAS  Google Scholar 

  177. Calderon GM, Torres-Lopez J, Lin TJ et al. Effects of toxin A from Clostridium difficile on mast cell activation and survival. Infect Immun 1998; 66(6):2755–2761.

    PubMed  CAS  Google Scholar 

  178. Leal-Berumen I, Snider DP, Barajas-Lopez C et al. Cholera toxin increases IL-6 synthesis and decreases TNF-alpha production by rat peritoneal mast cells. J Immunol 1996; 156(1):316–321.

    PubMed  CAS  Google Scholar 

  179. Sugimoto K, Kasuga F, Kumagai S. Effects of B subunit of cholera toxin on histamine release from rat peritoneal mast cells. Int Arch Allergy Immunol 1994; 105(2):195–197.

    Article  PubMed  CAS  Google Scholar 

  180. Supajatura V, Ushio H, Wada A et al. Cutting edge: VacA, a vacuolating cytotoxin of Helicobacter pylori, directly activates mast cells for migration and production of proinflammatory cytokines. J Immunol 2002; 168(6):2603–2607.

    PubMed  CAS  Google Scholar 

  181. Scheffer J, Konig W, Braun V et al. Comparison of four hemolysin-producing organisms (Escherichia coli, Serratia marcescens, Aeromonas hydrophila and Listeria monocytogenes) for release of inflammatory mediators from various cells. J Clin Microbiol 1988; 26(3):544–551.

    PubMed  CAS  Google Scholar 

  182. Konig W, Faltin Y, Scheffer J et al. Role of cell-bound hemolysin as a pathogenicity factor for Serratia infections. Infect Immun 1987; 55(11):2554–2561.

    PubMed  CAS  Google Scholar 

  183. Gekara NO, Westphal K, Ma B et al. The multiple mechanisms of Ca2+ signalling by listeriolysin O, the cholesterol-dependent cytolysin of Listeria monocytogenes. Cell Microbiol 2007; 9(8):2008–2021.

    Article  PubMed  CAS  Google Scholar 

  184. Ohkuni H, Todome Y, Watanabe Y et al. Studies of recombinant streptococcal pyrogenic exotoxin B/cysteine protease (rSPE B/SCP) in the skin of guinea pigs and the release of histamine from cultured mast cells and basophilic leukocytes. Indian J Med Res 2004; 119Suppl:33–36.

    PubMed  CAS  Google Scholar 

  185. Metz M, Magerl M, Kuhl NF et al. Mast cells determine the magnitude of bacterial toxin-induced skin inflammation. Exp Dermatol 2009; 18(2):160–166.

    Article  PubMed  Google Scholar 

  186. Komisar J, Rivera J, Vega A et al. Effects of staphylococcal enterotoxin B on rodent mast cells. Infect Immun 1992; 60(7):2969–2975.

    PubMed  CAS  Google Scholar 

  187. McCurdy JD, Lin TJ, Marshall JS. Toll-like receptor 4-mediated activation of murine mast cells. J Leukoc Biol 2001; 70(6):977–984.

    PubMed  CAS  Google Scholar 

  188. Wierzbicki M, Brzezinska-Blaszczyk E. Diverse effects of bacterial cell wall components on mast cell degranulation, cysteinyl leukotriene generation and migration. Microbiol Immunol 2009; 53(12):694–703.

    Article  PubMed  CAS  Google Scholar 

  189. Villasenor-Cardoso MI, Salaiza N, Delgado J et al. Mast cells are activated by Leishmania mexicana LPG and regulate the disease outcome depending on the genetic background of the host. Parasite Immunol 2008.

    Google Scholar 

  190. Andrasfalvy M, Prechl J, Hardy T et al. Mucosal type mast cells express complement receptor type 2 (CD21). Immunol Lett 2002; 82(1–2):29–34.

    Article  PubMed  CAS  Google Scholar 

  191. Hartmann K, Henz BM, Kruger-Krasagakes S et al. C3a and C5a stimulate chemotaxis of human mast cells. Blood 1997; 89(8):2863–2870.

    PubMed  CAS  Google Scholar 

  192. Mousli M, Hugh TE, Landry Y et al. A mechanism of action for anaphylatoxin C3a stimulation of mast cells. J Immunol 1992; 148(8):2456–2461.

