Skip to main content

miR-210: Fine-Tuning the Hypoxic Response

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 772))

Abstract

Hypoxia is a central component of the tumor microenvironment and represents a major source of therapeutic failure in cancer therapy. Recent work has provided a wealth of evidence that noncoding RNAs and, in particular, microRNAs, are significant members of the adaptive response to low oxygen in tumors. All published studies agree that miR-210 specifically is a robust target of hypoxia-inducible factors, and the induction of miR-210 is a consistent characteristic of the hypoxic response in normal and transformed cells. Overexpression of miR-210 is detected in most solid tumors and has been linked to adverse prognosis in patients with soft-tissue sarcoma, breast, head and neck, and pancreatic cancer. A wide variety of miR-210 targets have been identified, pointing to roles in the cell cycle, mitochondrial oxidative metabolism, angiogenesis, DNA damage response, and cell survival. Additional microRNAs seem to be modulated by low oxygen in a more tissue-specific fashion, adding another layer of complexity to the vast array of protein-coding genes regulated by hypoxia.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alaiti MA, Ishikawa M et al (2012) Up-regulation of miR-210 by vascular endothelial growth factor in ex vivo expanded CD34+ cells enhances cell-mediated angiogenesis. J Cell Mol Med 16(10):2413–2421

    PubMed  CAS  Google Scholar 

  • Allegra A, Alonci A et al (2012) Circulating microRNAs: new biomarkers in diagnosis, prognosis and treatment of cancer (review). Int J Oncol 41(6):1897–1912

    PubMed  CAS  Google Scholar 

  • Antonicka H, Leary SC et al (2003) Mutations in COX10 result in a defect in mitochondrial heme a biosynthesis and account for multiple, early-onset clinical phenotypes associated with isolated COX deficiency. Hum Mol Genet 12(20):2693–2702

    PubMed  CAS  Google Scholar 

  • Baek D, Villen J et al (2008) The impact of microRNAs on protein output. Nature 455(7209):64–71

    PubMed  CAS  Google Scholar 

  • Balsa E, Marco R et al (2012) NDUFA4 is a subunit of complex IV of the mammalian electron transport chain. Cell Metab 16(3):378–386

    PubMed  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    PubMed  CAS  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233

    PubMed  CAS  Google Scholar 

  • Baysal BE, Ferrell RE et al (2000) Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287(5454):848–851

    PubMed  CAS  Google Scholar 

  • Benson FE, Baumann P et al (1998) Synergistic actions of Rad51 and Rad52 in recombination and DNA repair. Nature 391(6665):401–404

    PubMed  CAS  Google Scholar 

  • Betel D, Wilson M et al (2008) The microRNA.org resource: targets and expression. Nucleic Acids Res 36(suppl 1):D149–D153

    PubMed  CAS  Google Scholar 

  • Bindra R, Crosby M et al (2007) Regulation of DNA repair in hypoxic cancer cells. Cancer Metastasis Rev 26(2):249–260

    PubMed  CAS  Google Scholar 

  • Biswas S, Roy S et al (2010) Hypoxia inducible microRNA 210 attenuates keratinocyte proliferation and impairs closure in a murine model of ischemic wounds. Proc Natl Acad Sci 107(15):6976–6981

    PubMed  CAS  Google Scholar 

  • Bostjancic E, Zidar N et al (2009) MicroRNA microarray expression profiling in human myocardial infarction. Dis Markers 27(6):255–268

    PubMed  CAS  Google Scholar 

  • Brown JM, Giaccia AJ (1998) The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res 58(7):1408–1416

    PubMed  CAS  Google Scholar 

  • Brugarolas J (2007) Renal-cell carcinoma – molecular pathways and therapies. N Engl J Med 356(2):185–187

    PubMed  CAS  Google Scholar 

  • Bunoust O, Devin A et al (2005) Competition of electrons to enter the respiratory chain: a new regulatory mechanism of oxidative metabolism in Saccharomyces cerevisiae. J Biol Chem 280(5):3407–3413

    PubMed  CAS  Google Scholar 

  • Bushati N, Cohen SM (2007) MicroRNA functions. Annu Rev Cell Dev Biol 23(1):175–205

    PubMed  CAS  Google Scholar 

  • Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6(11):857–866

    PubMed  CAS  Google Scholar 

  • Camps C, Buffa FM et al (2008) hsa-miR-210 is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin Cancer Res 14(5):1340–1348

