Skip to main content

Quantification of Visual Capability

  • Chapter
The Perception of Visual Information

Abstract

The interpretation of visual images is characterized by ambiguity. The ability of an individual to extract information from an image is difficult to quantify. One approach to this challenge has been to define the visual capability of an individual in terms of metrics derived from an understanding of how individuals perceive spatial information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schade O.H. Optical and photoelectric analog of the eye. J. Opt. Soc. Am. 1956; 46: 721–739.

    Article  ADS  Google Scholar 

  2. Campbell F.W. The transmission of spatial information through the visual system. In: Schmitt F.O., Warden F.G., eds. The Neurosciences Third Study Program. Cambridge: MIT; 1974: 90–103.

    Google Scholar 

  3. McNelis J.F., Guth S.K. Visual performance: Further data on complex test objects. Ilium. Eng. 1969; 64: 99–102.

    Google Scholar 

  4. Ginsburg A.P. Sine-wave gratings are more visually sensitive than disks or letters. J. Opt. Soc. Am. 1984; 1(12): 1301.

    MathSciNet  ADS  Google Scholar 

  5. Proenza L., Enoch J., Jampolsky A., eds. Clinical Applications of Visual Psychophysics. New York: Cambridge University Press; 1981: 70–106.

    Google Scholar 

  6. Ginsburg A.P., Coggins J. Texture analysis based on filtering properties of the human visual system. Proc. IEEE Int. Conf. Cybern Soc. 1981; 112–117.

    Google Scholar 

  7. Howland B., Ginsburg A.P., Campbell F. High-pass spatial frequency letters as clinical optotypes. Vision. Res. 1978; 9: 1063–1064.

    Article  Google Scholar 

  8. Ginsburg A.P. Specifying relevant spatial information for image evaluation and display design: An explanation of how we see certain objects. Proceedings of the Society for Information Displays 1980; 21(3).

    Google Scholar 

  9. Ferris F.L. III, Kassoff A., Bresnick G.H. et al. New visual acuity charts for clinical research. Am. J. Ophthal. 1982; 94: 91–96.

    Google Scholar 

  10. Ginsburg A.P. Need for standard glare, contrast sensitivity tests. Ocular Surgery News 1988; 6(6): 25–32.

    Google Scholar 

  11. Ginsburg A.P. A new contrast sensitivity vision test chart. Am. J. Opt. Physiol. Opt. 1984; 61(6): 403–407.

    Article  Google Scholar 

  12. Corwin T.R., Richman J.E. Three clinical tests of the spatial contrast sensitivity function: A comparison. Am. J. Opt. Physiol. Opt. 1986; 63(6): 413–418.

    Article  Google Scholar 

  13. Ginsburg A.P. The visualization of diagnostic images. Radiographics 1987; 7: 1251–1260.

    Google Scholar 

  14. Committee on Vision, National Research Council. Emergent Techniques for Assessment of Visual Performance. Washington: National Academy; 1985.

    Google Scholar 

  15. Woo G.C., Bohnsack H. Comparison of the distance and near Vistech vision contrast test systems (VCTS). Can. J. Opt. 1986; 48(1): 12–15.

    Google Scholar 

  16. Ginsburg A.P. The evaluation of contact lenses and refractive surgery using contrast sensitivity. In: Dabezies O.H., ed. Contact Lenses: The CLAO Guide to Basic Science and Clinical Practice (update 2). Orlando: Grune and Stratton; 1987: 56.1–56.17.

    Google Scholar 

  17. Hess R., Woo G.C. Vision through cataracts. Invest. Ophthal. Vis. Sci. 1978; 17: 428–435.

    Google Scholar 

  18. Ginsburg A.P., Todesco J. Evaluation of functional vision of cataract and YAG posterior capsulatomy patients using Vistech contrast sensitivity chart. Invest. Ophthal. Vis. Sci. 1986; 27(3) Suppl: 107.

    Google Scholar 

  19. Ginsburg A.P. Clinical findings from a new contrast sensitivity test chart. In: Fiorentini A., Guyton D.L., Siegel I.M., eds. Advances in Diagnostic Visual Optics. Berlin: Springer; 1987: 132–140.

    Google Scholar 

  20. Ginsburg A.P. Visual Information Processing Based on Spatial Filters Constrained by Biological Data (AFARML report). Cambridge: University of Cambridge; 1978: 78–129.