    PubMed  CAS  Google Scholar 

  193. Nilsson G, Johnell M, Hammer CH et al. C3a and C5a are chemotaxins for human mast cells and act through distinct receptors via a pertussis toxin-sensitive signal transduction pathway. J Immunol 1996; 157(4):1693–1698.

    PubMed  CAS  Google Scholar 

  194. Fureder W, Agis H, Willheim M et al. Differential expression of complement receptors on human basophils and mast cells. Evidence for mast cell heterogeneity and CD88/C5aR expression on skin mast cells. J Immunol 1995; 155(6):3152–3160.

    PubMed  CAS  Google Scholar 

  195. Oskeritzian CA, Zhao W, Min HK et al. Surface CD88 functionally distinguishes the MCTC from the MCT type of human lung mast cell. J Allergy Clin Immunol 2005; 115(6):1162–1168.

    Article  PubMed  CAS  Google Scholar 

  196. Soruri A, Grigat J, Kiafard Z et al. Mast cell activation is characterized by upregulation of a functional anaphylatoxin C5a receptor. BMC Immunol 2008; 9:29.

    Article  PubMed  CAS  Google Scholar 

  197. Ali H, Ahamed J, Hernandez-Munain C et al. Chemokine production by G protein-coupled receptor activation in a human mast cell line: roles of extracellular signal-regulated kinase and NFAT [In Process Citation]. J Immunol 2000; 165(12):7215–7223.

    PubMed  CAS  Google Scholar 

  198. Ghebrehiwet B, Kew RR, Gruber BL et al. Murine mast cells express two types of C1q receptors that are involved in the induction of chemotaxis and chemokinesis. J Immunol 1995; 155(5):2614–2619.

    PubMed  CAS  Google Scholar 

  199. Zutter MM, Edelson BT. The alpha2beta1 integrin: a novel collectin/C1q receptor. Immunobiology 2007; 212(4–5):343–353.

    Article  PubMed  CAS  Google Scholar 

  200. Barrocas AM, Cochrane DE, Carraway RE et al. Neurotensin stimulation of mast cell secretion is receptor-mediated, pertussis-toxin sensitive and requires activation of phospholipase C. Immunopharmacology 1999; 41(2):131–137.

    Article  PubMed  CAS  Google Scholar 

  201. Benyon RC, Lowman MA, Church MK. Human skin mast cells: their dispersion, purification and secretory characterization. J Immunol 1987; 138(3):861–867.

    PubMed  CAS  Google Scholar 

  202. Bischoff SC, Schwengberg S, Lorentz A et al. Substance P and other neuropeptides do not induce mediator release in isolated human intestinal mast cells. Neurogastroenterol Motil 2004; 16(2):185–193.

    Article  PubMed  CAS  Google Scholar 

  203. Church MK, el-Lati S, Caulfield JP. Neuropeptide-induced secretion from human skin mast cells. Int Arch Allergy Appl Immunol 1991; 94(1–4):310–318.

    Article  PubMed  CAS  Google Scholar 

  204. Church MK, Lowman MA, Robinson C et al. Interaction of neuropeptides with human mast cells. Int Arch Allergy Appl Immunol 1989; 88(1–2):70–78.

    Article  PubMed  CAS  Google Scholar 

  205. Levi-Schaffer F, Shalit M. Differential release of histamine and prostaglandin D2 in rat peritoneal mast cells activated with peptides. Int Arch Allergy Appl Immunol 1989; 90(4):352–357.

    Article  PubMed  CAS  Google Scholar 

  206. Lowman MA, Benyon RC, Church MK. Characterization of neuropeptide-induced histamine release from human dispersed skin mast cells. Br J Pharmacol 1988; 95(1):121–130.

    PubMed  CAS  Google Scholar 

  207. Alexacos N, Pang X, Boucher W et al. Neurotensin mediates rat bladder mast cell degranulation triggered by acute psychological stress. Urology 1999; 53(5):1035–1040.

    Article  PubMed  CAS  Google Scholar 

  208. Kruger PG, Aas P, Onarheim J et al. Neurotensin-induced release of histamine from rat mast cells in vitro. Acta Physiol Scand 1982; 114(3):467–469.