    PubMed  CAS  Google Scholar 

  • Chan SY, Zhang YY et al (2009) MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2. Cell Metab 10(4):273–284

    PubMed  CAS  Google Scholar 

  • Chen X, Ba Y et al (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18(10):997–1006

    PubMed  CAS  Google Scholar 

  • Chen Z, Li Y et al (2010) Hypoxia-regulated microRNA-210 modulates mitochondrial function and decreases ISCU and COX10 expression. Oncogene 29(30):4362–4368

    PubMed  CAS  Google Scholar 

  • Chen H-Y, Lin Y-M et al (2012) miR-103/107 promote metastasis of colorectal cancer by targeting the metastasis suppressors DAPK and KLF4. Cancer Res 72(14):3631–3641

    PubMed  CAS  Google Scholar 

  • Cheng AM, Byrom MW et al (2005) Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 33(4):1290–1297

    PubMed  CAS  Google Scholar 

  • Chio C-C, Lin J-W et al (2013) MicroRNA-210 targets antiapoptotic Bcl-2 expression and mediates hypoxia-induced apoptosis of neuroblastoma cells. Arch Toxicol 87(3):459–468

    PubMed  CAS  Google Scholar 

  • Ciafre SA, Galardi S et al (2005) Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334(4):1351–1358

    PubMed  CAS  Google Scholar 

  • Cicchillitti L, Di Stefano V et al (2012) Hypoxia-inducible factor 1-a induces miR-210 in normoxic differentiating myoblasts. J Biol Chem 287(53):44761–44771

    PubMed  CAS  Google Scholar 

  • Cortez MA, Bueso-Ramos C et al (2011) MicroRNAs in body fluids–the mix of hormones and biomarkers. Nat Rev Clin Oncol 8(8):467–477

    PubMed  CAS  Google Scholar 

  • Crosby ME, Kulshreshtha R et al (2009) MicroRNA regulation of DNA repair gene expression in hypoxic stress. Cancer Res 69(3):1221–1229

    PubMed  CAS  Google Scholar 

  • Denko NC (2008) Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 8(9):705–713

    PubMed  CAS  Google Scholar 

  • Denko NC, Fontana LA et al (2003) Investigating hypoxic tumor physiology through gene expression patterns. Oncogene 22(37):5907–5914

    PubMed  CAS  Google Scholar 

  • Devlin C, Greco S et al (2011) miR-210: more than a silent player in hypoxia. IUBMB Life 63(2):94–100

    PubMed  CAS  Google Scholar 

  • Djebali S, Davis CA et al (2012) Landscape of transcription in human cells. Nature 489(7414):101–108

    PubMed  CAS  Google Scholar 

  • Djuranovic S, Nahvi A et al (2011) A parsimonious model for gene regulation by miRNAs. Science 331(6017):550–553

    PubMed  CAS  Google Scholar 

  • Djuranovic S, Nahvi A et al (2012) MiRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science 336(6078):237–240

    PubMed  CAS  Google Scholar 

  • Donker RB, Mouillet JF et al (2007) The expression of Argonaute2 and related microRNA biogenesis proteins in normal and hypoxic trophoblasts. Mol Hum Reprod 13(4):273–279

    PubMed  CAS  Google Scholar 

  • Enquobahrie DA, Abetew DF et al (2011) Placental microRNA expression in pregnancies complicated by preeclampsia. Am J Obstet Gynecol 204(2):178 e112–121

    Google Scholar 

  • Fabbri E, Brognara E et al (2011a) MiRNA therapeutics: delivery and biological activity of peptide nucleic acids targeting miRNAs. Epigenomics 3(6):733–745

    PubMed  CAS  Google Scholar 

  • Fabbri E, Manicardi A et al (2011b) Modulation of the biological activity of microRNA-210 with peptide nucleic acids (PNAs). ChemMedChem 6(12):2192–2202

    PubMed  CAS  Google Scholar 

  • Faraonio R, Salerno P et al (2012) A set of miRNAs participates in the cellular senescence program in human diploid fibroblasts. Cell Death Differ 19(4):713–721

    PubMed  CAS  Google Scholar 

  • Fasanaro P, D’Alessandra Y et al (2008) MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand ephrin-A3. J Biol Chem 283(23):15878–15883

    PubMed  CAS  Google Scholar 

  • Fasanaro P, Greco S et al (2009) An integrated approach for experimental target identification of hypoxia-induced miR-210. J Biol Chem 284(50):35134–35143

