Skip to main content

Tyrosine Kinase Targeted Treatment of Chronic Myelogenous Leukemia and Other Myeloproliferative Neoplasms

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((volume 779))

Abstract

Myeloproliferative neoplasms (MPNs) include Philadelphia chromosome positive (Ph+) chronic myeloid leukemia (CML) and the Ph− diseases primary myelofibrosis (PMF), polycythemia vera (PV) and essential thrombocythemia (ET). Since FDA approval of imatinib in 2001, CML treatment has been focused on tyrosine kinase inhibitors. With these targeted therapies, imatinib-resistant CML has emerged as a major problem. Second generation tyrosine kinase inhibitors (TKIs) have allowed for effective treatment of some patients with imatinib resistance, but bcr-abl mutants such as T315I remain problematic. Additional agents are in development and are discussed here. New clinical issues with TKI treatment include premature termination of therapy due to adverse-effects, the cost of therapy, and the apparently indefinite duration of treatment in patients who have achieved complete molecular response (CMR). In contrast to Ph+ CML, targeted therapy for Ph− MPNs is novel and of less clear therapeutic potential. New insights into Ph− MPNs include alterations in the JAK-STAT signaling pathway, particularly as mediated by the JAK2 V617F mutation. The recent development of multiple JAK2 inhibitors has provided hope for the rational and effective management of these disorders. Recently, ruxolitinib was approved as therapy for PMF. Current data suggests, however, that given its vital cell signaling function, the therapeutic benefit of targeting Jak kinases in general, or JAK2 specifically may be less than that derived from ABL-directed TKI treatment of CML. This review focuses on the current treatment options for CML and Philadelphia chromosome negative myeloproliferative neoplasms (MPNs) and limitations faced in current clinical practice.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Druker BJ, Guilhot F, O’Brien SG, Gathmann I, Kantarjian H, Gattermann N, et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med. 2006;355(23):2408–17.

    Article  PubMed  CAS  Google Scholar 

  2. Soverini S, Colarossi S, Gnani A, Castagnetti F, Rosti G, Bosi C, et al. Resistance to dasatinib in Philadelphia-positive leukemia patients and the presence or the selection of mutations at residues 315 and 317 in the BCR-ABL kinase domain. Haematologica. 2007;92(3):401–4.

    Article  PubMed  CAS  Google Scholar 

  3. Talpaz M, Shah NP, Kantarjian H, Donato N, Nicoll J, Paquette R, et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med. 2006;354(24):2531–41.

    Article  PubMed  CAS  Google Scholar 

  4. Ottmann O, Dombret H, Martinelli G, Simonsson B, Guilhot F, Larson RA, et al. Dasatinib induces rapid hematologic and cytogenetic responses in adult patients with Philadelphia chromosome positive acute lymphoblastic leukemia with resistance or intolerance to imatinib: interim results of a phase 2 study. Blood. 2007;110(7):2309–15.

    Article  PubMed  CAS  Google Scholar 

  5. Pardanani A, Vannucchi AM, Passamonti F, Cervantes F, Barbui T, Tefferi A. JAK inhibitor therapy for myelofibrosis: critical assessment of value and limitations. Leukemia. 2011;25(2):218–25.

    Article  PubMed  CAS  Google Scholar 

  6. O’Brien S, Tefferi A, Valent P. Chronic myelogenous leukemia and myeloproliferative disease. Hematology Am Soc Hematol Educ Program. 2004;1:146–62.

    Google Scholar 

  7. Baccarani M, Saglio G, Goldman J, Hochhaus A, Simonsson B, Appelbaum F, et al. Evolving concepts in the management of chronic myeloid leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood. 2006;108(6):1809–20.

    Article  PubMed  CAS  Google Scholar 

  8. Jabbour E, Kantarjian H, O’Brien S, Shan J, Garcia-Manero G, Wierda W, et al. Predictive factors for outcome and response in patients treated with second-generation tyrosine kinase inhibitors for chronic myeloid leukemia in chronic phase after imatinib failure. Blood. 2011;117(6):1822–7.

