Skip to main content

CAVEOLIN-1: Role in Cell Signaling

  • Chapter
Caveolins and Caveolae

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 729))

Abstract

Caveolins (Cavs) are integrated plasma membrane proteins that are complex signaling regulators with numerous partners and whose activity is highly dependent on cellular context. Cavs are both positive and negative regulators of cell signaling in and/or out of caveolae, invaginated lipid raft domains whose formation is caveolin expression dependent. Caveolins and rafts have been implicated in membrane compartmentalization; proteins and lipids accumulate in these membrane microdomains where they transmit fast, amplified and specific signaling cascades. The concept of plasma membrane organization within functional rafts is still in exploration and sometimes questioned. In this chapter, we discuss the opposing functions of caveolin in cell signaling regulation focusing on the role of caveolin both as a promoter and inhibitor of different signaling pathways and on the impact of membrane domain localization on caveolin functionality in cell proliferation, survival, apoptosis and migration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Glenney JR Jr. Tyrosine phosphorylation of a 22-kDa protein is correlated with transformation by Rous sarcoma virus. J Biol Chem 1989; 264(34):20163–20166.

    PubMed  CAS  Google Scholar 

  2. Rothberg KG, Heuser JE, Donzell WC et al. Caveolin, a protein component of caveolae membrane coats. Cell 1992; 68(4):673–682.

    PubMed  CAS  Google Scholar 

  3. Kurzchalia TV, Dupree P, Parton RG et al. VIP21, a 21-kD membrane protein is an integral component of trans-Golgi-network-derived transport vesicles. J Cell Biol 1992; 118(5):1003–1014.

    PubMed  CAS  Google Scholar 

  4. Sargiacomo M, Sudol M, Tang Z et al. Signal transducing molecules and glycosyl-phosphatidylinositol-linked proteins form a caveolin-rich insoluble complex in MDCK cells. J Cell Biol 1993; 122(4):789–807.

    PubMed  CAS  Google Scholar 

  5. Scherer PE, Okamoto T, Chun M et al. Identification, sequence and expression of caveolin-2 defines a caveolin gene family. Proc Natl Acad Sci USA 1996; 93(1):131–135.

    PubMed  CAS  Google Scholar 

  6. Tang Z, Scherer PE, Okamoto T et al. Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J Biol Chem 1996; 271(4):2255–2261.

    PubMed  CAS  Google Scholar 

  7. Scherer PE, Lewis RY, Volonte D et al. Cell-type and tissue-specific expression of caveolin-2. Caveolins 1 and 2 colocalize and form a stable hetero-oligomeric complex in vivo. J Biol Chem 1997; 272(46):29337–29346.

    PubMed  CAS  Google Scholar 

  8. Galbiati F, Volonte D, Liu J et al. Caveolin-1 expression negatively regulates cell cycle progression by inducing G(0)/G(1) arrest via a p53/p21(WAF1/Cip1)-dependent mechanism. Mol Biol Cell 2001; 12(8):2229–2244.

    PubMed  CAS  Google Scholar 

  9. Woodman SE, Park DS, Cohen AW et al. Caveolin-3 knock-out mice develop a progressive cardiomyopathy and show hyperactivation of the p42/44 MAPK cascade. J Biol Chem 2002; 277(41):38988–38997.

    PubMed  CAS  Google Scholar 

  10. Glenney JR Jr, Soppet D. Sequence and expression of caveolin, a protein component of caveolae plasma membrane domains phosphorylated on tyrosine in Rous sarcoma virus-transformed fibroblasts. Proc Natl Acad Sci USA 1992; 89(21):10517–10521.

    PubMed  CAS  Google Scholar 

  11. Schlegel A, Lisanti MP. A molecular dissection of caveolin-1 membrane attachment and oligomerization. Two separate regions of the caveolin-1 C-terminal domain mediate membrane binding and oligomer/ oligomer interactions in vivo. J Biol Chem 2000; 275(28):21605–21617.

    PubMed  CAS  Google Scholar 

  12. Li S, Seitz R, Lisanti MP. Phosphorylation of caveolin by src tyrosine kinases. The alpha-isoform of caveolin is selectively phosphorylated by v-Src in vivo. J Biol Chem 1996; 271(7):3863–3868.

    PubMed  CAS  Google Scholar 

  13. Sanguinetti AR, Cao H, Corley Mastick C. Fyn is required for oxidative-and hyperosmotic-stress-induced tyrosine phosphorylation of caveolin-1. Biochem J 2003; 376(Pt 1):159–168.

    PubMed  CAS  Google Scholar 

  14. Sanguinetti AR, Mastick CC. c-Abl is required for oxidative stress-induced phosphorylation of caveolin-1 on tyrosine 14. Cell Signal 2003; 15(3):289–298.

    PubMed  CAS  Google Scholar 

  15. Lee H, Volonte D, Galbiati F et al. Constitutive and growth factor-regulated phosphorylation of caveolin-1 occurs at the same site (Tyr-14) in vivo: identification of a c-Src/Cav-1/Grb7 signaling cassette. Molecular endocrinology (Baltimore, Md 2000; 14(11):1750–1775.

    CAS  Google Scholar 

  16. Radel C, Rizzo V. Integrin mechanotransduction stimulates caveolin-1 phosphorylation and recruitment of Csk to mediate actin reorganization. Am J Physiol Heart Circ Physiol 2005; 288(2):H936–H945.

    PubMed  CAS  Google Scholar 

  17. Schlegel A, Arvan P, Lisanti MP. Caveolin-1 binding to endoplasmic reticulum membranes and entry into the regulated secretory pathway are regulated by serine phosphorylation. Protein sorting at the level of the endoplasmic reticulum. J Biol Chem 2001; 276(6):4398–4408.

    PubMed  CAS  Google Scholar 

  18. Fielding PE, Chau P, Liu D et al. Mechanism of platelet-derived growth factor-dependent caveolin-1 phosphorylation: relationship to sterol binding and the role of serine-80. Biochemistry 2004; 43(9):2578–2586.

    PubMed  CAS  Google Scholar 

  19. Stahlhut M, van Deurs B. Identification of filamin as a novel ligand for caveolin-1: evidence for the organization of caveolin-1-associated membrane domains by the actin cytoskeleton. Mol Biol Cell 2000; 11(1):325–337.

    PubMed  CAS  Google Scholar 

  20. Fernandez I, Ying Y, Albanesi J et al. Mechanism of caveolin filament assembly. Proc Natl Acad Sci USA 2002; 99(17):11193–11198.

    PubMed  CAS  Google Scholar 

  21. Richter T, Floetenmeyer M, Ferguson C et al. High-resolution 3D quantitative analysis of caveolar ultrastructure and caveola-cytoskeleton interactions. Traffic 2008; 9(6):893–909.

    PubMed  CAS  Google Scholar 

  22. Mineo C, James GL, Smart EJ et al. Localization of epidermal growth factor-stimulated Ras/Raf-1 interaction to caveolae membrane. J Biol Chem 1996; 271(20):11930–11935.

    PubMed  CAS  Google Scholar 

  23. Couet J, Li S, Okamoto T et al. Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. J Biol Chem 1997; 272(10): 6525–6533.