    PubMed  CAS  Google Scholar 

  • Fasanaro P, Romani S et al (2012) ROD1 is a seedless target gene of hypoxia-induced miR-210. PLoS One 7(9):e44651

    PubMed  CAS  Google Scholar 

  • Favaro E, Ramachandran A et al (2010) MicroRNA-210 regulates mitochondrial free radical response to hypoxia and Krebs cycle in cancer cells by targeting iron sulfur cluster protein ISCU. PLoS One 5(4):e10345

    PubMed  Google Scholar 

  • Foekens JA, Sieuwerts AM et al (2008) Four miRNAs associated with aggressiveness of lymph node-negative, estrogen receptor-positive human breast cancer. Proc Natl Acad Sci 105(35):13021–13026

    PubMed  CAS  Google Scholar 

  • Gambari R, Fabbri E et al (2011) Targeting microRNAs involved in human diseases: a novel approach for modification of gene expression and drug development. Biochem Pharmacol 82(10):1416–1429

    PubMed  CAS  Google Scholar 

  • Garzon R, Calin GA et al (2009) MicroRNAs in cancer. Annu Rev Med 60(1):167–179

    PubMed  CAS  Google Scholar 

  • Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4(11):891–899

    PubMed  CAS  Google Scholar 

  • Gee HE, Camps C et al (2010) hsa-miR-210 is a marker of tumor hypoxia and a prognostic factor in head and neck cancer. Cancer 116(9):2148–2158

    PubMed  Google Scholar 

  • Giannakakis A, Sandaltzopoulos R et al (2008) miR-210 links hypoxia with cell cycle regulation and is deleted in human epithelial ovarian cancer. Cancer Biol Ther 7(2):255–264

    PubMed  CAS  Google Scholar 

  • Gilad S, Meiri E et al (2008) Serum microRNAs are promising novel biomarkers. PLoS One 3(9):e3148

    PubMed  Google Scholar 

  • Gnarra JR, Tory K et al (1994) Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat Genet 7(1):85–90

    PubMed  CAS  Google Scholar 

  • Gordan JD, Thompson CB et al (2007) HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell 12(2):108–113

    PubMed  CAS  Google Scholar 

  • Gottlieb E, Tomlinson IP (2005) Mitochondrial tumour suppressors: a genetic and biochemical update. Nat Rev Cancer 5(11):857–866

    PubMed  CAS  Google Scholar 

  • Gou D, Ramchandran R et al (2012) miR-210 has an antiapoptotic effect in pulmonary artery smooth muscle cells during hypoxia. Am J Physiol Lung Cell Mol Physiol 303(8):L682–L691

    PubMed  CAS  Google Scholar 

  • Greco S, Fasanaro P et al (2012) MicroRNA dysregulation in diabetic ischemic heart failure patients. Diabetes 61(6):1633–1641

    PubMed  CAS  Google Scholar 

  • Greither T, Grochola LF et al (2009) Elevated expression of microRNAs 155, 203, 210 and 222 in pancreatic tumors is associated with poorer survival. Int J Cancer 126(1):73–80

    Google Scholar 

  • Greither T, Würl P et al (2011) Expression of microRNA 210 associates with poor survival and age of tumor onset of soft-tissue sarcoma patients. Int J Cancer 130(5):1230–1235

    PubMed  Google Scholar 

  • Griffiths-Jones S, Saini HK et al (2008) MiRBase: tools for microRNA genomics. Nucleic Acids Res 36(suppl 1):D154–D158

    PubMed  CAS  Google Scholar 

  • Guo H, Ingolia NT et al (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466(7308):835–840

    PubMed  CAS  Google Scholar 

  • Guzy RD, Schumacker PT (2006) Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp Physiol 91(5):807–819

    PubMed  CAS  Google Scholar 

  • Hammer S, To KK et al (2007) Hypoxic suppression of the cell cycle gene CDC25A in tumor cells. Cell Cycle 6(15):1919–1926

    PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    PubMed  CAS  Google Scholar 

  • He J, Wu J et al (2013) MiR-210 disturbs mitotic progression through regulating a group of mitosis-related genes. Nucleic Acids Res 41(1):498–508

    PubMed  CAS  Google Scholar 

  • Ho AS, Huang X et al (2010) Circulating miR-210 as a novel hypoxia marker in pancreatic cancer. Transl Oncol 3(2):109–113

    PubMed  Google Scholar 

  • Hong L, Yang J et al (2012) High expression of miR-210 predicts poor survival in patients with breast cancer: a meta-analysis. Gene 507(2):135–138