    Article  PubMed  CAS  Google Scholar 

  9. Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science. 2001;293(5531):876–80.

    Article  PubMed  CAS  Google Scholar 

  10. Tang C, Schafranek L, Watkins DB, Parker WT, Moore S, Prime JA, et al. Tyrosine kinase inhibitor resistance in chronic myeloid leukemia cell lines: investigating resistance pathways. Leuk Lymphoma. 2011;52:2139–47.

    Article  PubMed  CAS  Google Scholar 

  11. Soverini S, Hochhaus A, Nicolini FE, Gruber F, Lange T, Saglio G, et al. Bcr-Abl kinase domain mutation analysis in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors: recommendations from an expert panel on behalf of European LeukemiaNet. Blood. 2011;118:1208–15.

    Article  PubMed  CAS  Google Scholar 

  12. Redaelli S, Piazza R, Rostagno R, Magistroni V, Perini P, Marega M, et al. Activity of bosutinib, dasatinib, and nilotinib against 18 imatinib-resistant BCR/ABL mutants. J Clin Oncol. 2009;27(3):469–71.

    Article  PubMed  CAS  Google Scholar 

  13. Engler JR, Frede A, Saunders V, Zannettino A, White DL, Hughes TP. The poor response to imatinib observed in CML patients with low OCT-1 activity is not attributable to lower uptake of imatinib into their CD34+ cells. Blood. 2010;116(15):2776–8.

    Article  PubMed  CAS  Google Scholar 

  14. White DL, Dang P, Engler J, Frede A, Zrim S, Osborn M, et al. Functional activity of the OCT-1 protein is predictive of long-term outcome in patients with chronic-phase chronic myeloid leukemia treated with imatinib. J Clin Oncol. 2010;28(16):2761–7.

    Article  PubMed  CAS  Google Scholar 

  15. Engler JR, Frede A, Saunders VA, Zannettino AC, Hughes TP, White DL. Chronic myeloid leukemia CD34+ cells have reduced uptake of imatinib due to low OCT-1 activity. Leukemia. 2010;24(4):765–70.

    Article  PubMed  CAS  Google Scholar 

  16. Mahon FX, Rea D, Guilhot J, Guilhot F, Huguet F, Nicolini F, et al. Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol. 2010;11(11):1029–35.

    Article  PubMed  CAS  Google Scholar 

  17. Marin D, Bazeos A, Mahon FX, Eliasson L, Milojkovic D, Bua M, et al. Adherence is the critical factor for achieving molecular responses in patients with chronic myeloid leukemia who achieve complete cytogenetic responses on imatinib. J Clin Oncol. 2010;28(14):2381–8.

    Article  PubMed  CAS  Google Scholar 

  18. Bumm T, et al. Restoration of polyclonal hematopoiesis in most cml patients in complete cytogenetic remission to imatinib but rapid emergence of clonal cytogenetic abnormalities in Ph-negative cells in a subset of patients.

    Google Scholar 

  19. Jabbour E, Kantarjian H, Cornelison AM, Kadia T, Welch M-A, Abruzzo LV, et al. Chromosomal abnormalities in Philadelphia chromosome (Ph)-negative metaphases appearing during second generation tyrosine kinase inhibitors (2nd TKI) therapy in patients (pts) with Chronic Myeloid Leukemia (CML). Blood. 2010;116(21):1232. (ASH Annual Meeting Abstracts), 19 Nov 2010.

    Google Scholar 

  20. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S, et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med. 1996;2(5):561–6.

    Article  PubMed  CAS  Google Scholar 

  21. Cortes JE, Baccarani M, Guilhot F, Druker BJ, Branford S, Kim DW, et al. Phase III, randomized, open-label study of daily imatinib mesylate 400 mg versus 800 mg in patients with newly diagnosed, previously untreated chronic myeloid leukemia in chronic phase using molecular end points: tyrosine kinase inhibitor optimization and selectivity study. J Clin Oncol. 2010;28(3):424–30.