    PubMed  CAS  Google Scholar 

  24. Yamamoto M, Toya Y, Schwencke C et al. Caveolin is an activator of insulin receptor signaling. J Biol Chem 1998; 273(41):26962–26968.

    PubMed  CAS  Google Scholar 

  25. Venema VJ, Zou R, Ju H et al. Caveolin-1 detergent solubility and association with endothelial nitric oxide synthase is modulated by tyrosine phosphorylation. Biochem Biophys Res Commun 1997; 236(1):155–161.

    PubMed  CAS  Google Scholar 

  26. Murata M, Peranen J, Schreiner R et al. VIP21/caveolin is a cholesterol-binding protein. Proc Natl Acad Sci USA 1995; 92(22):10339–10343.

    PubMed  CAS  Google Scholar 

  27. Uittenbogaard A, Ying Y, Smart EJ. Characterization of a cytosolic heat-shock protein-caveolin chaperone complex. Involvement in cholesterol trafficking. J Biol Chem 1998; 273(11):6525–6532.

    PubMed  CAS  Google Scholar 

  28. Pol A, Luetterforst R, Lindsay M et al. A caveolin dominant negative mutant associates with lipid bodies and induces intracellular cholesterol imbalance. J Cell Biol 2001; 152(5):1057–1070.

    PubMed  CAS  Google Scholar 

  29. Tagawa A, Mezzacasa A, Hayer A et al. Assembly and trafficking of caveolar domains in the cell: caveolae as stable, cargo-triggered, vesicular transporters. J Cell Biol 2005; 170(5):769–779.

    PubMed  CAS  Google Scholar 

  30. Uittenbogaard A, Smart EJ. Palmitoylation of caveolin-1 is required for cholesterol binding, chaperone complex formation and rapid transport of cholesterol to caveolae. J Biol Chem 2000; 275(33):25595–25599.

    PubMed  CAS  Google Scholar 

  31. Lee H, Woodman SE, Engelman JA et al. Palmitoylation of caveolin-1 at a single site (Cys-156) controls its coupling to the c-Src tyrosine kinase: targeting of dually acylated molecules (GPI-linked, transmembrane, or cytoplasmic) to caveolae effectively uncouples c-Src and caveolin-1 (TYR-14). J Biol Chem 2001; 276(37):35150–35158.

    PubMed  CAS  Google Scholar 

  32. Parasassi T, Gratton E, Yu WM et al. Two-photon fluorescence microscopy of laurdan generalized polarization domains in model and natural membranes. Biophys J 1997; 72(6):2413–2429.

    PubMed  CAS  Google Scholar 

  33. Hope HR, Pike LJ. Phosphoinositides and phosphoinositide-utilizing enzymes in detergent-insoluble lipid domains. Mol Biol Cell 1996; 7(6):843–851.

    PubMed  CAS  Google Scholar 

  34. Waugh MG, Lawson D, Tan SK et al. Phosphatidylinositol 4-phosphate synthesis in immunoisolated caveolae-like vesicles and low buoyant density noncaveolar membranes. J Biol Chem 1998; 273(27):17115–17121.

    PubMed  CAS  Google Scholar 

  35. Huang S, Lifshitz L, Patki-Kamath V et al. Phosphatidylinositol-4, 5-bisphosphate-rich plasma membrane patches organize active zones of endocytosis and ruffling in cultured adipocytes. Mol Cell Biol 2004; 24(20): 9102–9123.

    PubMed  CAS  Google Scholar 

  36. Epand RM, Vuong P, Yip CM et al. Cholesterol-dependent partitioning of PtdIns(4,5)P2 into membrane domains by the N-terminal fragment of NAP-22 (neuronal axonal myristoylated membrane protein of 22 kDa). Biochem J 2004; 379(Pt 3):527–532.

    PubMed  CAS  Google Scholar 

  37. Rozelle AL, Machesky LM, Yamamoto M et al. Phosphatidylinositol 4,5-bisphosphate induces actin-based movement of raft-enriched vesicles through WASP-Arp2/3. Curr Biol 2000; 10(6):311–320.

    PubMed  CAS  Google Scholar 

  38. Dupree P, Parton RG, Raposo G et al. Caveolae and sorting in the trans-Golgi network of epithelial cells. EMBO J 1993; 12(4):1597–1605.

    PubMed  CAS  Google Scholar 

  39. Parton RG, Hanzal-Bayer M, Hancock JF. Biogenesis of caveolae: a structural model for caveolin-induced domain formation. J Cell Sci 2006; 119(Pt 5):787–796.

    PubMed  CAS  Google Scholar 

  40. Hayer A, Stoeber M, Bissig C et al. Biogenesis of Caveolae: Stepwise Assembly of Large Caveolin and Cavin Complexes. Traffic 2009.

    Google Scholar 

  41. Hill MM, Bastiani M, Luetterforst R et al. PTRF-Cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell 2008; 132(1):113–124.

    PubMed  CAS  Google Scholar 

  42. Nabi IR. Cavin fever: regulating caveolae. Nat Cell Biol 2009; 11(7):789–791.

    PubMed  CAS  Google Scholar 

  43. Lajoie P, Goetz JG, Dennis JW et al. Lattices, rafts and scaffolds: domain regulation of receptor signaling at the plasma membrane. J Cell Biol 2009; 185(3):381–385.

    PubMed  CAS  Google Scholar 

  44. Monier S, Parton RG, Vogel F et al. VIP21-caveolin, a membrane protein constituent of the caveolar coat, oligomerizes in vivo and in vitro. Mol Biol Cell 1995; 6(7):911–927.

    PubMed  CAS  Google Scholar 

  45. Sargiacomo M, Scherer PE, Tang Z et al. Oligomeric structure of caveolin: implications for caveolae membrane organization. Proc Natl Acad Sci USA 1995; 92(20):9407–9411.

    PubMed  CAS  Google Scholar 

  46. Bauer PM, Yu J, Chen Y et al. Endothelial-specific expression of caveolin-1 impairs microvascular permeability and angiogenesis. Proc Natl Acad Sci USA 2005; 102(1):204–209.

    PubMed  CAS  Google Scholar 

  47. Bernatchez PN, Bauer PM, Yu J et al. Dissecting the molecular control of endothelial NO synthase by caveolin-1 using cell-permeable peptides. Proc Natl Acad Sci USA 2005; 102(3):761–766.

    PubMed  CAS  Google Scholar 

  48. Bilderback TR, Gazula VR, Lisanti MP et al. Caveolin interacts with Trk A and p75(NTR) and regulates neurotrophin signaling pathways. J Biol Chem 1999; 274(1):257–263.

    PubMed  CAS  Google Scholar 

  49. Breuza L, Corby S, Arsanto JP et al. The scaffolding domain of caveolin 2 is responsible for its Golgi localization in Caco2 cells. J Cell Sci 2002; 115(Pt 23):4457–4467.

    PubMed  CAS  Google Scholar 

  50. Lajoie P, Partridge EA, Guay G et al. Plasma membrane domain organization regulates EGFR signaling in tumor cells. J Cell Biol 2007; 179(2):341–356.

    PubMed  CAS  Google Scholar 

  51. Kusumi A, Nakada C, Ritchie K et al. Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annual Review of Biophysics and Biomolecular Structure 2005; 34:351–378.