    PubMed  CAS  Google Scholar 

  • Hu S, Huang M et al (2010) MicroRNA-210 as a novel therapy for treatment of ischemic heart disease. Circulation 122(Suppl 1):S124–S131

    PubMed  CAS  Google Scholar 

  • Huang X, Ding L et al (2009) Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation. Mol Cell 35(6):856–867

    PubMed  CAS  Google Scholar 

  • Huang X, Le Q-T et al (2010) MiR-210 – micromanager of the hypoxia pathway. Trends Mol Med 16(5):230–237

    PubMed  CAS  Google Scholar 

  • Hurlin PJ, Queva C et al (1997) Mnt, a novel Max-interacting protein is coexpressed with Myc in proliferating cells and mediates repression at Myc binding sites. Genes Dev 11(1):44–58

    PubMed  CAS  Google Scholar 

  • Hüttenhofer A, Schattner P et al (2005) Non-coding RNAs: hope or hype? Trends Genet 21(5):289–297

    PubMed  Google Scholar 

  • Iguchi H, Kosaka N et al (2010) Versatile applications of microRNA in anti-cancer drug discovery: from therapeutics to biomarkers. Curr Drug Discov Technol 7(2):95–105

    PubMed  CAS  Google Scholar 

  • Iorio MV, Croce CM (2012) MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 4(3):143–159

    PubMed  CAS  Google Scholar 

  • Iorio MV, Ferracin M et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65(16):7065–7070

    PubMed  CAS  Google Scholar 

  • Ivan M, Kondo K et al (2001) HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292(5516):464–468

    PubMed  CAS  Google Scholar 

  • Jaakkola P, Mole DR et al (2001) Targeting of HIF-alpha to the von hippel-lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292(5516):468–472

    PubMed  CAS  Google Scholar 

  • Jeyaseelan K, Lim KY et al (2008) MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke 39(3):959–966

    PubMed  CAS  Google Scholar 

  • Juan D, Alexe G et al (2010) Identification of a MicroRNA panel for clear-cell kidney cancer. Urology 75(4):835–841

    PubMed  Google Scholar 

  • Jung EJ, Santarpia L et al (2012) Plasma microRNA 210 levels correlate with sensitivity to Trastuzumab and tumor presence in breast cancer patients. Cancer 118(10):2603–2614

    PubMed  CAS  Google Scholar 

  • Karginov FV, Conaco C et al (2007) A biochemical approach to identifying microRNA targets. Proc Natl Acad Sci 104(49):19291–19296

    PubMed  CAS  Google Scholar 

  • Kawamata T, Tomari Y (2010) Making RISC. Trends Biochem Sci 35(7):368–376

    PubMed  CAS  Google Scholar 

  • Kelly TJ, Souza AL et al (2011) A hypoxia-induced positive feedback loop promotes hypoxia-inducible factor 1alpha stability through miR-210 suppression of glycerol-3-phosphate dehydrogenase 1-like. Mol Cell Biol 31(13):2696–2706

    PubMed  CAS  Google Scholar 

  • Kertesz M, Iovino N et al (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39(10):1278–1284

    PubMed  CAS  Google Scholar 

  • Kim JW, Dang CV (2006) Cancer’s molecular sweet tooth and the Warburg effect. Cancer Res 66(18):8927–8930

    PubMed  CAS  Google Scholar 

  • Kim HW, Haider HK et al (2009) Ischemic preconditioning augments survival of stem cells via miR-210 expression by targeting caspase-8-associated protein 2. J Biol Chem 284(48):33161–33168

    PubMed  Google Scholar 

  • Kim HW, Mallick F et al (2012) Concomitant activation of miR-107/PDCD10 and hypoxamir-210/Casp8ap2 and their role in cytoprotection during ischemic preconditioning of stem cells. Antioxid Redox Signal 17(8):1053–1065

    PubMed  CAS  Google Scholar 

  • King HW, Michael MZ et al (2012) Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer 12(1):421

    PubMed  CAS  Google Scholar 

  • Koong AC, Mehta VK et al (2000) Pancreatic tumors show high levels of hypoxia. Int J Radiat Oncol Biol Phys 48(4):919–922

    PubMed  CAS  Google Scholar 

  • Krek A, Grun D et al (2005) Combinatorial microRNA target predictions. Nat Genet 37(5):495–500