    Article  PubMed  CAS  Google Scholar 

  22. Simonsson B, Gedde-Dahl T, Markevarn B, Remes K, Stentoft J, Almqvist A, et al. Combination of pegylated interferon-{alpha}2b with imatinib increases molecular response rates in patients with low or intermediate risk chronic myeloid leukemia. Blood. 2011;118:3228–35.

    Article  PubMed  CAS  Google Scholar 

  23. Cortes JE, Hochhaus A, le Coutre PD, Rosti G, Pinilla-Ibarz J, Jabbour E, et al. Minimal cross-intolerance with nilotinib in patients with chronic myeloid leukemia in chronic or accelerated phase who are intolerant to imatinib. Blood. 2011;117(21):5600–6.

    Article  PubMed  CAS  Google Scholar 

  24. Giles FJ, Abruzzese E, Rosti G, Kim DW, Bhatia R, Bosly A, et al. Nilotinib is active in chronic and accelerated phase chronic myeloid leukemia following failure of imatinib and dasatinib therapy. Leukemia. 2010;24(7):1299–301.

    Article  PubMed  CAS  Google Scholar 

  25. Kantarjian HM, Giles FJ, Bhalla KN, Pinilla-Ibarz J, Larson RA, Gattermann N, et al. Nilotinib is effective in patients with chronic myeloid leukemia in chronic phase after imatinib resistance or intolerance: 24-month follow-up results. Blood. 2011;117(4):1141–5.

    Article  PubMed  CAS  Google Scholar 

  26. le Coutre P, Ottmann OG, Giles F, Kim DW, Cortes J, Gattermann N, et al. Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is active in patients with imatinib-resistant or -intolerant accelerated-phase chronic myelogenous leukemia. Blood. 2008;111(4):1834–9.

    Article  PubMed  Google Scholar 

  27. Cortes JE, Jones D, O’Brien S, Jabbour E, Konopleva M, Ferrajoli A, et al. Nilotinib as front-line treatment for patients with chronic myeloid leukemia in early chronic phase. J Clin Oncol. 2010;28(3):392–7.

    Article  PubMed  CAS  Google Scholar 

  28. Cortes J, Rousselot P, Kim DW, Ritchie E, Hamerschlak N, Coutre S, et al. Dasatinib induces complete hematologic and cytogenetic responses in patients with imatinib-resistant or -intolerant chronic myeloid leukemia in blast crisis. Blood. 2007;109(8):3207–13.

    Article  PubMed  CAS  Google Scholar 

  29. Saglio G, Hochhaus A, Goh YT, Masszi T, Pasquini R, Maloisel F, et al. Dasatinib in imatinib-resistant or imatinib-intolerant chronic myeloid leukemia in blast phase after 2 years of follow-up in a phase 3 study: efficacy and tolerability of 140 milligrams once daily and 70 milligrams twice daily. Cancer. 2010;116(16):3852–61.

    Article  PubMed  CAS  Google Scholar 

  30. Kantarjian H, Shah NP, Hochhaus A, Cortes J, Shah S, Ayala M, et al. Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2010;362(24):2260–70.

    Article  PubMed  CAS  Google Scholar 

  31. Abbas R, Hug BA, Leister C, Gaaloul ME, Chalon S, Sonnichsen D. A phase I ascending single-dose study of the safety, tolerability, and pharmacokinetics of bosutinib (SKI-606) in healthy adult subjects. Cancer Chemother Pharmacol. 2011;69:221–7.

    Article  PubMed  Google Scholar 

  32. Keller G, Schafhausen P, Brummendorf TH. Bosutinib: a dual SRC/ABL kinase inhibitor for the treatment of chronic myeloid leukemia. Expert Rev Hematol. 2009;2(5):489–97.

    Article  PubMed  CAS  Google Scholar 

  33. Santos FP, Kantarjian H, Cortes J, Quintas-Cardama A. Bafetinib, a dual Bcr-Abl/Lyn tyrosine kinase inhibitor for the potential treatment of leukemia. Curr Opin Investig Drugs. 2010;11(12):1450–65.

