Skip to main content

Stem Cells and Spinal Cord Injury Repair

  • Chapter
  • First Online:
Regenerative Biology of the Spine and Spinal Cord

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 760))

Abstract

Spinal cord injury (SCI) has remained a challenging area for scientists and clinicians due to the adverse and complex nature of its pathobiology. To date, clinical therapies for debilitating SCI are largely ineffective. However, emerging research evidence suggests that repair of SCI can be promoted by stem cell-based therapies in regenerative medicine. Over the past decade, therapeutic potential of different types of stem cells for the treatment of SCI have been investigated in preclinical models. These studies have revealed multiple beneficial roles by which stem cells can improve the outcomes of SCI. This chapter will summarize the recent advances in the application of stem cells in regenerative medicine for the repair of SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal S, Fehlings M. Mechanisms of secondary injury to spinal cord axons in virto: role of Na+, Na+−K+-ATPase, the Na+−H+ exchanger, and the Na+−Ca2+ exchanger. J Neurosci 1996; 16:545–552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nashmi R, Fehlings MG. Mechanisms of axonal dysfunction after spinal cord injury: with an emphasis on the role of voltage-gated potassium channels. Brain Res Rev 2001; 38:165–191.

    Article  CAS  PubMed  Google Scholar 

  3. Tator C, Fehlings M. Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg 1991; 75:15–26.

    Article  CAS  PubMed  Google Scholar 

  4. Povlishock JT, Christman CW. The pathobiology of traumatically induced axonal injury in animals and humans: a review of current thoughts. J Neurotrauma 1995; 12:555–564.

    Article  CAS  PubMed  Google Scholar 

  5. Park E, Velumian AA, Fehlings MG. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with an emphasis on the implications for white matter degeneration. J Neurotrauma 2004; 21:754–774.

    Article  PubMed  Google Scholar 

  6. Fitch MT, Doller C, Combs CK et al. Cellular and molecular mechanisms of glial scarring and progressive cavitation: in vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma. J Neurosci 1999; 19:8182–8198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fitch MT, Silver J. CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure. Exp Neurol 2007.

    Google Scholar 

  8. Eftekharpour E, Karimi-Abdolrezaee S, Fehlings MG. Current status of experimental cell replacement approaches to spinal cord injury. Neurosurg Focus 2008; 24:E19.

    Article  PubMed  Google Scholar 

  9. Tator CH. Acute spinal cord injury: a review of recent studies of treatment and pathophysiology. Can Med Assoc J 1972; 107:143–145 passim.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Jones TB, McDaniel EE, Popovich PG. Inflammatory-mediated injury and repair in the traumatically injured spinal cord. Curr Pharm Des 2005; 11:1223–1236.

    Article  CAS  PubMed  Google Scholar 

  11. Crowe M, Bresnahan J, Shuman S et al. Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nature Medicine 1997; 3:73–76.

    Article  CAS  PubMed  Google Scholar 

  12. Thuret S, Moon LD, Gage FH. Therapeutic interventions after spinal cord injury. Nat Rev Neurosci 2006; 7:628–643.

    Article  CAS  PubMed  Google Scholar 

  13. Rudge JS, Silver J. Inhibition of neurite outgrowth on astroglial scars in vitro. J Neurosci 1990; 10:3594–3603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yiu G, He Z. Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 2006; 7:617–627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Karimi-Abdolrezaee S, Eftekharpour E, Fehlings MG. Temporal and spatial patterns of Kv1.1 and Kv1.2 protein and gene expression in spinal cord white matter after acute and chronic spinal cord injury in rats: implications for axonal pathophysiology after neurotrauma. Eur J Neurosci 2004; 19:577–589.

    Article  PubMed  Google Scholar 

  16. Ondarza AB, Ye Z, Hulsebosch CE. Direct evidence of primary afferent sprouting in distant segments following spinal cord injury in the rat: colocalization of GAP-43 and CGRP. Exp Neurol 2003; 184:373–380.

    Article  CAS  PubMed  Google Scholar 

  17. Baptiste DC, Fehlings MG. Update on the treatment of spinal cord injury. Prog Brain Res 2007; 161:217–233.

    Article  CAS  PubMed  Google Scholar 

  18. Fehlings MG, Tator CH. The relationships among the severity of spinal cord injury, residual neurological function, axon counts, and counts of retrogradely labeled neurons after experimental spinal cord injury. Exp Neurol 1995; 132:220–228.