    PubMed  CAS  Google Scholar 

  52. Suzuki K, Ritchie K, Kajikawa E et al. Rapid hop diffusion of a G-protein-coupled receptor in the plasma membrane as revealed by single-molecule techniques. Biophys J 2005; 88(5):3659–3680.

    PubMed  CAS  Google Scholar 

  53. Li Y, Ying C, Zuo X et al. Green tea polyphenols down-regulate caveolin-1 expression via ERK1/2 and p38MAPK in endothelial cells. The Journal of Nutritional Biochemistry 2009; 20(12):1021–1027.

    PubMed  CAS  Google Scholar 

  54. Tang PF, Burke GA, Li G et al. Patients with long bone fracture have altered Caveolin-1 expression in their peripheral blood mononuclear cells. Archives of orthopaedic and trauma surgery 2009; 129(9):1287–1292.

    PubMed  Google Scholar 

  55. Zenklusen JC, Weitzel JN, Ball HG et al. Allelic loss at 7q31.1 in human primary ovarian carcinomas suggests the existence of a tumor suppressor gene. Oncogene 1995; 11(2):359–363.

    PubMed  CAS  Google Scholar 

  56. Engelman JA, Zhang XL, Lisanti MP. Genes encoding human caveolin-1 and-2 are colocalized to the D7S522 locus (7q31.1), a known fragile site (FRA7G) that is frequently deleted in human cancers. FEBS Lett 1998; 436(3):403–410.

    PubMed  CAS  Google Scholar 

  57. Yang G, Truong LD, Wheeler TM et al. Caveolin-1 expression in clinically confined human prostate cancer: a novel prognostic marker. Cancer Res 1999; 59(22):5719–5723.

    PubMed  CAS  Google Scholar 

  58. Savage K, Lambros MB, Robertson D et al. Caveolin 1 is overexpressed and amplified in a subset of basal-like and metaplastic breast carcinomas: a morphologic, ultrastructural, immunohistochemical and in situ hybridization analysis. Clin Cancer Res 2007; 13(1):90–101.

    PubMed  CAS  Google Scholar 

  59. Joshi B, Strugnell SS, Goetz JG et al. Phosphorylated caveolin-1 regulates Rho/ROCK-dependent focal adhesion dynamics and tumor cell migration and invasion. Cancer Res 2008; 68(20):8210–8220.

    PubMed  CAS  Google Scholar 

  60. Hayashi K, Matsuda S, Machida K et al. Invasion activating caveolin-1 mutation in human scirrhous breast cancers. Cancer Res 2001; 61(6):2361–2364.

    PubMed  CAS  Google Scholar 

  61. Lee H, Park DS, Razani B et al. Caveolin-1 mutations (P132L and null) and the pathogenesis of breast cancer: caveolin-1 (P132L) behaves in a dominant-negative manner and caveolin-1 (−/−) null mice show mammary epithelial cell hyperplasia. Am J Pathol 2002; 161(4):1357–1369.

    PubMed  CAS  Google Scholar 

  62. Shatz M, Lustig G, Reich R et al. Caveolin-1 mutants P132L and Y14F are dominant negative regulators of invasion, migration and aggregation in H1299 lung cancer cells. Exp Cell Res. 10; 316(10):1748–1762.

    Google Scholar 

  63. Bonuccelli G, Casimiro MC, Sotgia F et al. Caveolin-1 (P132L), a common breast cancer mutation, confers mammary cell invasiveness and defines a novel stem cell/metastasis-associated gene signature. Am J Pathol 2009; 174(5):1650–1662.

    PubMed  CAS  Google Scholar 

  64. Li S, Couet J, Lisanti MP. Src tyrosine kinases, Galpha subunits and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J Biol Chem 1996; 271(46):29182–29190.

    PubMed  CAS  Google Scholar 

  65. Couet J, Sargiacomo M, Lisanti MP. Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities. J Biol Chem 1997; 272(48):30429–30438.

    PubMed  CAS  Google Scholar 

  66. Ju H, Zou R, Venema VJ et al. Direct interaction of endothelial nitric-oxide synthase and caveolin-1 inhibits synthase activity. J Biol Chem 1997; 272(30):18522–18525.

    PubMed  CAS  Google Scholar 

  67. Vihanto MM, Vindis C, Djonov V et al. Caveolin-1 is required for signaling and membrane targeting of EphB1 receptor tyrosine kinase. J Cell Sci 2006; 119(Pt 11):2299–2309.

    PubMed  CAS  Google Scholar 

  68. Razandi M, Alton G, Pedram A et al. Identification of a structural determinant necessary for the localization and function of estrogen receptor alpha at the plasma membrane. Mol Cell Biol 2003; 23(5):1633–1646.

    PubMed  CAS  Google Scholar 

  69. Zhang W, Razani B, Altschuler Y et al. Caveolin-1 inhibits epidermal growth factor-stimulated lamellipod extension and cell migration in metastatic mammary adenocarcinoma cells (MTLn3). Transformation suppressor effects of adenovirus-mediated gene delivery of caveolin-1. J Biol Chem 2000; 275(27):20717–20725.

    PubMed  CAS  Google Scholar 

  70. Cohen AW, Razani B, Wang XB et al. Caveolin-1-deficient mice show insulin resistance and defective insulin receptor protein expression in adipose tissue. Am J Physiol Cell Physiol 2003; 285(1):C222–C235.

    PubMed  CAS  Google Scholar 

  71. Sigismund S, Woelk T, Puri C et al. Clathrin-independent endocytosis of ubiquitinated cargos. Proc Natl Acad Sci USA 2005; 102(8):2760–2765.

    PubMed  CAS  Google Scholar 

  72. Khan EM, Heidinger JM, Levy M et al. Epidermal growth factor receptor exposed to oxidative stress undergoes Src-and caveolin-1-dependent perinuclear trafficking. J Biol Chem 2006; 281(20):14486–14493.

    PubMed  CAS  Google Scholar 

  73. Fagerholm S, Ortegren U, Karlsson M et al. Rapid insulin-dependent endocytosis of the insulin receptor by caveolae in primary adipocytes. PLoS One 2009; 4(6):e5985.

    PubMed  Google Scholar 

  74. Nabi IR, Le PU. Caveolae/raft-dependent endocytosis. J Cell Biol 2003; 161(4):673–677.

    PubMed  CAS  Google Scholar 

  75. Lajoie P, Nabi IR. Regulation of raft-dependent endocytosis. J Cell Mol Med 2007; 11(4):644–653.

    PubMed  CAS  Google Scholar 

  76. Mineo C, Gill GN, Anderson RG. Regulated migration of epidermal growth factor receptor from caveolae. J Biol Chem 1999; 274(43):30636–30643.

    PubMed  CAS  Google Scholar 

  77. Jang IH, Kim JH, Lee BD et al. Localization of phospholipase C-gamma1 signaling in caveolae: importance in EGF-induced phosphoinositide hydrolysis but not in tyrosine phosphorylation. FEBS Lett 2001; 491(1–2):4–8.