    PubMed  CAS  Google Scholar 

  • Krick S, Hanze J et al (2005) Hypoxia-driven proliferation of human pulmonary artery fibroblasts: cross-talk between HIF-1alpha and an autocrine Angiotensin system. FASEB J 19(7):857–859

    PubMed  CAS  Google Scholar 

  • Kuijper S, Turner CJ et al (2007) Regulation of angiogenesis by Eph–ephrin interactions. Trends Cardiovasc Med 17(5):145–151

    PubMed  CAS  Google Scholar 

  • Kulshreshtha R, Ferracin M et al (2007a) Regulation of microRNA expression: the hypoxic component. Cell Cycle 6(12):1426–1431

    PubMed  CAS  Google Scholar 

  • Kulshreshtha R, Ferracin M et al (2007b) A MicroRNA signature of hypoxia. Mol Cell Biol 27(5):1859–1867

    PubMed  CAS  Google Scholar 

  • Landau DA, Slack FJ (2011) MicroRNAs in mutagenesis, genomic instability, and DNA repair. Semin Oncol 38(6):743–751

    PubMed  CAS  Google Scholar 

  • Lanford RE, Hildebrandt-Eriksen ES et al (2010) Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327(5962):198–201

    PubMed  CAS  Google Scholar 

  • Lawrie CH, Gal S et al (2008) Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol 141(5):672–675

    PubMed  Google Scholar 

  • Lee RC, Feinbaum RL et al (1993) The C. Elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    PubMed  CAS  Google Scholar 

  • Lee Y, Jeon K et al (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21(17):4663–4670

    PubMed  CAS  Google Scholar 

  • Lee Y, Kim M et al (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23(20):4051–4060

    PubMed  CAS  Google Scholar 

  • Lees JA, Saito M et al (1993) The retinoblastoma protein binds to a family of E2F transcription factors. Mol Cell Biol 13(12):7813–7825

    PubMed  CAS  Google Scholar 

  • Leone G, DeGregori J et al (1998) E2F3 activity is regulated during the cell cycle and is required for the induction of S phase. Genes Dev 12(14):2120–2130

    PubMed  CAS  Google Scholar 

  • Lewis BP, Shih IH et al (2003) Prediction of mammalian MicroRNA targets. Cell 115(7):787–798

    PubMed  CAS  Google Scholar 

  • Lewis BP, Burge CB et al (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are MicroRNA targets. Cell 120(1):15–20

    PubMed  CAS  Google Scholar 

  • Li T, Cao H et al (2011) Identification of miR-130a, miR-27b and miR-210 as serum biomarkers for atherosclerosis obliterans. Clin Chim Acta 412(1–2):66–70

    PubMed  CAS  Google Scholar 

  • Lim LP, Lau NC et al (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433(7027):769–773

    PubMed  CAS  Google Scholar 

  • Liu Y, Cox SR et al (1995) Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells: identification of a 5′ enhancer. Circ Res 77(3):638–643

    PubMed  CAS  Google Scholar 

  • Liu M, Liu H et al (2010) Reactive oxygen species originating from mitochondria regulate the cardiac sodium channel. Circ Res 107(8):967–974

    PubMed  CAS  Google Scholar 

  • Liu Y, Han Y et al (2012) Synthetic miRNA-mowers targeting miR-183-96-182 cluster or miR-210 inhibit growth and migration and induce apoptosis in bladder cancer cells. PLoS One 7(12):e52280

    PubMed  CAS  Google Scholar 

  • Lou YL, Guo F et al (2012) miR-210 activates notch signaling pathway in angiogenesis induced by cerebral ischemia. Mol Cell Biochem 370(1–2):45–51

    PubMed  CAS  Google Scholar 

  • Lu J, Getz G et al (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043):834–838

    PubMed  CAS  Google Scholar 

  • Malzkorn B, Wolter M et al (2009) Identification and functional characterization of microRNAs involved in the malignant progression of gliomas. Brain Pathol 20(3):539–550

    PubMed  Google Scholar 

  • Maragkakis M, Reczko M et al (2009) DIANA-microT web server: elucidating microRNA functions through target prediction. Nucleic Acids Res 37(suppl 2):W273–W276

    PubMed  CAS  Google Scholar 

  • Meroni G, Reymond A et al (1997) Rox, a novel bHLHZip protein expressed in quiescent cells that heterodimerizes with Max, binds a non-canonical E box and acts as a transcriptional repressor. EMBO J 16(10):2892–2906

