Skip to main content

FGF23 in Chronic Kidney Disease

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 728))

Abstract

Chronic kidney disease (CKD) is a growing public health epidemic that is associated with a markedly increased risk of cardiovascular mortality. Disordered mineral metabolism and particularly, disordered phosphorus metabolism appears to be a contributing factor. Fibroblast growth factor 23 (FGF23) regulates phosphorus and vitamin D metabolism. Its levels increase progressively beginning in early CKD, presumably as a physiological adaptation to maintain normal serum phosphate levels or normal phosphorus balance. FGF23 promotes phosphaturia and decreases production of calcitriol. Recent studies suggest that increased FGF23 is associated with mortality, left ventricular hypertrophy, endothelial dysfunction and progression of CKD. These results were consistently independent of serum phosphate levels. At the very least, FGF23 is emerging as a novel biomarker that may help identify which CKD patients might benefit most from aggressive management of disordered phosphorus metabolism. It is also possible that markedly increased FGF23 levels in CKD could contribute directly to tissue injury in the heart, vessels and kidneys, an exciting question that is sure to be the topic of intense investigation in the near future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coresh J, Selvin E, Stevens LA et al. Prevalence of chronic kidney disease in the United States. JAMA 2007; 298:2038–2047.

    Article  PubMed  CAS  Google Scholar 

  2. Snyder JJ, Foley RN, Collins AJ. Prevalence of CKD in the United States: a sensitivity analysis using the National Health and Nutrition Examination Survey (NHANES) 1999–2004. Am J Kidney Dis 2009; 53:218–228.

    Article  PubMed  Google Scholar 

  3. USRDS: the United States Renal Data System. Am J Kidney Dis 2003; 42:1–230.

    Google Scholar 

  4. Muntner P, He J, Hamm L et al. Renal insufficiency and subsequent death resulting from cardiovascular disease in the United States. J Am Soc Nephrol 2002; 13:745–753.

    PubMed  Google Scholar 

  5. Levin A. Clinical epidemiology of cardiovascular disease in chronic kidney disease prior to dialysis. Semin Dial 2003; 16:101–105.

    Article  PubMed  Google Scholar 

  6. Schiffrin EL, Lipman ML, Mann JF. Chronic kidney disease: effects on the cardiovascular system. Circulation 2007; 116:85–97.

    Article  PubMed  Google Scholar 

  7. Weiner DE, Tighiouart H, Stark PC et al. Kidney disease as a risk factor for recurrent cardiovascular disease and mortality. Am J Kidney Dis 2004; 44:198–206.

    Article  PubMed  Google Scholar 

  8. Elsayed EF, Tighiouart H, Griffith J et al. Cardiovascular disease and subsequent kidney disease. Arch Intern Med 2007; 167:1130–1136.

    Article  PubMed  CAS  Google Scholar 

  9. Go AS, Chertow GM, Fan D et al. Chronic kidney disease and the risks of death, cardiovascular events and hospitalization. N Engl J Med 2004; 351:1296–1305.

    Article  PubMed  CAS  Google Scholar 

  10. Keith DS, Nichols GA, Gullion CM et al. Longitudinal follow-up and outcomes among a population with chronic kidney disease in a large managed care organization. Arch Intern Med 2004; 164:659–663.

    Article  PubMed  Google Scholar 

  11. Yu HT. Progression of chronic renal failure. Arch Intern Med 2003; 163:1417–1429.

    Article  PubMed  Google Scholar 

  12. Brenner BM. Remission of renal disease: recounting the challenge, acquiring the goal. J Clin Invest 2002; 110:1753–1758.

    PubMed  CAS  Google Scholar 

  13. Schieppati A, Remuzzi G. The June 2003 Barry M. Brenner Comgan lecture. The future of renoprotection: frustration and promises. Kidney Int 2003; 64:1947–1955.

    Article  PubMed  CAS  Google Scholar 

  14. K/DOQI clinical practice guidelines for evaluation of chronic kidney disease: evaluation, classification and stratification. Am J Kidney Dis 2002; 39:S46–S76.

    Google Scholar 

  15. Stevens LA, Coresh J, Greene T et al. Assessing kidney function—measured and estimated glomerular filtration rate. N Engl J Med 2006; 354:2473–2483.

    Article  PubMed  CAS  Google Scholar 

  16. Stevens LA, Levey AS. Measured GFR as a confirmatory test for estimated GFR. J Am Soc Nephrol 2009; 20:2305–2313.

    Article  PubMed  Google Scholar 

  17. Perrone RD, Madias NE, Levey AS. Serum creatinine as an index of renal function: new insights into old concepts. Clin Chem 1992; 38:1933–1953.