    PubMed  CAS  Google Scholar 

  34. Leonetti F, Stefanachi A, Nicolotti O, Catto M, Pisani L, Cellamare S, et al. BCR-ABL inhibitors in chronic myeloid leukemia: process chemistry and biochemical profile. Curr Med Chem. 2011;18:2943–59.

    Article  PubMed  CAS  Google Scholar 

  35. O’Hare T, Shakespeare WC, Zhu X, Eide CA, Rivera VM, Wang F, et al. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell. 2009;16(5):401–12.

    Article  PubMed  Google Scholar 

  36. Prchal JF, Adamson JW, Murphy S, Steinmann L, Fialkow PJ. Polycythemia vera. The in vitro response of normal and abnormal stem cell lines to erythropoietin. J Clin Invest. 1978;61(4):1044–7.

    Article  PubMed  CAS  Google Scholar 

  37. Zhang J, Adrian FJ, Jahnke W, Cowan-Jacob SW, Li AG, Iacob RE, et al. Targeting Bcr-Abl by combining allosteric with ATP-binding-site inhibitors. Nature. 2010;463(7280):501–6.

    Article  PubMed  CAS  Google Scholar 

  38. Schmidt T, Kharabi Masouleh B, Loges S, Cauwenberghs S, Fraisl P, Maes C, et al. Loss or inhibition of stromal-derived PlGF prolongs survival of mice with imatinib-resistant Bcr-Abl1(+) leukemia. Cancer Cell. 2011;19(6):740–53.

    Article  PubMed  CAS  Google Scholar 

  39. Vainchenker W, Constantinescu SN. A unique activating mutation in JAK2 (V617F) is at the origin of polycythemia vera and allows a new classification of myeloproliferative diseases. Hematology Am Soc Hematol Educ Program. 2005:1:195–200.

    Google Scholar 

  40. Staerk J, Kallin A, Demoulin JB, Vainchenker W, Constantinescu SN. JAK1 and Tyk2 activation by the homologous polycythemia vera JAK2 V617F mutation: cross-talk with IGF1 receptor. J Biol Chem. 2005;280(51):41893–9.

    Article  PubMed  CAS  Google Scholar 

  41. Zhao R, Xing S, Li Z, Fu X, Li Q, Krantz SB, et al. Identification of an acquired JAK2 mutation in polycythemia vera. J Biol Chem. 2005;280(24):22788–92.

    Article  PubMed  CAS  Google Scholar 

  42. Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7(4):387–97.

    Article  PubMed  CAS  Google Scholar 

  43. Pardanani AD, Levine RL, Lasho T, Pikman Y, Mesa RA, Wadleigh M, et al. MPL515 Mutations in myeloproliferative and other myeloid disorders: a study of 1,182 patients. Blood. 2006;108(10):3472–6.

    Article  PubMed  CAS  Google Scholar 

  44. Passamonti F, Maffioli M, Caramazza D, Cazzola M. Myeloproliferative neoplasms: from JAK2 mutations discovery to JAK2 inhibitor therapies. Oncotarget. 2011;2(6):485–90.

    PubMed  Google Scholar 

  45. Welch PJ, Wang JYJ. A C-terminal protein-binding domain in the retinoblastoma protein regulates nuclear c-Abl tyrosine kinase in the cell cycle. Cell. 1993;75:779–90.

    Article  PubMed  CAS  Google Scholar 

  46. Welch PJ, Wang JYJ. Abrogation of retinoblastoma protein function by c-Abl through tyrosine kinase-dependent and -independent mechanisms. Mol Cell Biol. 1995;15:5542–51.

    PubMed  CAS  Google Scholar 

  47. Parganas E, Wang D, Stravopodis D, Topham DJ, Marine JC, Teglund S, et al. Jak2 is essential for signaling through a variety of cytokine receptors. Cell. 1998;93(3):385–95.