    PubMed  CAS  Google Scholar 

  • Michael MZ, O’Connor SM, et al (2003) Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 1(12):882–891

    PubMed  CAS  Google Scholar 

  • Miko E, Czimmerer Z et al (2009) Differentially expressed microRNAs in small cell lung cancer. Exp Lung Res 35(8):646–664

    PubMed  CAS  Google Scholar 

  • Mitchell PS, Parkin RK et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci 105(30):10513–10518

    PubMed  CAS  Google Scholar 

  • Mizuno Y, Tokuzawa Y et al (2009) miR-210 promotes osteoblastic differentiation through inhibition of AcvR1b. FEBS Lett 583(13):2263–2268

    PubMed  CAS  Google Scholar 

  • Mochel F, Knight MA et al (2008) Splice mutation in the iron-sulfur cluster scaffold protein ISCU causes myopathy with exercise intolerance. Am J Hum Genet 82(3):652–660

    PubMed  CAS  Google Scholar 

  • Murakami Y, Yasuda T et al (2006) Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene 25(17):2537–2545

    PubMed  CAS  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417(1):1–13

    PubMed  CAS  Google Scholar 

  • Mutharasan RK, Nagpal V et al (2011) MicroRNA-210 is upregulated in hypoxic cardiomyocytes through Akt- and p53-dependent pathways and exerts cytoprotective effects. Am J Physiol Heart Circ Physiol 301(4):H1519–H1530

    PubMed  CAS  Google Scholar 

  • Nakada C, Tsukamoto Y et al (2011) Overexpression of miR-210, a downstream target of HIF1α, causes centrosome amplification in renal carcinoma cells. J Pathol 224(2):280–288

    PubMed  CAS  Google Scholar 

  • Nakamura Y, Patrushev N et al (2008) Role of protein tyrosine phosphatase 1B in vascular endothelial growth factor signaling and cell–cell adhesions in endothelial cells. Circ Res 102(10):1182–1191

    PubMed  CAS  Google Scholar 

  • Nie Y, Han B-M et al (2011) Identification of MicroRNAs involved in hypoxia- and serum deprivation-induced apoptosis in mesenchymal stem cells. Int J Biol Sci 7:762–768

    PubMed  CAS  Google Scholar 

  • Pasquinelli AE, Reinhart BJ et al (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408(6808):86–89

    PubMed  CAS  Google Scholar 

  • Pineles BL, Romero R et al (2007) Distinct subsets of microRNAs are expressed differentially in the human placentas of patients with preeclampsia. Am J Obstet Gynecol 196(3):261 e261–266

    Google Scholar 

  • Place RF, Li L-C et al (2008) MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci 105(5):1608–1613

    PubMed  CAS  Google Scholar 

  • Porkka KP, Pfeiffer MJ et al (2007) MicroRNA expression profiling in prostate cancer. Cancer Res 67(13):6130–6135

    PubMed  CAS  Google Scholar 

  • Presti JC Jr, Rao PH et al (1991) Histopathological, cytogenetic, and molecular characterization of renal cortical tumors. Cancer Res 51(5):1544–1552

    PubMed  Google Scholar 

  • Puissegur MP, Mazure NM et al (2011) miR-210 is overexpressed in late stages of lung cancer and mediates mitochondrial alterations associated with modulation of HIF-1 activity. Cell Death Differ 18(3):465–478

    PubMed  CAS  Google Scholar 

  • Pulkkinen K, Malm T et al (2008) Hypoxia induces microRNA miR-210 in vitro and in vivo ephrin-A3 and neuronal pentraxin 1 are potentially regulated by miR-210. FEBS Lett 582(16):2397–2401

    PubMed  CAS  Google Scholar 

  • Qin L, Chen Y et al (2010) A deep investigation into the adipogenesis mechanism: profile of microRNAs regulating adipogenesis by modulating the canonical Wnt/beta-catenin signaling pathway. BMC Genomics 11:320

    PubMed  Google Scholar 

  • Raponi M, Dossey L et al (2009) MicroRNA classifiers for predicting prognosis of squamous cell lung cancer. Cancer Res 69(14):5776–5783

    PubMed  CAS  Google Scholar 

  • Redova M, Poprach A et al (2012) MiR-210 expression in tumor tissue and in vitro effects of its silencing in renal cell carcinoma. Tumor Biol 34(1):481–491

    Google Scholar 

  • Reinhart BJ, Slack FJ et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in caenorhabditis elegans. Nature 403(6772):901–906