    PubMed  CAS  Google Scholar 

  78. Ringerike T, Blystad FD, Levy FO et al. Cholesterol is important in control of EGF receptor kinase activity but EGF receptors are not concentrated in caveolae. J Cell Sci 2002; 115(Pt 6):1331–1340.

    PubMed  CAS  Google Scholar 

  79. Hofman EG, Ruonala MO, Bader AN et al. EGF induces coalescence of different lipid rafts. J Cell Sci 2008; 121(Pt 15):2519–2528.

    PubMed  CAS  Google Scholar 

  80. Lajoie P, Kojic LD, Nim S et al. Caveolin-1 regulation of dynamin-dependent, raft-mediated endocytosis of cholera toxin-B sub-unit occurs independently of caveolae. J Cell Mol Med 2009; 13(9B):3218–3225.

    PubMed  Google Scholar 

  81. Wang Y, Posner BI, Balbis A. Compartmentalization of epidermal growth factor receptor in liver plasma membrane. J Cell Biochem 2009; 107(1):96–103.

    PubMed  CAS  Google Scholar 

  82. Sigismund S, Argenzio E, Tosoni D et al. Clathrin-mediated internalization is essential for sustained EGFR signaling but dispensable for degradation. Dev Cell 2008; 15(2):209–219.

    PubMed  CAS  Google Scholar 

  83. Mattsson CL, Andersson ER, Nedergaard J. Differential involvement of caveolin-1 in brown adipocyte signaling: impaired beta3-adrenergic, but unaffected LPA, PDGF and EGF receptor signaling. Biochim Biophys Acta; 1803(8):983–989.

    Google Scholar 

  84. Agelaki S, Spiliotaki M, Markomanolaki H et al. Caveolin-1 regulates EGFR signaling in MCF-7 breast cancer cells and enhances gefitinib-induced tumor cell inhibition. Cancer Biology and Therapy 2009; 8(15):1470–1477.

    PubMed  CAS  Google Scholar 

  85. Park JH, Han HJ. Caveolin-1 plays important role in EGF-induced migration and proliferation of mouse embryonic stem cells: involvement of PI3K/Akt and ERK. Am J Physiol Cell Physiol 2009; 297(4):C935–C944.

    PubMed  CAS  Google Scholar 

  86. Zhang B, Peng F, Wu D et al. Caveolin-1 phosphorylation is required for stretch-induced EGFR and Akt activation in mesangial cells. Cell Signal 2007; 19(8):1690–700.

    PubMed  CAS  Google Scholar 

  87. Ushio-Fukai M, Griendling KK, Becker PL et al. Epidermal growth factor receptor transactivation by angiotensin II requires reactive oxygen species in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2001; 21(4):489–495.

    PubMed  CAS  Google Scholar 

  88. Park WY, Park JS, Cho KA et al. Up-regulation of caveolin attenuates epidermal growth factor signaling in senescent cells. J Biol Chem 2000; 275(27):20847–20852.

    PubMed  CAS  Google Scholar 

  89. Engelman JA, Chu C, Lin A et al. Caveolin-mediated regulation of signaling along the p42/44 MAP kinase cascade in vivo. A role for the caveolin-scaffolding domain. FEBS Lett 1998; 428(3):205–211.

    PubMed  CAS  Google Scholar 

  90. Galbiati F, Volonte D, Engelman JA et al. Targeted downregulation of caveolin-1 is sufficient to drive cell transformation and hyperactivate the p42/44 MAP kinase cascade. EMBO J 1998; 17(22):6633–6648.

    PubMed  CAS  Google Scholar 

  91. Zhuang L, Lin J, Lu ML et al. Cholesterol-rich lipid rafts mediate akt-regulated survival in prostate cancer cells. Cancer Res 2002; 62(8):2227–2231.

    PubMed  CAS  Google Scholar 

  92. Sieg DJ, Hauck CR, Ilic D et al. FAK integrates growth-factor and integrin signals to promote cell migration. Nat Cell Biol 2000; 2(5):249–256.

    PubMed  CAS  Google Scholar 

  93. Kim SH, Kim SH. Antagonistic effect of EGF on FAK phosphorylation/dephosphorylation in a cell. Cell Biochemistry and Function 2008; 26(5):539–547.

    PubMed  CAS  Google Scholar 

  94. del Pozo MA, Balasubramanian N, Alderson NB et al. Phospho-caveolin-1 mediates integrin-regulated membrane domain internalization. Nat Cell Biol 2005; 7(9):901–908.

    PubMed  Google Scholar 

  95. Ning Y, Zeineldin R, Liu Y et al. Down-regulation of integrin alpha2 surface expression by mutant epidermal growth factor receptor (EGFRvIII) induces aberrant cell spreading and focal adhesion formation. Cancer Res 2005; 65(20):9280–9286.

    PubMed  CAS  Google Scholar 

  96. Goetz JG, Joshi B, Lajoie P et al. Concerted regulation of focal adhesion dynamics by galectin-3 and tyrosine-phosphorylated caveolin-1. J Cell Biol 2008; 180(6):1261–1275.

    PubMed  CAS  Google Scholar 

  97. Kudlow JE, Buss JE, Gill GN. Anti-pp60src antibodies are substrates for EGF-stimulated protein kinase. Nature 1981; 290(5806):519–521.

    PubMed  CAS  Google Scholar 

  98. Kim YN, Wiepz GJ, Guadarrama AG et al. Epidermal growth factor-stimulated tyrosine phosphorylation of caveolin-1. Enhanced caveolin-1 tyrosine phosphorylation following aberrant epidermal growth factor receptor status. J Biol Chem 2000; 275(11):7481–7491.

    PubMed  CAS  Google Scholar 

  99. Mastick CC, Brady MJ, Saltiel AR. Insulin stimulates the tyrosine phosphorylation of caveolin. J Cell Biol 1995; 129(6):1523–1531.

    PubMed  CAS  Google Scholar 

  100. Wang XQ, Sun P, Paller AS. Ganglioside induces caveolin-1 redistribution and interaction with the epidermal growth factor receptor. J Biol Chem 2002; 277(49):47028–47034.

    PubMed  CAS  Google Scholar 

  101. Nomura R, Fujimoto T. Tyrosine-phosphorylated caveolin-1: immunolocalization and molecular characterization. Mol Biol Cell 1999; 10(4):975–986.

    PubMed  CAS  Google Scholar 

  102. Pol A, Calvo M, Lu A et al. EGF triggers caveolin redistribution from the plasma membrane to the early/ sorting endocytic compartment of hepatocytes. Cell Signal 2000; 12(8):537–540.bl]References

    PubMed  CAS  Google Scholar 

  103. Orlichenko L, Huang B, Krueger E et al. Epithelial growth factor-induced phosphorylation of caveolin 1 at tyrosine 14 stimulates caveolae formation in epithelial cells. J Biol Chem 2006; 281(8):4570–4579.

    PubMed  CAS  Google Scholar 

  104. Orlichenko L, Weller SG, Cao H et al. Caveolae mediate growth factor-induced disassembly of adherens junctions to support tumor cell dissociation. Mol Biol Cell 2009; 20(19):4140–4152.

    PubMed  CAS  Google Scholar 

  105. Lu Z, Ghosh S, Wang Z et al. Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin and enhanced tumor cell invasion. Cancer Cell 2003; 4(6):499–515.