    PubMed  CAS  Google Scholar 

  18. Abboud H, Henrich WL. Stage IV chronic kidney disease. N Engl J Med 2009; 362:56–65.

    Article  Google Scholar 

  19. Block GA, Klassen PS, Lazarus JM et al. Mineral metabolism, mortality and morbidity in maintenance hemodialysis. J Am Soc Nephrol 2004; 15:2208–2218.

    Article  PubMed  CAS  Google Scholar 

  20. Kestenbaum B, Sampson JN, Rudser KD et al. Serum phosphate levels and mortality risk among people with chronic kidney disease. J Am Soc Nephrol 2005; 16:520–528.

    Article  PubMed  CAS  Google Scholar 

  21. Bhuriya R, Li S, Chen SC et al. Plasma parathyroid hormone level and prevalent cardiovascular disease in CKD stages 3 and 4: an analysis from the Kidney Early Evaluation Program (KEEP). Am J Kidney Dis 2009; 53:S3–10.

    Article  Google Scholar 

  22. Voormolen N, Noordzij M, Grootendorst DC et al. High plasma phosphate as a risk factor for decline in renal function and mortality in predialysis patients. Nephrol Dial Transplant 2007; 22:2909–2916.

    Article  PubMed  CAS  Google Scholar 

  23. Kovesdy CP, Ahmadzadeh S, Anderson JE et al. Secondary hyperparathyroidism is associated with higher mortality in men with moderate to severe chronic kidney disease. Kidney Int 2008; 73:1296–1302.

    Article  PubMed  CAS  Google Scholar 

  24. Slatopolsky E. The role of calcium, phosphorus and vitamin D metabolism in the development of secondary hyperparathyroidism. Nephrol Dial Transplant 1998; 13 Suppl 3:3–8.

    Article  PubMed  Google Scholar 

  25. Juppner H, Potts JTJr. Immunoassays for the detection of parathyroid hormone. J Bone Miner Res 2002; 17 Suppl 2:N81–86.

    Google Scholar 

  26. Goodman WG, Quarles LD. Development and progression of secondary hyperparathyroidism in chronic kidney disease: Lessons from molecular genetics. Kidney Int 2007.

    Google Scholar 

  27. Brown AJ, Dusso A, Slatopolsky E. Vitamin D. Am J Physiol 1999; 277:.

    Google Scholar 

  28. Quarles LD. Endocrine functions of bone in mineral metabolism regulation. J Clin Invest 2008; 118:3820–3828.

    Article  PubMed  CAS  Google Scholar 

  29. Saito H, Maeda A, Ohtomo S et al. Circulating FGF-23 is regulated by 1alpha,25-dihydroxyvitamin D3 and phosphorus in vivo. J Biol Chem 2005; 280:2543–2549.

    Article  PubMed  CAS  Google Scholar 

  30. Shimada T, Hasegawa H, Yamazaki Y et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res 2004; 19:429–435.

    Article  PubMed  CAS  Google Scholar 

  31. Saito H, Kusano K, Kinosaki M et al. Human fibroblast growth factor-23 mutants suppress Na?-dependent phosphate cotransport activity and 1alpha,25-dihydroxyvitamin D3 production. J Biol Chem 2003; 278:2206–2211.

    Article  PubMed  CAS  Google Scholar 

  32. Shimada T, Kakitani M, Yamazaki Y et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest 2004; 113:561–568.

    PubMed  CAS  Google Scholar 

  33. Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V et al. The parathyroid is a target organ for FGF23 in rats. J Clin Invest 2007; 117:4003–4008.

    PubMed  CAS  Google Scholar 

  34. Ferrari SL, Bonjour JP, Rizzoli R. Fibroblast growth factor-23 relationship to dietary phosphate and renal phosphate handling in healthy young men. J Clin Endocrinol Metab 2005; 90:1519–1524.

    Article  PubMed  CAS  Google Scholar 

  35. Antoniucci DM, Yamashita T, Portale AA. Dietary phosphorus regulates serum fibroblast growth factor-23 concentrations in healthy men. J Clin Endocrinol Metab 2006; 91:3144–3149.

    Article  PubMed  CAS  Google Scholar 

  36. Burnett SM, Gunawardene SC, Bringhurst FR et al. Regulation of C-terminal and intact FGF-23 by dietary phosphate in men and women. J Bone Miner Res 2006; 21:1187–1196.