    Article  PubMed  CAS  Google Scholar 

  209. Selbekk BH, Flaten O, Hanssen LE. The in vitro effect of neurotensin on human jejunal mast cells. Scand J Gastroenterol 1980; 15(4):457–460.

    Article  PubMed  CAS  Google Scholar 

  210. Matsushima H, Yamada N, Matsue H et al. The effects of endothelin-1 on degranulation, cytokine and growth factor production by skin-derived mast cells. Eur J Immunol 2004; 34(7):1910–1919.

    Article  PubMed  CAS  Google Scholar 

  211. Uchida Y, Ninomiya H, Sakamoto T et al. ET-1 released histamine from guinea pig pulmonary but not peritoneal mast cells. Biochem Biophys Res Commun 1992; 189(2):1196–1201.

    Article  PubMed  CAS  Google Scholar 

  212. Theoharides TC, Donelan JM, Papadopoulou N et al. Mast cells as targets of corticotropin-releasing factor and related peptides. Trends Pharmacol Sci 2004; 25(11):563–568.

    Article  PubMed  CAS  Google Scholar 

  213. Malaviya R, Gao Z, Thankavel K et al. The mast cell tumor necrosis factor alpha response to FimH-expressing Escherichia coli is mediated by the glycosylphosphatidy linositol-anchored molecule CD48. Proc Natl Acad Sci USA 1999; 96(14):8110–8115.

    Article  PubMed  CAS  Google Scholar 

  214. Mullaly SC, Kubes P. The role of TLR2 in vivo following challenge with Staphylococcus aureus and prototypic ligands. J Immunol 2006; 177(11):8154–8163.

    PubMed  CAS  Google Scholar 

  215. Malaviya R, Abraham SN. Role of mast cell leukotrienes in neutrophil recruitment and bacterial clearance in infectious peritonitis. J Leukoc Biol 2000; 67(6):841–846.

    PubMed  CAS  Google Scholar 

  216. Malaviya R, Ikeda T, Abraham SN. Contribution of mast cells to bacterial clearance and their proliferation during experimental cystitis induced by type 1 fimbriated E. coli. Immunol Lett 2004; 91(2–3):103–111.

    Article  PubMed  CAS  Google Scholar 

  217. Thakurdas SM, Melicoff E, Sansores-Garcia L et al. The mast cell-restricted tryptase mMCP-6 has a critical immunoprotective role in bacterial infections. J Biol Chem 2007; 282(29):20809–20815.

    Article  PubMed  CAS  Google Scholar 

  218. Xu X, Zhang D, Lyubynska N et al. Mast cells protect mice from Mycoplasma pneumonia. Am J Respir Crit Care Med 2006; 173(2):219–225.

    Article  PubMed  Google Scholar 

  219. Wei OL, Hilliard A, Kaiman D et al. Mast cells limit systemic bacterial dissemination but not colitis in response to Citrobacter rodentium. Infect Immun 2005; 73(4): 1978–1985.

    Article  PubMed  CAS  Google Scholar 

  220. Ding H, Nedrud JG, Wershil B et al. Partial protection against Helicobacter pylori in the absence of mast cells in mice. Infect Immun 2009; 77(12):5543–5550.

    Article  PubMed  CAS  Google Scholar 

  221. Ebmeyer J, Furukawa M, Pak K et al. Role of mast cells in otitis media. J Allergy Clin Immunol 2005; 116(5):1129–1135.

    Article  PubMed  CAS  Google Scholar 

  222. Gekara NO, Weiss S. Mast cells initiate early anti-Listeria host defences. Cell Microbiol 2008; 10(1):225–236.

    PubMed  CAS  Google Scholar 

  223. Ketavarapu JM, Rodriguez AR, Yu JJ et al. Mast cells inhibit intramacrophage Francisella tularensis replication via contact and secreted products including IL-4. Proc Natl Acad Sci USA 2008; 105(27):9313–9318.

    Article  PubMed  CAS  Google Scholar 

  224. Carlos D, Frantz FG, Souza-Junior DA et al. TLR2-dependent mast cell activation contributes to the control of Mycobacterium tuberculosis infection. Microbes Infect 2009; 11(8–9):770–778.