    PubMed  CAS  Google Scholar 

  106. Lee SW, Reimer CL, Oh P et al. Tumor cell growth inhibition by caveolin re-expression in human breast cancer cells. Oncogene 1998; 16(11):1391–1397.

    PubMed  CAS  Google Scholar 

  107. Razani B, Engelman JA, Wang XB et al. Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J Biol Chem 2001; 276(41):38121–38138.

    PubMed  CAS  Google Scholar 

  108. Lavoie JN, L’Allemain G, Brunet A et al. Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J Biol Chem 1996; 271(34):20608–20616.

    PubMed  CAS  Google Scholar 

  109. Gille H, Downward J. Multiple ras effector pathways contribute to G(1) cell cycle progression. J Biol Chem 1999; 274(31):22033–22040.

    PubMed  CAS  Google Scholar 

  110. Shtutman M, Zhurinsky J, Simcha I et al. The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci USA 1999; 96(10):5522–5527.

    PubMed  CAS  Google Scholar 

  111. Williams TM, Lee H, Cheung MW et al. Combined loss of INK4a and caveolin-1 synergistically enhances cell proliferation and oncogene-induced tumorigenesis: role of INK4a/CAV-1 in mammary epithelial cell hyperplasia. J Biol Chem 2004; 279(23):24745–24756.

    PubMed  CAS  Google Scholar 

  112. Williams TM, Cheung MW, Park DS et al. Loss of caveolin-1 gene expression accelerates the development of dysplastic mammary lesions in tumor-prone transgenic mice. Mol Biol Cell 2003; 14(3):1027–1042.

    PubMed  CAS  Google Scholar 

  113. . Cohen AW, Park DS, Woodman SE et al. Caveolin-1 null mice develop cardiac hypertrophy with hyperactivation of p42/44 MAP kinase in cardiac fibroblasts. Am J Physiol Cell Physiol 2003; 284(2):C457–C474.

    PubMed  CAS  Google Scholar 

  114. Fiucci G, Ravid D, Reich R et al. Caveolin-1 inhibits anchorage-independent growth, anoikis and invasiveness in MCF-7 human breast cancer cells. Oncogene 2002; 21(15):2365–2375.

    PubMed  CAS  Google Scholar 

  115. Park JH, Lee MY, Han HJ. A potential role for caveolin-1 in estradiol-17beta-induced proliferation of mouse embryonic stem cells: involvement of Src, PI3K/Akt and MAPKs pathways. Int J Biochem Cell Biol 2009; 41(3):659–665.

    PubMed  CAS  Google Scholar 

  116. Lee MY, Lee SH, Park JH et al. Interaction of galectin-1 with caveolae induces mouse embryonic stem cell proliferation through the Src, ERas, Akt and mTOR signaling pathways. Cell Mol Life Sci 2009; 66(8):1467–1478.

    PubMed  CAS  Google Scholar 

  117. Cerezo A, Guadamillas MC, Goetz JG et al. The absence of caveolin-1 increases proliferation and anchorageindependent growth by a Rac-dependent, Erk-independent mechanism. Mol Cell Biol 2009; 29(18):5046–5059.

    PubMed  CAS  Google Scholar 

  118. Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin and cadherin pathways. Science 2004; 303(5663):1483–1487.

    PubMed  CAS  Google Scholar 

  119. Galbiati F, Volonte D, Brown AM et al. Caveolin-1 expression inhibits Wnt/beta-catenin/Lef-1 signaling by recruiting beta-catenin to caveolae membrane domains. J Biol Chem 2000; 275(30):23368–23377.

    PubMed  CAS  Google Scholar 

  120. Hulit J, Bash T, Fu M et al. The cyclin D1 gene is transcriptionally repressed by caveolin-1. J Biol Chem 2000; 275(28):21203–21209.

    PubMed  CAS  Google Scholar 

  121. Torres VA, Tapia JC, Rodriguez DA et al. E-cadherin is required for caveolin-1-mediated down-regulation of the inhibitor of apoptosis protein survivin via reduced beta-catenin-Tcf/Lef-dependent transcription. Mol Cell Biol 2007; 27(21):7703–7717.

    PubMed  CAS  Google Scholar 

  122. Torres VA, Tapia JC, Rodriguez DA et al. Caveolin-1 controls cell proliferation and cell death by suppressing expression of the inhibitor of apoptosis protein survivin. J Cell Sci 2006; 119(Pt 9):1812–1823.

    PubMed  CAS  Google Scholar 

  123. Ravid D, Maor S, Werner H et al. Caveolin-1 inhibits cell detachment-induced p53 activation and anoikis by upregulation of insulin-like growth factor-I receptors and signaling. Oncogene 2005; 24(8):1338–1347.

    PubMed  CAS  Google Scholar 

  124. Rodriguez DA, Tapia JC, Fernandez JG et al. Caveolin-1-mediated suppression of cyclooxygenase-2 via a beta-catenin-Tcf/Lef-dependent transcriptional mechanism reduced prostaglandin E2 production and survivin expression. Mol Biol Cell 2009; 20(8):2297–2310.

    PubMed  CAS  Google Scholar 

  125. Liu J, Lee P, Galbiati F et al. Caveolin-1 expression sensitizes fibroblastic and epithelial cells to apoptotic stimulation. Am J Physiol Cell Physiol 2001; 280(4):C823–C835.

    PubMed  CAS  Google Scholar 

  126. Wang S, Jia L, Zhou H et al. Caveolin-1 promotes the transformation and anti-apoptotic ability of mouse hepatoma cells. IUBMB Life 2008; 60(10):693–699.

    PubMed  CAS  Google Scholar 

  127. Das M, Cui J, Das DK. Generation of survival signal by differential interaction of p38MAPKalpha and p38MAPKbeta with caveolin-1 and caveolin-3 in the adapted heart. J Mol Cell Cardiol 2007; 42(1):206–213.

    PubMed  CAS  Google Scholar 

  128. Li L, Ren CH, Tahir SA et al. Caveolin-1 maintains activated Akt in prostate cancer cells through scaffolding domain binding site interactions with and inhibition of serine/threonine protein phosphatases PP1 and PP2A. Mol Cell Biol 2003; 23(24):9389–9404.

    PubMed  CAS  Google Scholar 

  129. Zhao X, Liu Y, Ma Q et al. Caveolin-1 negatively regulates TRAIL-induced apoptosis in human hepatocarcinoma cells. Biochem Biophys Res Commun 2009; 378(1):21–26.

    PubMed  CAS  Google Scholar 

  130. Percy CJ, Pat BK, Healy H et al. Phosphorylation of caveolin-1 is anti-apoptotic and promotes cell attachment during oxidative stress of kidney cells. Pathology 2008; 40(7):694–701.

    PubMed  CAS  Google Scholar 

  131. Scherer PE, Lisanti MP, Baldini G et al. Induction of caveolin during adipogenesis and association of GLUT4 with caveolin-rich vesicles. J Cell Biol 1994; 127(5):1233–1243.

    PubMed  CAS  Google Scholar 

  132. Gonzalez E, Nagiel A, Lin AJ et al. Small interfering RNA-mediated down-regulation of caveolin-1 differentially modulates signaling pathways in endothelial cells. J Biol Chem 2004; 279(39):40659–40669.