    Article  PubMed  CAS  Google Scholar 

  48. Prchal JT. Philadelphia chromosome-negative myeloproliferative disorders: an historical perspective. Hematology Am Soc Hematol Educ Program. 2008;1:68

    Google Scholar 

  49. Canepa L, Ballerini F, Varaldo R, Quintino S, Reni L, Clavio M, et al. Thalidomide in agnogenic and secondary myelofibrosis. Br J Haematol. 2001;115(2):313–5.

    Article  PubMed  CAS  Google Scholar 

  50. Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med. 2012;366(9):799–807.

    Article  PubMed  CAS  Google Scholar 

  51. Harrison C, Kiladjian JJ, Al-Ali HK, Gisslinger H, Waltzman R, Stalbovskaya V, et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med. 2012;366(9):787–98.

    Article  PubMed  CAS  Google Scholar 

  52. Verstovsek S, Kantarjian HM, et al. Long-term outcomes of 107 patients with myelofibrosis receiving JAK1/JAK2 inhibitor ruxolitinib: survival advantage in comparison to matched ­historical controls. Blood. 2012 Aug 9;120(6):1202–9. doi: 10.1182/blood-2012-02-414631. Epub 2012 Jun 20.

    PubMed  CAS  Google Scholar 

  53. Mesa RA. Ruxolitinib, a selective JAK1 and JAK2 inhibitor for the treatment of myeloproliferative neoplasms and psoriasis. IDrugs. 2010;13(6):394–403.

    PubMed  CAS  Google Scholar 

  54. Naqvi K, Verstovsek S, Kantarjian H, Ravandi F. A potential role of ruxolitinib in leukemia. Expert Opin Invest Drugs. 2011;20(8):1159–66.

    Article  CAS  Google Scholar 

  55. Quintas-Cardama A. JAK2 inhibitors in polycythemia vera. Clin Adv Hematol Oncol. 2011;9(5):397–400.

    PubMed  Google Scholar 

  56. Verstovsek S, Kantarjian H, Mesa RA, Pardanani AD, Cortes-Franco J, Thomas DA, et al. Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. N Engl J Med. 2010;363(12):1117–27.

    Article  PubMed  CAS  Google Scholar 

  57. Pardanani A, Gotlib JR, Jamieson C, Cortes JE, Talpaz M, Stone RM, et al. Safety and efficacy of TG101348, a selective JAK2 inhibitor, in myelofibrosis. J Clin Oncol. 2011;29(7):789–96.

    Article  PubMed  CAS  Google Scholar 

  58. Santos FP, Kantarjian HM, Jain N, Manshouri T, Thomas DA, Garcia-Manero G, et al. Phase 2 study of CEP-701, an orally available JAK2 inhibitor, in patients with primary or post-polycythemia vera/essential thrombocythemia myelofibrosis. Blood. 2010;115(6):1131–6.

    Article  PubMed  CAS  Google Scholar 

  59. Tyner JW, Bumm TG, Deininger J, Wood L, Aichberger KJ, Loriaux MM, et al. CYT387, a novel JAK2 inhibitor, induces hematologic responses and normalizes inflammatory cytokines in murine myeloproliferative neoplasms. Blood. 2010;115(25):5232–40.

    Article  PubMed  CAS  Google Scholar 

  60. Hart S, Goh KC, Novotny-Diermayr V, Hu CY, Hentze H, Tan YC, et al. SB1518, a novel macrocyclic pyrimidine-based JAK2 inhibitor for the treatment of myeloid and lymphoid malignancies. Leukemia. 2011;25:1751–9.

    Article  PubMed  CAS  Google Scholar 

  61. Neubauer H, Cumano A, Muller M, Wu H, Huffstadt U, Pfeffer K. Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell. 1998;93(3):397–409.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David F. Claxton M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bisen, A., Claxton, D.F. (2013). Tyrosine Kinase Targeted Treatment of Chronic Myelogenous Leukemia and Other Myeloproliferative Neoplasms. In: El-Deiry, W. (eds) Impact of Genetic Targets on Cancer Therapy. Advances in Experimental Medicine and Biology, vol 779. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6176-0_8

Download citation

Publish with us

Policies and ethics