    PubMed  CAS  Google Scholar 

  • Rothe F, Ignatiadis M et al (2011) Global MicroRNA expression profiling identifies MiR-210 associated with tumor proliferation, invasion and poor clinical outcome in breast cancer. PLoS One 6(6):e20980

    PubMed  CAS  Google Scholar 

  • Ruan K, Song G et al (2009) Role of hypoxia in the hallmarks of human cancer. J Cell Biochem 107(6):1053–1062

    PubMed  CAS  Google Scholar 

  • Salmena L, Poliseno L et al (2011) A ceRNA hypothesis: the Rosetta stone of a hidden RNA language? Cell 146(3):353–358

    PubMed  CAS  Google Scholar 

  • Sarkar J, Gou D et al (2010) MicroRNA-21 plays a role in hypoxia-mediated pulmonary artery smooth muscle cell proliferation and migration. Am J Physiol Lung Cell Mol Physiol 299(6):L861–L871

    PubMed  CAS  Google Scholar 

  • Satzger I, Mattern A et al (2009) MicroRNA-15b represents an independent prognostic parameter and is correlated with tumor cell proliferation and apoptosis in malignant melanoma. Int J Cancer 126(11):2553–2562

    Google Scholar 

  • Schwarz DS, Hutvágner G et al (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115(2):199–208

    PubMed  CAS  Google Scholar 

  • Selbach M, Schwanhausser B et al (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455(7209):58–63

    PubMed  CAS  Google Scholar 

  • Semenza GL (2003) Angiogenesis ischemic and neoplastic disorders. Annu Rev Med 54(1):17–28

    PubMed  CAS  Google Scholar 

  • Semenza GL (2010a) Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29(5):625–634

    PubMed  CAS  Google Scholar 

  • Semenza GL (2010b) Vascular responses to hypoxia and ischemia. Arterioscler Thromb Vasc Biol 30(4):648–652

    PubMed  CAS  Google Scholar 

  • Semenza GL (2012) Hypoxia-inducible factors in physiology and medicine. Cell 148(3):399–408

    PubMed  CAS  Google Scholar 

  • Shinohara A, Ogawa T (1998) Stimulation by Rad52 of yeast Rad51-mediated recombination. Nature 391(6665):404–407

    PubMed  CAS  Google Scholar 

  • Simone NL, Soule BP et al (2009) Ionizing radiation-induced oxidative stress alters miRNA expression. PLoS One 4(7):e6377

    PubMed  Google Scholar 

  • Stenvang J, Silahtaroglu AN et al (2008) The utility of LNA in microRNA-based cancer diagnostics and therapeutics. Semin Cancer Biol 18(2):89–102

    PubMed  CAS  Google Scholar 

  • Tabernero J, Shapiro GI et al (2013) First-in-man trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Disco 3(4):406–417

    Google Scholar 

  • Taylor DD, Gercel-Taylor C (2008) MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 110(1):13–21

    PubMed  CAS  Google Scholar 

  • Thum T, Galuppo P et al (2007) MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation 116(3):258–267

    PubMed  CAS  Google Scholar 

  • Tong WH, Rouault TA (2006) Functions of mitochondrial ISCU and cytosolic ISCU in mammalian iron-sulfur cluster biogenesis and iron homeostasis. Cell Metab 3(3):199–210

    PubMed  CAS  Google Scholar 

  • Toyama T, Kondo N et al (2012) High expression of microRNA-210 is an independent factor indicating a poor prognosis in Japanese triple-negative breast cancer patients. Jpn J Clin Oncol 42(4):256–263

    PubMed  Google Scholar 

  • Tsuchiya S, Fujiwara T et al (2011) MicroRNA-210 regulates cancer cell proliferation through targeting fibroblast growth factor receptor-like 1 (FGFRL1). J Biol Chem 286(1):420–428

    PubMed  CAS  Google Scholar 

  • Valadi H, Ekstrom K et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659

    PubMed  CAS  Google Scholar 

  • Valencia-Sanchez MA, Liu J et al (2006) Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20(5):515–524

    PubMed  CAS  Google Scholar 

  • van Rooij E, Sutherland LB et al (2006) A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci U S A 103(48):18255–18260

    PubMed  Google Scholar 

  • Vasudevan S, Tong Y et al (2007) Switching from repression to activation: MicroRNAs can up-regulate translation. Science 318(5858):1931–1934