    PubMed  CAS  Google Scholar 

  133. Fernandez-Real JM, Catalan V, Moreno-Navarrete JM et al. Study of caveolin-1 gene expression in whole adipose tissue and its subfractions and during differentiation of human adipocytes. Nutrition and Metabolism 7:20.

    Google Scholar 

  134. Schmitz M, Kloppner S, Klopfleisch S et al. Mutual effects of caveolin and nerve growth factor signaling in pig oligodendrocytes. J Neurosci Res 88(3):572–588.

    Google Scholar 

  135. Massimino ML, Griffoni C, Spisni E et al. Involvement of caveolae and caveolae-like domains in signalling, cell survival and angiogenesis. Cell Signal 2002; 14(2):93–98.

    PubMed  CAS  Google Scholar 

  136. Albinsson S, Nordstrom I, Sward K et al. Differential dependence of stretch and shear stress signaling on caveolin-1 in the vascular wall. Am J Physiol Cell Physiol 2008; 294(1):C271–C279.

    PubMed  CAS  Google Scholar 

  137. Rubin J, Schwartz Z, Boyan BD et al. Caveolin-1 knockout mice have increased bone size and stiffness. J Bone Miner Res 2007; 22(9):1408–1418.

    PubMed  Google Scholar 

  138. Galbiati F, Volonte D, Gil O et al. Expression of caveolin-1 and-2 in differentiating PC12 cells and dorsal root ganglion neurons: caveolin-2 is up-regulated in response to cell injury. Proc Natl Acad Sci USA 1998; 95(17):10257–10262.

    PubMed  CAS  Google Scholar 

  139. Bu J, Bruckner SR, Sengoku T et al. Glutamate regulates caveolin expression in rat hippocampal neurons. J Neurosci Res 2003; 72(2):185–190.

    PubMed  CAS  Google Scholar 

  140. Cameron PL, Ruffin JW, Bollag R et al. Identification of caveolin and caveolin-related proteins in the brain. J Neurosci 1997; 17(24):9520–9535.

    PubMed  CAS  Google Scholar 

  141. Bilderback TR, Grigsby RJ, Dobrowsky RT. Association of p75(NTR) with caveolin and localization of neurotrophin-induced sphingomyelin hydrolysis to caveolae. J Biol Chem 1997; 272(16):10922–10927.

    PubMed  CAS  Google Scholar 

  142. Gaudreault SB, Blain JF, Gratton JP et al. A role for caveolin-1 in post-injury reactive neuronal plasticity. J Neurochem 2005; 92(4):831–839.

    PubMed  CAS  Google Scholar 

  143. Huang CS, Zhou J, Feng AK et al. Nerve growth factor signaling in caveolae-like domains at the plasma membrane. J Biol Chem 1999; 274(51):36707–36714.

    PubMed  CAS  Google Scholar 

  144. Kang MJ, Seo JS, Park WY. Caveolin-1 inhibits neurite growth by blocking Rac1/Cdc42 and p21-activated kinase 1 interactions. Neuroreport 2006; 17(8):823–827.

    PubMed  CAS  Google Scholar 

  145. Peiro S, Comella JX, Enrich C et al. PC12 cells have caveolae that contain TrkA. Caveolae-disrupting drugs inhibit nerve growth factor-induced, but not epidermal growth factor-induced, MAPK phosphorylation. J Biol Chem 2000; 275(48):37846–37852.

    Google Scholar 

  146. D’Orlando C, Guzzi F, Gravati M et al. Retinoic acid-and phorbol ester-induced neuronal differentiation down-regulates caveolin expression in GnRH neurons. J Neurochem 2008; 104(6):1577–1587.

    PubMed  Google Scholar 

  147. Bailey KM, Liu J. Caveolin-1 up-regulation during epithelial to mesenchymal transition is mediated by focal adhesion kinase. J Biol Chem 2008; 283(20):13714–13724.

    PubMed  CAS  Google Scholar 

  148. Zhang X, Ling MT, Wang Q et al. Identification of a novel inhibitor of differentiation-1 (ID-1) binding partner, caveolin-1 and its role in epithelial-mesenchymal transition and resistance to apoptosis in prostate cancer cells. J Biol Chem 2007; 282(46):33284–33294.

    PubMed  CAS  Google Scholar 

  149. Dubash AD, Menold MM, Samson T et al. Chapter 1. Focal adhesions: new angles on an old structure. International Review of Cell and Molecular Biology 2009; 277:1–65.

    PubMed  CAS  Google Scholar 

  150. Broussard JA, Webb DJ, Kaverina I. Asymmetric focal adhesion disassembly in motile cells. Curr Opin Cell Biol 2008; 20(1):85–90.

    PubMed  CAS  Google Scholar 

  151. Beardsley A, Fang K, Mertz H et al. Loss of caveolin-1 polarity impedes endothelial cell polarization and directional movement. J Biol Chem 2005; 280(5):3541–3547.

    PubMed  CAS  Google Scholar 

  152. Isshiki M, Ando J, Yamamoto K et al. Sites of Ca(2+) wave initiation move with caveolae to the trailing edge of migrating cells. J Cell Sci 2002; 115(Pt 3):475–484.

    PubMed  CAS  Google Scholar 

  153. Isshiki M, Ying YS, Fujita T et al. A molecular sensor detects signal transduction from caveolae in living cells. J Biol Chem 2002; 277(45):43389–43398.

    PubMed  CAS  Google Scholar 

  154. Parat MO, Anand-Apte B, Fox PL. Differential caveolin-1 polarization in endothelial cells during migration in two and three dimensions. Mol Biol Cell 2003; 14(8):3156–3168.

    PubMed  CAS  Google Scholar 

  155. Sengupta P, Philip F, Scarlata S. Caveolin-1 alters Ca(2+) signal duration through specific interaction with the G alpha q family of G proteins. J Cell Sci 2008; 121(Pt 9):1363–1372.

    PubMed  CAS  Google Scholar 

  156. Garcia-Cardena G, Martasek P, Masters BS et al. Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the nos caveolin binding domain in vivo. J Biol Chem 1997; 272(41):25437–25440.

    PubMed  CAS  Google Scholar 

  157. Feron O, Saldana F, Michel JB et al. The endothelial nitric-oxide synthase-caveolin regulatory cycle. J Biol Chem 1998; 273(6):3125–3128.bl]References

    PubMed  CAS  Google Scholar 

  158. Sun XH, Flynn DC, Castranova V et al. Identification of a novel domain at the N terminus of caveolin-1 that controls rear polarization of the protein and caveolae formation. J Biol Chem 2007; 282(10):7232–7241.

    PubMed  CAS  Google Scholar 

  159. Wary KK, Mainiero F, Isakoff SJ et al. The adaptor protein Shc couples a class of integrins to the control of cell cycle progression. Cell 1996; 87(4):733–743.

    PubMed  CAS  Google Scholar 

  160. Wei Y, Yang X, Liu Q et al. A role for caveolin and the urokinase receptor in integrin-mediated adhesion and signaling. J Cell Biol 1999; 144(6):1285–1294.