    Article  CAS  PubMed  Google Scholar 

  19. Fehlings MG, Tator CH, Linden RD. The relationships among the severity of spinal cord injury, motor and somatosensory evoked potentials and spinal cord blood flow. Electroencephalogr Clin Neurophysiol 1989; 74:241–259.

    Article  CAS  PubMed  Google Scholar 

  20. Barnabe-Heider F, Frisen J. Stem cells for spinal cord repair. Cell Stem Cell 2008; 3:16–24.

    Article  CAS  PubMed  Google Scholar 

  21. Karimi-Abdolrezaee S, Eftekharpour E, Wang J et al. Delayed transplantation of adult neural stem cells promotes remyelination and functional recovery after spinal cord injury. J Neurosci 2006; 26(13): 3377–3389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Karimi-Abdolrezaee S, Eftekharpour E, Wang J et al. Synergistic effects of transplanted adult neural stem/progenitor cells, chondroitinase, and growth factors promote functional repair and plasticity of the chronically injured spinal cord. J Neurosci 2010; 30:1657–1676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Keirstead HS, Nistor G, Bernal G et al. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci 2005; 25:4694–4705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rossi SL, Keirstead HS. Stem cells and spinal cord regeneration. Curr Opin Biotechnol 2009; 20:552–562.

    Article  CAS  PubMed  Google Scholar 

  25. van der Kooy D, Weiss S. Why stem cells? Science 2000; 287:1439–1441.

    Article  PubMed  Google Scholar 

  26. Sharp J, Frame J, Siegenthaler M et al. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants improve recovery after cervical spinal cord injury. Stem Cells 2010; 28:152–163.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. McDonald JW, Liu XZ, Qu Y et al. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat Med 1999; 5:1410–1412.

    Article  CAS  PubMed  Google Scholar 

  28. Vadivelu S, Platik MM, Choi L et al. Multi-germ layer lineage central nervous system repair: nerve and vascular cell generation by embryonic stem cells transplanted in the injured brain. J Neurosurg 2005; 103:124–135.

    Article  PubMed  Google Scholar 

  29. Klimanskaya I, Chung Y, Becker S et al. Human embryonic stem cell lines derived from single blastomeres. Nature 2006; 444:481–485.

    Article  CAS  PubMed  Google Scholar 

  30. Ronaghi M, Erceg S, Moreno-Manzano V et al. Challenges of stem cell therapy for spinal cord injury: human embryonic stem cells, endogenous neural stem cells, or induced pluripotent stem cells? Stem Cells 2010; 28:93–99.

    PubMed  Google Scholar 

  31. Smukler SR, Runciman SB, Xu S et al. Embryonic stem cells assume a primitive neural stem cell fate in the absence of extrinsic influences. J Cell Biol 2006; 172:79–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sharp J, Keirstead HS. Therapeutic applications of oligodendrocyte precursors derived from human embryonic stem cells. Curr Opin Biotechnol 2007; 18:434–440.

    Article  CAS  PubMed  Google Scholar 

  33. Cloutier F, Siegenthaler MM, Nistor G et al. Transplantation of human embryonic stem cell-derived oligodendrocyte progenitors into rat spinal cord injuries does not cause harm. Regen Med 2006; 1:469–479.

    Article  CAS  PubMed  Google Scholar 

  34. Yang D, Zhang ZJ, Oldenburg M et al. Human embryonic stem cell-derived dopaminergic neurons reverse functional deficit in parkinsonian rats. Stem Cells 2008; 26:55–63.

    Article  CAS  PubMed  Google Scholar 

  35. Wernig MBF, Schmandt T, Rade M et al. Functional integration of embryonic stem cell-derived neurons in vivo. J Neurosci 2004; 24:5258–5268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chambers SM, Fasano CA, Papapetrou EP et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 2009; 27:275–280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li L, Baroja ML, Majumdar A et al. Human embryonic stem cells possess immune-privileged properties. Stem Cells 2004; 22:448–456.