    PubMed  CAS  Google Scholar 

  • Vaupel P, Mayer A (2007) Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev 26(2):225–239

    PubMed  CAS  Google Scholar 

  • Venter JC, Adams MD et al (2001) The sequence of the human genome. Science 291(5507):1304–1351

    PubMed  CAS  Google Scholar 

  • Ventura A, Jacks T (2009) MicroRNAs and cancer: short RNAs go a long way. Cell 136(4):586–591

    PubMed  CAS  Google Scholar 

  • Wan G, Mathur R et al (2011) MiRNA response to DNA damage. Trends Biochem Sci 36(9):478–484

    PubMed  CAS  Google Scholar 

  • Wang S, Olson EN (2009) AngiomiRs–key regulators of angiogenesis. Current Opin Genet Dev 19(3):205–211

    CAS  Google Scholar 

  • Wang GL, Semenza GL (1993) General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci U S A 90(9):4304–4308

    PubMed  CAS  Google Scholar 

  • Wang GL, Semenza GL (1995) Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 270(3):1230–1237

    PubMed  CAS  Google Scholar 

  • Wang GL, Jiang BH et al (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 92(12):5510–5514

    PubMed  CAS  Google Scholar 

  • Wang J, Chen J et al (2009) MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease. Cancer Prev Res 2(9):807–813

    CAS  Google Scholar 

  • Weber JA, Baxter DH et al (2010) The MicroRNA spectrum in 12 body fluids. Clin Chem 56(11):1733–1741

    PubMed  CAS  Google Scholar 

  • White NMA, Bao TT et al (2011) MiRNA profiling for clear cell renal cell carcinoma: biomarker discovery and identification of potential controls and consequences of miRNA dysregulation. J Urol 186(3):1077–1083

    PubMed  CAS  Google Scholar 

  • Wightman B, Ha I et al (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. Elegans. Cell 75(5):855–862

    PubMed  CAS  Google Scholar 

  • Wilson WR, Hay MP (2011) Targeting hypoxia in cancer therapy. Nat Rev Cancer 11(6):393–410

    PubMed  CAS  Google Scholar 

  • Wu F, Yang Z et al (2009) Role of specific microRNAs for endothelial function and angiogenesis. Biochem Biophys Res Commun 386(4):549–553

    PubMed  CAS  Google Scholar 

  • Yanaihara N, Caplen N et al (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9(3):189–198

    PubMed  CAS  Google Scholar 

  • Yang W, Sun T et al (2012) Downregulation of miR-210 expression inhibits proliferation, induces apoptosis and enhances radiosensitivity in hypoxic human hepatoma cells in vitro. Exp Cell Res 318(8):944–954

    PubMed  CAS  Google Scholar 

  • Zhang H, Gao P et al (2007) HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell 11(5):407–420

    PubMed  CAS  Google Scholar 

  • Zhang Z, Sun H et al (2009) MicroRNA miR-210 modulates cellular response to hypoxia through the MYC antagonist MNT. Cell Cycle 8(17):2756–2768

    PubMed  CAS  Google Scholar 

  • Zhang X, Wan G et al (2011) The ATM kinase induces microRNA biogenesis in the DNA damage response. Mol Cell 41(4):371–383

    PubMed  CAS  Google Scholar 

  • Zhao A, Li G et al (2013) Serum miR-210 as a novel biomarker for molecular diagnosis of clear cell renal cell carcinoma. Exp Mol Pathol 94(1):115–120

    PubMed  CAS  Google Scholar 

  • Zhu XM, Han T et al (2009) Differential expression profile of microRNAs in human placentas from preeclamptic pregnancies vs normal pregnancies. Am J Obstet Gynecol 200(6):661 e661–667

    Google Scholar 

  • Zundel W, Schindler C et al (2000) Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev 14(4):391–396

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported in part by funding from the National Institutes of Health (NIH 1R01 CA155332-01 to M.I.) and the American Cancer Society (M.I., X.H.). X.H. is a Liz Tilberis Scholar of the Ovarian Cancer Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mircea Ivan M.D., Ph.D. or Xin Huang Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this paper

Cite this paper

Ivan, M., Huang, X. (2014). miR-210: Fine-Tuning the Hypoxic Response. In: Koumenis, C., Hammond, E., Giaccia, A. (eds) Tumor Microenvironment and Cellular Stress. Advances in Experimental Medicine and Biology, vol 772. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5915-6_10

Download citation

Publish with us

Policies and ethics