    PubMed  CAS  Google Scholar 

  161. Wei Y, Eble JA, Wang Z et al. Urokinase receptors promote beta1 integrin function through interactions with integrin alpha3beta1. Mol Biol Cell 2001; 12(10):2975–2986.

    PubMed  CAS  Google Scholar 

  162. Tang CH, Hill ML, Brumwell AN et al. Signaling through urokinase and urokinase receptor in lung cancer cells requires interactions with beta1 integrins. J Cell Sci 2008; 121(Pt 22):3747–3756.

    PubMed  CAS  Google Scholar 

  163. Blasi F, Carmeliet P. uPAR a versatile signalling orchestrator. Nat Rev Mol Cell Biol 2002; 3(12):932–943.

    PubMed  CAS  Google Scholar 

  164. Hill MM, Scherbakov N, Schiefermeier N et al. Reassessing the role of phosphocaveolin-1 in cell adhesion and migration. Traffic 2007; 8(12):1695–1705.

    PubMed  CAS  Google Scholar 

  165. Gaus K, Le Lay S, Balasubramanian N et al. Integrin-mediated adhesion regulates membrane order. J Cell Biol 2006; 174(5):725–734.

    PubMed  CAS  Google Scholar 

  166. Lingwood D, Simons K. Lipid rafts as a membrane-organizing principle. Science. 1;327(5961):46–50.

    Google Scholar 

  167. Huveneers S, Danen EH. Adhesion signaling-crosstalk between integrins, Src and Rho. J Cell Sci 2009; 122(Pt 8):1059–1069.

    PubMed  CAS  Google Scholar 

  168. Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature 2002; 420(6916):629–635.

    PubMed  CAS  Google Scholar 

  169. Clark EA, King WG, Brugge JS et al. Integrin-mediated signals regulated by members of the rho family of GTPases. J Cell Biol 1998; 142(2):573–586.

    PubMed  CAS  Google Scholar 

  170. Arthur WT, Petch LA, Burridge K. Integrin engagement suppresses RhoA activity via a c-Src-dependent mechanism. Curr Biol 2000; 10(12):719–722.

    PubMed  CAS  Google Scholar 

  171. Nobes CD, Hall A. Rho, rac and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia and filopodia. Cell 1995; 81(1):53–62.

    PubMed  CAS  Google Scholar 

  172. Rottner K, Hall A, Small JV. Interplay between Rac and Rho in the control of substrate contact dynamics. Curr Biol 1999; 9(12):640–648.

    PubMed  CAS  Google Scholar 

  173. Kiosses WB, Shattil SJ, Pampori N et al. Rac recruits high-affinity integrin alphavbeta3 to lamellipodia in endothelial cell migration. Nat Cell Biol 2001; 3(3):316–320.

    PubMed  CAS  Google Scholar 

  174. Ballestrem C, Hinz B, Imhof BA et al. Marching at the front and dragging behind: differential alphaVbeta3-integrin turnover regulates focal adhesion behavior. J Cell Biol 2001; 155(7):1319–1332.

    PubMed  CAS  Google Scholar 

  175. Nethe M, Anthony EC, Fernandez-Borja M et al. Focal-adhesion targeting links caveolin-1 to a Rac1-degradation pathway. J Cell Sci; 123(Pt 11):1948–1958.

    Google Scholar 

  176. Grande-Garcia A, Echarri A, de Rooij J et al. Caveolin-1 regulates cell polarization and directional migration through Src kinase and Rho GTPases. J Cell Biol 2007; 177(4):683–694.

    PubMed  CAS  Google Scholar 

  177. Cao H, Courchesne WE, Mastick CC. A phosphotyrosine-dependent protein interaction screen reveals a role for phosphorylation of caveolin-1 on tyrosine 14: recruitment of C-terminal Src kinase. J Biol Chem 2002; 277(11):8771–8774.

    PubMed  CAS  Google Scholar 

  178. Rizzo V, McIntosh DP, Oh P et al. In situ flow activates endothelial nitric oxide synthase in luminal caveolae of endothelium with rapid caveolin dissociation and calmodulin association. J Biol Chem 1998; 273 (52):34724–34729.

    Google Scholar 

  179. Rizzo V, Morton C, DePaola N et al. Recruitment of endothelial caveolae into mechanotransduction pathways by flow conditioning in vitro. Am J Physiol Heart Circ Physiol 2003; 285(4):H1720–H1729.

    PubMed  CAS  Google Scholar 

  180. Oh P, Schnitzer JE. Segregation of heterotrimeric G proteins in cell surface microdomains. G (q) binds caveolin to concentrate in caveolae, whereas G (i) and G (s) target lipid rafts by default. Mol Biol Cell 2001; 12(3):685–698.

    PubMed  CAS  Google Scholar 

  181. Boyd NL, Park H, Yi H et al. Chronic shear induces caveolae formation and alters ERK and Akt responses in endothelial cells. Am J Physiol Heart Circ Physiol 2003; 285(3):H1113–H1122.

    PubMed  CAS  Google Scholar 

  182. Radel C, Carlile-Klusacek M, Rizzo V. Participation of caveolae in beta1 integrin-mediated mechanotransduction. Biochem Biophys Res Commun 2007; 358(2):626–631.

    PubMed  CAS  Google Scholar 

  183. Lowry WE, Huang J, Ma YC et al. Csk, a critical link of g protein signals to actin cytoskeletal reorganization. Dev Cell 2002; 2(6):733–744.

    PubMed  CAS  Google Scholar 

  184. Liu L, Pilch PF. A critical role of cavin (PTRF) in caveolae formation and organization. J Biol Chem 2007.

    Google Scholar 

  185. Hansen CG, Bright NA, Howard G et al. SDPR induces membrane curvature and functions in the formation of caveolae. Nat Cell Biol 2009; 11(7):807–814.

    PubMed  CAS  Google Scholar 

  186. McMahon KA, Zajicek H, Li WP et al. SRBC/cavin-3 is a caveolin adapter protein that regulates caveolae function. EMBO J 2009; 28(8):1001–1015.

    PubMed  CAS  Google Scholar 

  187. Bastiani M, Liu L, Hill MM et al. MURC/Cavin-4 and cavin family members form tissue-specific caveolar complexes. J Cell Biol 2009; 185(7):1259–1273.

    PubMed  CAS  Google Scholar 

  188. Razani B, Zhang XL, Bitzer M et al. Caveolin-1 regulates transforming growth factor (TGF)-beta/SMAD signaling through an interaction with the TGF-beta type I receptor. J Biol Chem 2001; 276(9):6727–6738.

    PubMed  CAS  Google Scholar 

  189. Schlegel A, Wang C, Pestell RG et al. Ligand-independent activation of oestrogen receptor alpha by caveolin-1. Biochem J 2001; 359(Pt 1):203–210.

    PubMed  CAS  Google Scholar 

  190. Ishizaka N, Griendling KK, Lassegue B et al. Angiotensin II type 1 receptor: relationship with caveolae and caveolin after initial agonist stimulation. Hypertension 1998; 32(3):459–466.

    PubMed  CAS  Google Scholar 

  191. Wyse BD, Prior IA, Qian H et al. Caveolin interacts with the angiotensin II type 1 receptor during exocytic transport but not at the plasma membrane. J Biol Chem 2003; 278(26):23738–23746.