    Article  PubMed  CAS  Google Scholar 

  225. Siebenhaar F, Syska W, Weiler K et al. Control of Pseudomonas aeruginosa skin infections in mice is mast cell-dependent. Am J Pathol 2007; 170(6): 1910–1916.

    Article  PubMed  CAS  Google Scholar 

  226. Echtenacher B, Mannel DN, Hultner L. Critical protective role of mast cells in a model of acute septic peritonitis [see comments]. Nature 1996; 381(6577):75–77.

    Article  PubMed  CAS  Google Scholar 

  227. Prodeus AP, Zhou X, Maurer M et al. Impaired mast cell-dependent natural immunity in complement C3-deficient mice. Nature 1997; 390(6656):172–175.

    Article  PubMed  CAS  Google Scholar 

  228. Maurer M, Lopez Kostka S, Siebenhaar F et al. Skin mast cells control T-cell-dependent host defense in Leishmania major infections. FASEB J 2006; 20(14):2460–2467.

    Article  PubMed  CAS  Google Scholar 

  229. Wershil BK, Theodos CM, Galli SJ et al. Mast cells augment lesion size and persistence during experimental Leishmania major infection in the mouse. J Immunol 1994; 152(9):4563–4571.

    PubMed  CAS  Google Scholar 

  230. Katakura K, Saito S, Hamada A et al. Cutaneous leishmaniasis in mast cell-deficient W/Wv mice. Infect Immun 1993; 61(5):2242–2244.

    PubMed  CAS  Google Scholar 

  231. Urban JF Jr, Schopf L, Morris SC et al. Stat6 signaling promotes protective immunity against Trichinella spiralis through a mast cell-and T-cell-dependent mechanism. J Immunol 2000; 164(4):2046–2052.

    PubMed  CAS  Google Scholar 

  232. McDermott JR, Bartram RE, Knight PA et al. Mast cells disrupt epithelial barrier function during enteric nematode infection. Proc Natl Acad Sci USA 2003; 100(13):7761–7766.

    Article  PubMed  CAS  Google Scholar 

  233. Knight PA, Wright SH, Lawrence CE et al. Delayed expulsion of the nematode Trichinella spiralis in mice lacking the mucosal mast cell-specific granule chymase, mouse mast cell protease-1. J Exp Med 2000; 192(12):1849–1856.

    Article  PubMed  CAS  Google Scholar 

  234. Crowle PK. Mucosal mast cell reconstitution and Nippostrongylus brasiliensis rejection by W/Wv mice. J Parasitai 1983; 69(1):66–69.

    Article  CAS  Google Scholar 

  235. Urban JF Jr, Noben-Trauth N, Schopf L et al. Cutting edge: IL-4 receptor expression by nonbone marrow-derived cells is required to expel gastrointestinal nematode parasites. J Immunol 2001; 167(11):6078–6081.

    PubMed  CAS  Google Scholar 

  236. Furuta T, Kikuchi T, Iwakura Y et al. Protective roles of mast cells and mast cell-derived TNF in murine malaria. J Immunol 2006; 177(5):3294–3302.

    PubMed  CAS  Google Scholar 

  237. Abe T, Nawa Y. Worm expulsion and mucosal mast cell response induced by repetitive IL-3 administration in Strongyloides ratti-infected nude mice. Immunology 1988; 63(2):181–185.

    PubMed  CAS  Google Scholar 

  238. Matsuda H, Fukui K, Kiso Y et al. Inability of genetically mast cell-deficient W/Wv mice to acquire resistance against larval Haemaphysalis longicornis ticks. J Parasitai 1985; 71(4):443–448.

    Article  CAS  Google Scholar 

  239. Yano H, Wershil BK, Arizono N et al. Substance P-induced augmentation of cutaneous vascular permeability and granulocyte infiltration in mice is mast cell dependent. J Clin Invest 1989; 84(4):1276–1286.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Shelburne, C.P., Abraham, S.N. (2011). The Mast Cell in Innate and Adaptive Immunity. In: Gilfillan, A.M., Metcalfe, D.D. (eds) Mast Cell Biology. Advances in Experimental Medicine and Biology, vol 716. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9533-9_10

Download citation

Publish with us

Policies and ethics