    Article  PubMed  CAS  Google Scholar 

  37. Jonsson KB, Zahradnik R, Larsson T et al. Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. N Engl J Med 2003; 348:1656–1663.

    Article  PubMed  CAS  Google Scholar 

  38. White KE, Jonsson KB, Carn G et al. The autosomal dominant hypophosphatemic rickets (ADHR) gene is a secreted polypeptide overexpressed by tumors that cause phosphate wasting. J Clin Endocrinol Metab 2001; 86:497–500.

    Article  PubMed  CAS  Google Scholar 

  39. A utosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet 2000; 26:345–348.

    Article  Google Scholar 

  40. Shimada T, Mizutani S, Muto T et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci USA 2001; 98:6500–6505.

    Article  PubMed  CAS  Google Scholar 

  41. De Beur SM, Finnegan RB, Vassiliadis J et al. Tumors associated with oncogenic osteomalacia express genes important in bone and mineral metabolism. J Bone Miner Res 2002; 17:1102–1110.

    Article  PubMed  Google Scholar 

  42. Benet-Pages A, Orlik P, Strom TM et al. An FGF23 missense mutation causes familial tumoral calcinosis with hyperphosphatemia. Hum Mol Genet 2005; 14:385–390.

    Article  PubMed  CAS  Google Scholar 

  43. Stubbs JR, Liu S, Tang W et al. Role of hyperphosphatemia and 1,25-dihydroxyvitamin D in vascular calcification and mortality in fibroblastic growth factor 23 null mice. J Am Soc Nephrol 2007; 18:2116–2124.

    Article  PubMed  CAS  Google Scholar 

  44. Slatopolsky E, Delmez JA. Pathogenesis of secondary hyperparathyroidism. Nephrol Dial Transplant 1996; 11 Suppl 3:130–135.

    PubMed  CAS  Google Scholar 

  45. Slatopolsky E, Finch J, Denda M et al. Phosphorus restriction prevents parathyroid gland growth. High phosphorus directly stimulates PTH secretion in vitro. J Clin Invest 1996; 97:2534–2540.

    Article  PubMed  CAS  Google Scholar 

  46. Portale AA, Halloran BP, Morris RC,Jr. Physiologic regulation of the serum concentration of 1,25-dihydroxyvitamin D by phosphorus in normal men. J Clin Invest 1989; 83:1494–1499.

    Article  PubMed  CAS  Google Scholar 

  47. Portale AA, Halloran BP, Murphy MM et al. Oral intake of phosphorus can determine the serum concentration of 1,25-dihydroxyvitamin D by determining its production rate in humans. J Clin Invest 1986; 77:7–12.

    Article  PubMed  CAS  Google Scholar 

  48. Llach F, Massry SG. On the mechanism of secondary hyperparathyroidism in moderate renal insufficiency. J Clin Endocrinol Metab 1985; 61:601–606.

    Article  PubMed  CAS  Google Scholar 

  49. Brown AJ, Zhong M, Ritter C et al. Loss of calcium responsiveness in cultured bovine parathyroid cells is associated with decreased calcium receptor expression. Biochem Biophys Res Commun 1995; 212:861–867.

    Article  PubMed  CAS  Google Scholar 

  50. Fukuda N, Tanaka H, Tominaga Y et al. Decreased 1,25-dihydroxyvitamin D3 receptor density is associated with a more severe form of parathyroid hyperplasia in chronic uremic patients. J Clin Invest 1993; 92:1436–1443.

    Article  PubMed  CAS  Google Scholar 

  51. Mitlak BH, Alpert M, Lo C et al. Parathyroid function in normocalcemic renal transplant recipients: evaluation by calcium infusion. J Clin Endocrinol Metab 1991; 72:350–355.

    Article  PubMed  CAS  Google Scholar 

  52. Fukagawa M. Cell biology of parathyroid hyperplasia in uremia. Am J Med Sci 1999; 317:377–382.

    Article  PubMed  CAS  Google Scholar 

  53. Rodriguez M, Nemeth E, Martin D. The calcium-sensing receptor: a key factor in the pathogenesis of secondary hyperparathyroidism. Am J Physiol Renal Physiol 2005; 288:F253–264.

    Article  PubMed  CAS  Google Scholar 

  54. LaClair RE, Hellman RN, Karp SL et al. Prevalence of calcidiol deficiency in CKD: a cross-sectional study across latitudes in the United States. Am J Kidney Dis 2005; 45:1026–1033.