    PubMed  CAS  Google Scholar 

  192. Hong YH, Kim JY, Lee JH et al. Agonist-induced internalization of mGluR1alpha is mediated by caveolin. J Neurochem 2009; 111(1):61–71.

    PubMed  CAS  Google Scholar 

  193. Song KS, Li S, Okamoto T et al. Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent-free purification of caveolae microdomains. J Biol Chem 1996; 271(16):9690–9697.

    PubMed  CAS  Google Scholar 

  194. Huang C, Hepler JR, Chen LT et al. Organization of G proteins and adenylyl cyclase at the plasma membrane. Mol Biol Cell 1997; 8(12):2365–2378.

    PubMed  CAS  Google Scholar 

  195. Allen JA, Yu JZ, Dave RH et al. Caveolin-1 and lipid microdomains regulate Gs trafficking and attenuate Gs/adenylyl cyclase signaling. Molecular pharmacology 2009; 76(5):1082–1093.

    PubMed  CAS  Google Scholar 

  196. Razani B, Lisanti MP. Two distinct caveolin-1 domains mediate the functional interaction of caveolin-1 with protein kinase A. Am J Physiol Cell Physiol 2001; 281(4):C1241–C1250.

    PubMed  CAS  Google Scholar 

  197. Razani B, Rubin CS, Lisanti MP. Regulation of cAMP-mediated signal transduction via interaction of caveolins with the catalytic subunit of protein kinase A. J Biol Chem 1999; 274(37):26353–26360.

    PubMed  CAS  Google Scholar 

  198. Waschke J, Golenhofen N, Kurzchalia TV et al. Protein kinase C-mediated endothelial barrier regulation is caveolin-1-dependent. Histochem Cell Biol 2006; 126(1):17–26.

    PubMed  CAS  Google Scholar 

  199. Wang Q, Zhu F, Wang Z. Identification of EGF receptor C-terminal sequences 1005-1017 and di-leucine motif 1010LL1011 as essential in EGF receptor endocytosis. Exp Cell Res 2007; 313(15):3349–3363.

    PubMed  CAS  Google Scholar 

  200. Prevostel C, Alice V, Joubert D et al. Protein kinase C (alpha) actively downregulates through caveolae-dependent traffic to an endosomal compartment. J Cell Sci 2000; 113 (Pt 14):2575–2584.

    PubMed  CAS  Google Scholar 

  201. Czarny M, Fiucci G, Lavie Y et al. Phospholipase D2: functional interaction with caveolin in low-density membrane microdomains. FEBS Lett 2000; 467(2–3):326–332.

    PubMed  CAS  Google Scholar 

  202. Czarny M, Lavie Y, Fiucci G et al. Localization of phospholipase D in detergent-insoluble, caveolin-rich membrane domains. Modulation by caveolin-1 expression and caveolin-182-101. J Biol Chem 1999; 274 (5):2717–2724.

    Google Scholar 

  203. Kim JH, Han JM, Lee S et al. Phospholipase D1 in caveolae: regulation by protein kinase Calpha and caveolin-1. Biochemistry 1999; 38(12):3763–3769.

    PubMed  CAS  Google Scholar 

  204. Toya Y, Schwencke C, Couet J et al. Inhibition of adenylyl cyclase by caveolin peptides. Endocrinology 1998; 139(4):2025–2031.

    PubMed  CAS  Google Scholar 

  205. Roy S, Luetterforst R, Harding A et al. Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains. Nat Cell Biol 1999; 1(2):98–105.

    PubMed  CAS  Google Scholar 

  206. Kranenburg O, Verlaan I, Moolenaar WH. Regulating c-Ras function. cholesterol depletion affects caveolin association, GTP loading and signaling. Curr Biol 2001; 11(23):1880–1884.

    PubMed  CAS  Google Scholar 

  207. Cao H, Sanguinetti AR, Mastick CC. Oxidative stress activates both Src-kinases and their negative regulator Csk and induces phosphorylation of two targeting proteins for Csk: caveolin-1 and paxillin. Exp Cell Res 2004; 294(1):159–171.

    PubMed  CAS  Google Scholar 

  208. Panetta D, Biedi C, Repetto S et al. IGF-I regulates caveolin 1 and IRS1 interaction in caveolae. Biochem Biophys Res Commun 2004; 316(1):240–243.

    PubMed  CAS  Google Scholar 

  209. Biedi C, Panetta D, Segat D et al. Specificity of insulin-like growth factor I and insulin on Shc phosphorylation and Grb2 recruitment in caveolae. Endocrinology 2003; 144(12):5497–5503.

    PubMed  CAS  Google Scholar 

  210. Perdue N, Yan Q. Caveolin-1 is up-regulated in transdifferentiated lens epithelial cells but minimal in normal human and murine lenses. Exp Eye Res 2006; 83(5):1154–1161.

    PubMed  CAS  Google Scholar 

  211. Dittmann K, Mayer C, Kehlbach R et al. Radiation-induced caveolin-1 associated EGFR internalization is linked with nuclear EGFR transport and activation of DNA-PK. Molecular Cancer 2008; 7:69.

    PubMed  Google Scholar 

  212. Shin J, Jo H, Park H. Caveolin-1 is transiently dephosphorylated by shear stress-activated protein tyrosine phosphatase mu. Biochem Biophys Res Commun 2006; 339(3):737–741.

    PubMed  CAS  Google Scholar 

  213. Nystrom FH, Chen H, Cong LN et al. Caveolin-1 interacts with the insulin receptor and can differentially modulate insulin signaling in transfected Cos-7 cells and rat adipose cells. Molecular endocrinology (Baltimore, Md 1999; 13(12):2013–2024.

    PubMed  CAS  Google Scholar 

  214. Gustavsson J, Parpal S, Karlsson M et al. Localization of the insulin receptor in caveolae of adipocyte plasma membrane. FASEB J 1999; 13(14):1961–1971.

    PubMed  CAS  Google Scholar 

  215. Parpal S, Karlsson M, Thorn H et al. Cholesterol depletion disrupts caveolae and insulin receptor signaling for metabolic control via insulin receptor substrate-1, but not for mitogen-activated protein kinase control. J Biol Chem 2001; 276(13):9670–9678.

    PubMed  CAS  Google Scholar 

  216. Loza-Coll MA, Perera S, Shi W et al. A transient increase in the activity of Src-family kinases induced by cell detachment delays anoikis of intestinal epithelial cells. Oncogene 2005; 24(10):1727–1737.

    PubMed  CAS  Google Scholar 

  217. Park H, Go YM, Darji R et al. Caveolin-1 regulates shear stress-dependent activation of extracellular signal-regulated kinase. Am J Physiol Heart Circ Physiol 2000; 278(4):H1285–H1293.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Robert Nabi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Boscher, C., Nabi, I.R. (2012). CAVEOLIN-1: Role in Cell Signaling. In: Jasmin, JF., Frank, P.G., Lisanti, M.P. (eds) Caveolins and Caveolae. Advances in Experimental Medicine and Biology, vol 729. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1222-9_3

Download citation

Publish with us

Policies and ethics