    Article  CAS  PubMed  Google Scholar 

  38. Okano H. Strategies toward CNS-regeneration using induced pluripotent stem cells. Genome Inform 2009; 23:217–220.

    PubMed  Google Scholar 

  39. Okano H. Regeneration of the central nervous system using iPS cell-technologies. Rinsho Shinkeigaku 2009; 49:825–826.

    Article  PubMed  Google Scholar 

  40. Tsuji O, Miura K, Okada Y et al. Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Proc Natl Acad Sci U S A 2010; 107:12704–12709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Miller RH, Bai L, Lennon DP et al. The potential of mesenchymal stem cells for neural repair. Discov Med 2010; 9:236–242.

    PubMed  Google Scholar 

  42. Sykova E, Homola A, Mazanec R et al. Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury. Cell Transplant 2006; 15:675–687.

    Article  PubMed  Google Scholar 

  43. Sykova E, Jendelova P, Urdzikova L et al. Bone marrow stem cells and polymer hydrogels—two strategies for spinal cord injury repair. Cell Mol Neurobiol 2006; 26:1113–1129.

    Article  CAS  PubMed  Google Scholar 

  44. Park WB, Kim SY, Lee SH et al. The effect of mesenchymal stem cell transplantation on the recovery of bladder and hindlimb function after spinal cord contusion in rats. BMC Neurosci 2010; 11:119.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Tetzlaff W, Okon EB, Karimi-Abdolrezaee S et al. A systematic review of cellular transplantation therapies for spinal cord injury. J Neurotrauma 2010.

    Google Scholar 

  46. Woodbury D, Reynolds K, Black IB. Adult bone marrow stromal stem cells express germline, ectodermal, endodermal, and mesodermal genes prior to neurogenesis. J Neurosci Res 2002; 69:908–917.

    Article  CAS  PubMed  Google Scholar 

  47. Woodbury D, Schwarz EJ, Prockop DJ et al. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 2000; 61:364–370.

    Article  CAS  PubMed  Google Scholar 

  48. Black IB, Woodbury D. Adult rat and human bone marrow stromal stem cells differentiate into neurons. Blood Cells Mol Dis 2001; 27:632–636.

    Article  CAS  PubMed  Google Scholar 

  49. Phinney DG, Prockop DJ. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views. Stem Cells 2007; 25:2896–2902.

    Article  PubMed  Google Scholar 

  50. Sasaki M, Radtke C, Tan AM et al. BDNF-hypersecreting human mesenchymal stem cells promote functional recovery, axonal sprouting, and protection of corticospinal neurons after spinal cord injury. J Neurosci 2009; 29:14932–14941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 1992; 255:1707–1710.

    Article  CAS  PubMed  Google Scholar 

  52. Weiss S, Dunne C, Hewson J et al. Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J Neurosci 1996; 16:7599–7609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Morshead CM, Reynolds BA, Craig CG et al. Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron 1994; 13:1071–1082.

    Article  CAS  PubMed  Google Scholar 

  54. Alvarez-Buylla A, Temple S. Stem cells in the developing and adult nervous system. J Neurobiol 1998; 36:105–110.

    Article  CAS  PubMed  Google Scholar 

  55. Goldman S. Stem and progenitor cell-based therapy of the human central nervous system. Nat Biotechnol 2005; 23:862–871.

    Article  CAS  PubMed  Google Scholar 

  56. Eftekharpour E, Karimi-Abdolrezaee S, Wang J et al. Myelination of congenitally dysmyelinated spinal cord axons by adult neural precursor cells results in formation of nodes of ranvier and improved axonal conduction. J Neurosci 2007; 27:3416–3428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hofstetter CP, Holmstrom NA, Lilja JA et al. Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome. Nat Neurosci 2005; 8:346–353.

    Article  CAS  PubMed  Google Scholar 

  58. Parr AM, Kulbatski I, Zahir T et al. Transplanted adult spinal cord-derived neural stem/progenitor cells promote early functional recovery after rat spinal cord injury. Neuroscience 2008; 155:760–770.

    Article  CAS  PubMed  Google Scholar 

  59. Parr AM, Kulbatski I, Tator CH. Transplantation of adult rat spinal cord stem/progenitor cells for spinal cord injury. J Neurotrauma 2007; 24:835–845.

    Article  PubMed  Google Scholar 

  60. Martens DJ, Seaberg RM, van der Kooy D. In vivo infusions of exogenous growth factors into the fourth ventricle of the adult mouse brain increase the proliferation of neural progenitors around the fourth ventricle and the central canal of the spinal cord. Eur J Neurosci 2002; 16:1045–1057.

    Article  PubMed  Google Scholar 

  61. Hoffmann CF, Thomeer RT, Marani E. Reimplantation of ventral rootlets into the cervical spinal cord after their avulsion: an anterior surgical approach. Clin Neurol Neurosurg 1993; 95 Suppl:S112–S118.

    Article  PubMed  Google Scholar 

  62. Craig CG, Tropepe V, Morshead CM et al. In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. J Neurosci 1996; 16:2649–2658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vescovi AL, Reynolds BA, Fraser DD et al. bFGF regulates the proliferative fate of unipotent (neuronal) and bipotent (neuronal/astroglial) EGF-generated CNS progenitor cells. Neuron 1993; 11:951–966.

    Article  CAS  PubMed  Google Scholar 

  64. Kojima A, Tator CH. Intrathecal administration of epidermal growth factor and fibroblast growth factor 2 promotes ependymal proliferation and functional recovery after spinal cord injury in adult rats. J Neurotrauma 2002; 19:223–238.

    Article  PubMed  Google Scholar 

  65. Kojima A, Tator CH. Epidermal growth factor and fibroblast growth factor 2 cause proliferation of ependymal precursor cells in the adult rat spinal cord in vivo. J Neuropathol Exp Neurol 2000; 59:687–697.

    Article  CAS  PubMed  Google Scholar 

  66. Lachapelle F, Avellana-Adalid V, Nait-Oumesmar B et al. Fibroblast growth factor-2 (FGF-2) and platelet-derived growth factor AB (PDGF AB) promote adult SVZ-derived oligodendrogenesis in vivo. Mol Cell Neurosci 2002; 20:390–403.

    Article  CAS  PubMed  Google Scholar 

  67. Frost EE, Nielsen JA, Le TQ et al. PDGF and FGF2 regulate oligodendrocyte progenitor responses to demyelination. J Neurobiol 2003; 54:457–472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Takahashi K, Narita M, Yokura M et al. Human induced pluripotent stem cells on autologous feeders. PLoS One 2009; 4:e8067.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126:663–676.

    Article  CAS  PubMed  Google Scholar 

  70. Yu J, Hu K, Smuga-Otto K et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science 2009; 324:797–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Miura K, Okada Y, Aoi T et al. Variation in the safety of induced pluripotent stem cell lines. Nat Biotechnol 2009; 27:743–745.

    Article  CAS  PubMed  Google Scholar 

  72. Woltjen K, Michael IP, Mohseni P et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 2009; 458:766–770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhou H, Li W, Zhu S et al. Conversion of mouse epiblast stem cells to an earlier pluripotency state by small molecules. J Biol Chem 2010; 285:29676–29680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhou H, Wu S, Joo JY et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 2009; 4:381–384.

    Article  CAS  PubMed  Google Scholar 

  75. Kusano K, Enomoto M, Hirai T et al. Transplanted neural progenitor cells expressing mutant NT3 promote myelination and partial hindlimb recovery in the chronic phase after spinal cord injury. Biochem Biophys Res Commun 2010; 393:812–817.

    Article  CAS  PubMed  Google Scholar 

  76. Blesch A, Lu P, Tuszynski MH. Neurotrophic factors, gene therapy, and neural stem cells for spinal cord repair. Brain Res Bull 2002; 57:833–838.

    Article  CAS  PubMed  Google Scholar 

  77. Lu P, Jones LL, Tuszynski MH. BDNF-expressing marrow stromal cells support extensive axonal growth at sites of spinal cord injury. Exp Neurol 2005; 191:344–360.

    Article  CAS  PubMed  Google Scholar 

  78. Cao Q, He Q, Wang Y et al. Transplantation of ciliary neurotrophic factor-expressing adult oligodendrocyte precursor cells promotes remyelination and functional recovery after spinal cord injury. J Neurosci 2010; 30:2989–3001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Grill R, Murai K, Blesch A et al. Cellular delivery of neurotrophin-3 promotes corticospinal axonal growth and partial functional recovery after spinal cord injury. J Neurosci 1997; 17:5560–5572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kim HM, Hwang DH, Lee JE et al. Ex vivo VEGF delivery by neural stem cells enhances proliferation of glial progenitors, angiogenesis, and tissue sparing after spinal cord injury. PLoS One 2009; 4:e4987.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Cao Q XX, Devries WH, Enzmann GU et al. Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells. J Neurosci 2005; 25:6947–6957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lee SI, Kim BG, Hwang DH et al. Overexpression of Bcl-XL in human neural stem cells promotes graft survival and functional recovery following transplantation in spinal cord injury. J Neurosci Res 2009; 87:3186–3197.

    Article  CAS  PubMed  Google Scholar 

  83. Johansson CB, Momma S, Clarke DL et al. Identification of a neural stem cell in the adult mammalian central nervous system. Cell 1999; 96:25–34.

    Article  CAS  PubMed  Google Scholar 

  84. Meletis K, Barnabe-Heider F, Carlen M et al. Spinal cord injury reveals multilineage differentiation of ependymal cells. PLoS Biol 2008; 6:e182.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Shihabuddin LS, Ray J, Gage FH. FGF-2 is sufficient to isolate progenitors found in the adult mammalian spinal cord. Experimental Neurology 1997; 148:577–586.

    Article  CAS  PubMed  Google Scholar 

  86. Yoo S, Wrathall JR. Mixed primary culture and clonal analysis provide evidence that NG2 proteoglycan-expressing cells after spinal cord injury are glial progenitors. Dev Neurobiol 2007; 67:860–874.

    Article  CAS  PubMed  Google Scholar 

  87. Yamamoto S, Nagao M, Sugimori M et al. Transcription factor expression and Notch-dependent regulation of neural progenitors in the adult rat spinal cord. J Neurosci 2001; 21:9814–9823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yamamoto S, Yamamoto N, Kitamura T et al. Proliferation of parenchymal neural progenitors in response to injury in the adult rat spinal cord. Exp Neurol 2001; 172:115–127.

    Article  CAS  PubMed  Google Scholar 

  89. Goldman SA, Sim F. Neural progenitor cells of the adult brain. Novartis Found Symp 2005; 265:66–80; discussion 82–97.

    CAS  PubMed  Google Scholar 

  90. Keirstead HS, Blakemore WF. The role of oligodendrocytes and oligodendrocyte progenitors in CNS remyelination. Adv Exp Med Biol 1999; 468:183–197.

    Article  CAS  PubMed  Google Scholar 

  91. Horky LL, Galimi F, Gage FH et al. Fate of endogenous stem/progenitor cells following spinal cord injury. J Comp Neurol 2006; 498:525–538.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Yang H, Lu P, McKay HM et al. Endogenous neurogenesis replaces oligodendrocytes and astrocytes after primate spinal cord injury. J Neurosci 2006; 26:2157–2166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mothe AJ, Tator CH. Proliferation, migration, and differentiation of endogenous ependymal region stem/progenitor cells following minimal spinal cord injury in the adult rat. Neuroscience 2005; 131:177–187.

    Article  CAS  PubMed  Google Scholar 

  94. Namiki J, Tator CH. Cell proliferation and nestin expression in the ependyma of the adult rat spinal cord after injury. J Neuropathol Exp Neurol 1999; 58:489–498.

    Article  CAS  PubMed  Google Scholar 

  95. Mothe AJ, Kulbatski I, van Bendegem RL et al. Analysis of green fluorescent protein expression in transgenic rats for tracking transplanted neural stem/progenitor cells. J Histochem Cytochem 2005; 53:1215–1226.

    Article  CAS  PubMed  Google Scholar 

  96. Ohori Y, Yamamoto S, Nagao M et al. Growth factor treatment and genetic manipulation stimulate neurogenesis and oligodendrogenesis by endogenous neural progenitors in the injured adult spinal cord. J Neurosci 2006; 26:11948–11960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Karimi-Abdolrezaee, S., Eftekharpour, E. (2012). Stem Cells and Spinal Cord Injury Repair. In: Jandial, R., Chen, M.Y. (eds) Regenerative Biology of the Spine and Spinal Cord. Advances in Experimental Medicine and Biology, vol 760. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4090-1_4

Download citation

Publish with us

Policies and ethics