    Article  PubMed  CAS  Google Scholar 

  55. Levin A, Bakris GL, Molitch M et al. Prevalence of abnormal serum vitamin D, PTH, calcium and phosphorus in patients with chronic kidney disease: results of the study to evaluate early kidney disease. Kidney Int 2007; 71:31–38.

    Article  PubMed  CAS  Google Scholar 

  56. Young EW, Akiba T, Albert JM et al. Magnitude and impact of abnormal mineral metabolism in hemodialysis patients in the Dialysis Outcomes and Practice Patterns Study (DOPPS). Am J Kidney Dis 2004; 44:34–38.

    Article  PubMed  Google Scholar 

  57. Gutierrez OM, Isakova T, Andress DL et al. Prevalence and severity of disordered mineral metabolism in Blacks with chronic kidney disease. Kidney Int 2008; 73:956–962.

    Article  PubMed  CAS  Google Scholar 

  58. Gutierrez O, Isakova T, Rhee E et al. Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease. J Am Soc Nephrol 2005; 16:2205–2215.

    Article  PubMed  CAS  Google Scholar 

  59. Gonzalez EA, Sachdeva A, Oliver DA et al. Vitamin D insufficiency and deficiency in chronic kidney disease. A single center observational study. Am J Nephrol 2004; 24:503–510.

    Article  PubMed  CAS  Google Scholar 

  60. Larsson T, Nisbeth U, Ljunggren O et al. Circulating concentration of FGF-23 increases as renal function declines in patients with chronic kidney disease, but does not change in response to variation in phosphate intake in healthy volunteers. Kidney Int 2003; 64:2272–2279.

    Article  PubMed  CAS  Google Scholar 

  61. Shigematsu T, Kazama JJ, Yamashita T et al. Possible involvement of circulating fibroblast growth factor 23 in the development of secondary hyperparathyroidism associated with renal insufficiency. Am J Kidney Dis 2004; 44:250–256.

    Article  PubMed  CAS  Google Scholar 

  62. Komaba H, Fukagawa M. FGF23-parathyroid interaction: implications in chronic kidney disease. Kidney Int 2009.

    Google Scholar 

  63. Denda M, Finch J, Slatopolsky E. Phosphorus accelerates the development of parathyroid hyperplasia and secondary hyperparathyroidism in rats with renal failure. Am J Kidney Dis 1996; 28:596–602.

    Article  PubMed  CAS  Google Scholar 

  64. Lopez-Hilker S, Dusso AS, Rapp NS et al. Phosphorus restriction reverses hyperparathyroidism in uremia independent of changes in calcium and calcitriol. Am J Physiol 1990; 259:F432–437.

    PubMed  CAS  Google Scholar 

  65. Kusano K, Segawa H, Ohnishi R et al. Role of low protein and low phosphorus diet in the progression of chronic kidney disease in uremic rats. J Nutr Sci Vitaminol (Tokyo) 2008; 54:237–243.

    Article  CAS  Google Scholar 

  66. Barsotti G, Giannoni A, Morelli E et al. The decline of renal function slowed by very low phosphorus intake in chronic renal patients following a low nitrogen diet. Clin Nephrol 1984; 21:54–59.

    PubMed  CAS  Google Scholar 

  67. Koizumi T, Murakami K, Nakayama H et al. Role of dietary phosphorus in the progression of renal failure. Biochem Biophys Res Commun 2002; 295:917–921.

    Article  PubMed  CAS  Google Scholar 

  68. Martinez I, Saracho R, Montenegro J et al. The importance of dietary calcium and phosphorous in the secondary hyperparathyroidism of patients with early renal failure. Am J Kidney Dis 1997; 29:496–502.

    Article  PubMed  CAS  Google Scholar 

  69. Portale AA, Booth BE, Halloran BP et al. Effect of dietary phosphorus on circulating concentrations of 1,25-dihydroxyvitamin D and immunoreactive parathyroid hormone in children with moderate renal insufficiency. J Clin Invest 1984; 73:1580–1589.

    Article  PubMed  CAS  Google Scholar 

  70. Hasegawa H, Iijima K, Shimada T et al. FGF-23 plays a critical role in the development of reduced serum 1,25-dihydroxyvitamin D levels associated with renal insufficiency (Abstract). J Am Soc Nephrol 2003; 14:40A.

    Google Scholar 

  71. Yamashita T. Involvement of FGF-23 in abnormal vitamin D and mineral metabolism associated with renal insufficiency (Abstract). J Am Soc Nephrol 2002; 13:577A.

    Google Scholar 

  72. Koiwa F, Kazama JJ, Tokumoto A et al. Sevelamer hydrochloride and calcium bicarbonate reduce serum fibroblast growth factor 23 levels in dialysis patients. Ther Apher Dial 2005; 9:336–339.

    Article  PubMed  CAS  Google Scholar 

  73. Oliveira RB, Cancela ALE, Graciolli FG et al. Early control of PTH and FGF23 in normophosphatemic CKD patients: a new target in CKD-MBD therapy? CJASN 2009; In Press.

    Google Scholar 

  74. Nagano N, Miyata S, Abe M et al. Effect of manipulating serum phosphorus with phosphate binder on circulating PTH and FGF23 in renal failure rats. Kidney Int 2006; 69:531–537.

    Article  PubMed  CAS  Google Scholar 

  75. McClellan W, Warnock DG, McClure L et al. Racial differences in the prevalence of chronic kidney disease among participants in the Reasons for Geographic and Racial Differences in Stroke (REGARDS) Cohort Study. J Am Soc Nephrol 2006; 17:1710–1715.

    Article  PubMed  Google Scholar 

  76. Xue JL, Eggers PW, Agodoa LY et al. Longitudinal study of racial and ethnic differences in developing end-stage renal disease among aged medicare beneficiaries. J Am Soc Nephrol 2007; 18:1299–1306.

    Article  PubMed  Google Scholar 

  77. K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am J Kidney Dis 2003; 42:S1–201.

    Google Scholar 

  78. (KDIGO) CKD-MBD Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl 2009:S1–130.

    Google Scholar 

  79. Blacher J, Asmar R, Djane S et al. Aortic pulse wave velocity as a marker of cardiovascular risk in hypertensive patients. Hypertension 1999; 33:1111–1117.

    PubMed  CAS  Google Scholar 

  80. Klassen PS, Lowrie EG, Reddan DN et al. Association between pulse pressure and mortality in patients undergoing maintenance hemodialysis. JAMA 2002; 287:1548–1555.

    Article  PubMed  Google Scholar 

  81. Cozzolino M, Brancaccio D, Gallieni M et al. Pathogenesis of vascular calcification in chronic kidney disease. Kidney Int 2005; 68:429–436.

    Article  PubMed  CAS  Google Scholar 

  82. Blacher J, Guerin AP, Pannier B et al. Arterial calcifications, arterial stiffness and cardiovascular risk in end-stage renal disease. Hypertension 2001; 38:938–942.

    Article  PubMed  CAS  Google Scholar 

  83. Goodman WG, Goldin J, Kuizon BD et al. Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis. N Engl J Med 2000; 342:1478–1483.

    Article  PubMed  CAS  Google Scholar 

  84. Moe SM, O’Neill KD, Reslerova M et al. Natural history of vascular calcification in dialysis and transplant patients. Nephrol Dial Transplant 2004; 19:2387–2393.

    Article  PubMed  Google Scholar 

  85. Adeney KL, Siscovick DS, Ix JH et al. Association of serum phosphate with vascular and valvular calcification in moderate CKD. J Am Soc Nephrol 2009; 20:381–387.

    Article  PubMed  CAS  Google Scholar 

  86. Jono S, McKee MD, Murry CE et al. Phosphate regulation of vascular smooth muscle cell calcification. Circ Res 2000; 87:E10–17.

    PubMed  CAS  Google Scholar 

  87. Achinger SG, Ayus JC. Left ventricular hypertrophy: is hyperphosphatemia among dialysis patients a risk factor? J Am Soc Nephrol 2006; 17:S255–261.

    Article  Google Scholar 

  88. Ayus JC, Mizani MR, Achinger SG et al. Effects of short daily versus conventional hemodialysis on left ventricular hypertrophy and inflammatory markers: a prospective, controlled study. J Am Soc Nephrol 2005; 16:2778–2788.

    Article  PubMed  CAS  Google Scholar 

  89. Culleton BF, Walsh M, Klarenbach SW et al. Effect of frequent nocturnal hemodialysis vs conventional hemodialysis on left ventricular mass and quality of life: a randomized controlled trial. JAMA 2007; 298:1291–1299.

    Article  PubMed  CAS  Google Scholar 

  90. Young EW, Albert JM, Satayathum S et al. Predictors and consequences of altered mineral metabolism: the Dialysis Outcomes and Practice Patterns Study. Kidney Int 2005; 67:1179–1187.

    Article  PubMed  CAS  Google Scholar 

  91. Kalantar-Zadeh K, Kuwae N, Regidor DL et al. Survival predictability of time-varying indicators of bone disease in maintenance hemodialysis patients. Kidney Int 2006; 70:771–780.

    Article  PubMed  CAS  Google Scholar 

  92. Menon V, Greene T, Pereira AA et al. Relationship of phosphorus and calcium-phosphorus product with mortality in CKD. Am J Kidney Dis 2005; 46:455–463.

    Article  PubMed  CAS  Google Scholar 

  93. Isakova T, Gutierrez O, Shah A et al. Postprandial mineral metabolism and secondary hyperparathyroidism in early CKD. J Am Soc Nephrol 2008; 19:615–623.

    Article  PubMed  CAS  Google Scholar 

  94. Markowitz M, Rotkin L, Rosen JF. Circadian rhythms of blood minerals in humans. Science 1981; 213:672–674.

    Article  PubMed  CAS  Google Scholar 

  95. Haut LL, Alfrey AC, Guggenheim S et al. Renal toxicity of phosphate in rats. Kidney Int 1980; 17:722–731.

    Article  PubMed  CAS  Google Scholar 

  96. Fliser D, Kollerits B, Neyer U et al. Fibroblast growth factor 23 (FGF23) predicts progression of chronic kidney disease: the Mild to Moderate Kidney Disease (MMKD) Study. J Am Soc Nephrol 2007; 18:2600–2608.

    Article  PubMed  CAS  Google Scholar 

  97. Gutierrez OM, Januzzi JL, Isakova T et al. Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease. Circulation 2009; 119:2545–2552.

    Article  PubMed  CAS  Google Scholar 

  98. Mirza MA, Larsson A, Melhus H et al. Serum intact FGF23 associate with left ventricular mass, hypertrophy and geometry in an elderly population. Atherosclerosis 2009; 207:546–551.

    Article  PubMed  CAS  Google Scholar 

  99. Mirza MA, Larsson A, Lind L et al. Circulating fibroblast growth factor-23 is associated with vascular dysfunction in the community. Atherosclerosis 2009; 205:385–390.

    Article  PubMed  CAS  Google Scholar 

  100. Hsu HJ, Wu MS. Fibroblast growth factor 23: a possible cause of left ventricular hypertrophy in hemodialysis patients. Am J Med Sci 2009; 337:116–122.

    Article  PubMed  Google Scholar 

  101. Jean G, Terrat JC, Vanel T et al. High levels of serum fibroblast growth factor (FGF)-23 are associated with increased mortality in long haemodialysis patients. Nephrol Dial Transplant 2009; 24:2792–2796.

    Article  PubMed  CAS  Google Scholar 

  102. Kojima F, Uchida K, Ogawa T et al. Plasma levels of fibroblast growth factor-23 and mineral metabolism in diabetic and nondiabetic patients on chronic hemodialysis. Int Urol Nephrol 2008; 40:1067–1074.

    Article  PubMed  CAS  Google Scholar 

  103. Gutierrez OM, Mannstadt M, Isakova T et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med 2008; 359:584–592.

    Article  PubMed  CAS  Google Scholar 

  104. Shimada T, Urakawa I, Isakova T et al. Circulating Fibroblast Growth Factor 23 in Patients with End-Stage Renal Disease Treated by Peritoneal Dialysis Is Intact and Biologically Active. J Clin Endocrinol Metab 2009.

    Google Scholar 

  105. Isakova T, Gutierrez OM, Chang Y et al. Phosphorus binders and survival on hemodialysis. J Am Soc Nephrol 2009; 20:388–396.

    Article  PubMed  CAS  Google Scholar 

  106. Nishi H, Nii-Kono T, Nakanishi S et al. Intravenous calcitriol therapy increases serum concentrations of fibroblast growth factor-23 in dialysis patients with secondary hyperparathyroidism. Nephron Clin Pract 2005; 101:c94–99.

    Article  PubMed  CAS  Google Scholar 

  107. Wetmore JB, Liu S, Krebill R et al. Effects of cinacalcet and concurrent low-dose vitamin D on FGF23 levels in ESRD. Clin J Am Soc Nephrol 2010;5(1):110–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myles Wolf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Wahl, P., Wolf, M. (2012). FGF23 in Chronic Kidney Disease. In: Kuro-o, M. (eds) Endocrine FGFs and Klothos. Advances in Experimental Medicine and Biology, vol 728. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0887-1_8

Download citation

Publish with us

Policies and ethics