    Google Scholar 

  21. Ginsburg A.P, Evans D., Sekuler R., Harp S.A. Contrast sensitivity predicts pilots’ performance in aircraft simulators. Am. J. Opt. Physiol. Opt. 1982; 59(1): 105–109.

    Article  Google Scholar 

  22. Ginsburg A.P., Easterly J., Evans D. Contrast sensitivity predicts target detection field performance of pilots. Proc. Hum. Factors Soc. 1980; 1: 269–273.

    Google Scholar 

  23. Evans D., Ginsburg A. Contrast sensitivity predicts age-related differences in highway sign discriminability. Hum. Factors 1985; 27: 637–642.

    Google Scholar 

  24. Thorn, F. Effects of dioptric blur on the Vistech contrast sensitivity test. Opt. Vis. Sci. 1990; 57: 8–12.

    Article  Google Scholar 

  25. Ginsburg, A.P. Spatial frequency and contrast sensitivity test chart. Washington: U.S. Patent office, U.S. Patent No. 4,365,873, 1982.

    Google Scholar 

  26. Regan D., Neima D. Low-contrast letter charts as a test of visual functions. Ophthalmology 1983; 90: 1192–1200.

    Google Scholar 

  27. Pelli D.G., Robson J.G., Wilkins A.J. The design of a new letter chart for measuring contrast sensitivity. Clin. Vision Sci. 1988; 2: 187–199.

    Google Scholar 

  28. Leguire L.E. Do letter charts measure contrast sensitivity. Clin. Vision Sci. 1991; 6: 391–400.

    Google Scholar 

  29. Adamsons L, Rubin G., Vitale S., Taylor H., Stark W. The effect of early cataracts on glare and contrast sensitivity. Arch Ophthalmol. 1992; 110: 1081.

    Article  Google Scholar 

  30. Rubin G. Reliability and sensitivity of clinical contrast sensitivity tests, Clin. Vis. Sci. 1989; 1: 169–177.

    Google Scholar 

  31. Ginsburg A.P. Testing functional vision: important relationships between gratin contrast sensitivity and low-contrast letter acuity tests. Bellingham, WA: Society of Photo-Optical Instrumentation Engineers. SPIE Report No. 2127. 1994: 36–43.

    Google Scholar 

  32. Ravalico G., Baccara F., Rinaldi G. Contrast sensitivity in multifocal intraocular lenses. J. Catar. Refr. Surg. 1993; 19: 22–25.

    Google Scholar 

  33. Rubin G.S., Legge G.E. The psychophysics of reading. VI. The role of contrast in low vision. Vision Res. 1989; 29: 79–91.

    Article  Google Scholar 

  34. Rohaly A.M., Owsley C. Modeling the contrast sensitivity functions of older adults. J. Opt. Soc. Amer. 1993; 10: 1591–1599.

    Article  ADS  Google Scholar 

  35. Holliday L.L. The fundamentals of glare and visibility. J. Opt. Soc. Am. 1926; 12: 271–332.

    Article  ADS  Google Scholar 

  36. Lebsensohn J.E. Night driving. Am. J. Ophthal. 1949; 32: 860–862.

    Google Scholar 

  37. Olsen P.A., Sivak M. Glare from automobile rear view mirrors. Hum. Factors 1984; 26: 269–282.

    Google Scholar 

  38. Nadler D.J., Jaffe N.S., Dayman A.M. et al. Glare disability in eyes with intraocular lenses. Am. J. Ophthal. 1984; 97: 43–47.

    Google Scholar 

  39. Paulsson L.E., Sjostrand J. Contrast sensitivity in the presence of a glare light: Theoretical concepts and preliminary clinical studies. Invest. Ophthal. Vis. Sci. 1980; 19: 401–406.

    Google Scholar 

  40. Bennett C. The demographic variables of discomfort glare. Lighting Des. Appl. 1977; January: 22–31.

    Google Scholar 

  41. Bennett C. Discomfort glare. Concentrated sources parametric study of angularly small sources. Ilium. Eng. 1977; 2: 244–246.

    Google Scholar 

  42. Ginsburg A.P. Direct performance assessment of HUD display systems using contrast sensitivity. In: National Aerospace Electronics Conference Mini-Course Notes (Dayton, Ohio, May 17–19). New York: IEEE; 1983: 33–44.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ginsburg, A.P., Hendee, W.R. (1997). Quantification of Visual Capability. In: Hendee, W.R., Wells, P.N.T. (eds) The Perception of Visual Information. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1836-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1836-4_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7306-6

  • Online ISBN: 978-1-4612-1836-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics