Skip to main content

Embryology and Pathophysiology of the Chiari I and II Malformations

  • Chapter
  • First Online:

Abstract

Hindbrain herniation is only one component of the Chiari malformations. These malformations often have other associated intracranial anomalies and malformations of the vertebral column. Depending on embryologic timing, ­herniation of the cerebellar vermis or tonsils occurs. Additionally, the herniated hindbrain may include the medulla oblongata and fourth ventricle. Currently, no single theory explains all of the malformations seen in the Chiari I and II malformations. These pathologic derailments seem to result from a heterogeneous spectrum of ontogenetic errors and pathological mechanisms, which share some common phenotypical presentations. In this chapter, the theories pertinent to the embryology and pathophysiology of Chiari I and II malformations and their associated anomalies are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ahlgren S, Vogt P, Bronner-Fraser M. Excess FoxG1 causes overgrowth of the neural tube. J Neurobiol. 2003;57(3):337–49.

    Article  PubMed  CAS  Google Scholar 

  2. Anegawa S, Hayashi T, Torigoe R, Hashimoto T. Meningomyelocele associated with cranium bifidum: rare coexistence of two major malformations. Childs Nerv Syst. 1993;9(5):278–81.

    Article  PubMed  CAS  Google Scholar 

  3. Barry A, Patten BM, Stewart BH. Possible factors in the development of the Arnold-Chiari malformation. J Neurosurg. 1957;14(3):285–301.

    Article  PubMed  CAS  Google Scholar 

  4. Bell JE, Gordon A, Maloney AF. The association of hydrocephalus and Arnold-Chiari malformation with spina bifida in the fetus. Neuropathol Appl Neurobiol. 1980;6(1):29–39.

    Article  PubMed  CAS  Google Scholar 

  5. Bergquist H. Experiments on the ‘overgrowth’ phenomenon in the brain of chick embryos. J Embryol Exp Morphol. 1959;7:122–7.

    PubMed  CAS  Google Scholar 

  6. Bering Jr EA. Choroid plexus and arterial pulsations of cerebrospinal fluid: demonstration of the choroid plexus as a cerebrospinal fluid pump. AMA Arch Neurol Psychiatry. 1955;73:165–72.

    Article  PubMed  Google Scholar 

  7. Cameron AH. The Arnold-Chiari malformation and other neuro-anatomical malformations associated with spina bifida. J Pathol Bacteriol. 1957;73:195–211.

    Article  Google Scholar 

  8. Caviness VS. The Chiari malformations of the posterior fossa and their relation to hydrocephalus. Dev Med Child Neurol. 1976;18(1):103–16.

    Article  PubMed  CAS  Google Scholar 

  9. Corti G, Manzur T, Nagle C, Martinez-Ferro M. Etiopathology of Arnold-Chiari malformation: a fetal rat model of dysraphism. Fetal Diagn Ther. 2010;28(1):28–33.

    Article  PubMed  CAS  Google Scholar 

  10. D’Addario V, Pinto V, Del Bianco A, Di Naro E, Tartagni M, Miniello G, et al. The clivus-supraocciput angle: a useful measurement to evaluate the shape and size of the fetal posterior fossa and to diagnose Chiari II malformation. Ultrasound Obstet Gynecol. 2001;18(2):146–9.

    Article  PubMed  Google Scholar 

  11. Daniel PM, Strich S. Some observations on congenital deformity of central nervous system known as Arnold-Chiari malformation. J Neuropathol Exp Neurol. 1958;17:255–66.

    Article  PubMed  CAS  Google Scholar 

  12. du Boulay GH. Pulsatile movements in the CSF pathways. Br J Radiol. 1966;39(460):255–62.

    Article  PubMed  Google Scholar 

  13. du Boulay G, O’Connell J, Currie J, Bostick T, Verity P. Further investigations on pulsatile movements in the cerebrospinal fluid pathways. Acta Radiol Diagn (Stockh). 1972;13:496–523.

    Google Scholar 

  14. Gardner WJ, Abdullah AF, McCormack LJ. The varying expressions of embryonal atresia of the fourth ventricle in adults: Arnold-Chiari malformation, Dandy-Walker syndrome, arachnoid cyst of the cerebellum, and syringomyelia. J Neurosurg. 1957;14(6):591–605.

    Article  PubMed  CAS  Google Scholar 

  15. Gardner WJ. Hydrodynamic mechanism of syringomyelia: its relationship to myelocele. J Neurol Neurosurg Psychiatry. 1965;28:247–59.

    Article  PubMed  CAS  Google Scholar 

  16. Gardner WJ. The dysraphic states. Amsterdam: Excerpta Medica; 1973.

    Google Scholar 

  17. Gardner WJ. Hydrodynamic factors in Dandy-Walker and Arnold-Chiari malformations. Childs Brain. 1977;3(4):200–12.

    PubMed  CAS  Google Scholar 

  18. Gilbert JN, Jones KL, Rorke LB, Chernoff GF, James HE. Central nervous system anomalies associated with meningomyelocele, hydrocephalus, and the Arnold-Chiari malformation: reappraisal of theories regarding the pathogenesis of posterior neural tube closure defects. Neurosurgery. 1986;18(5):559–64.

    Article  PubMed  CAS  Google Scholar 

  19. Hung CF. The relationship between hydrocephalus and Chiari type II malformation in the experimental rat fetuses with Arnold-Chiari malformation. Proc Natl Sci Counc Repub China B. 1986;10(2):118–26.

    PubMed  CAS  Google Scholar 

  20. Ingraham FD, Scott HW. Spina bifida and cranium bifidum. V. The Arnold-Chiari malformation: a study of 20 cases. N Engl J Med. 1943;229:108–14.

    Article  Google Scholar 

  21. Jacobs EB, Landing BH, Thomas Jr W. Vernicomyelia. Its bearing on theories of genesis of the Arnold-Chiari complex. Am J Pathol. 1961;39:345–53.

    PubMed  CAS  Google Scholar 

  22. Jelinek R. A report to the so-called “overgrowth” of the neural tube [Czech]. Cesk Morfologie. 1961;9:151–61.

    Google Scholar 

  23. Josef V, Fehlings MG. Chiari malformations and syringomyelia. In: Goel A, Cacciola F, editors. The craniovertebral junction: diagnosis, pathology, surgical techniques. New York: Thieme; 2011.

    Google Scholar 

  24. Kallen B. Errors in the differentiation of the central nervous system. In: Vinken PJ, Bruyn GW, Klawans HL, editors. Handbook of clinical neurology, Current clinical practice: malformations, vol. 50. Amsterdam: Elsevier; 1987. p. 19–48.

    Google Scholar 

  25. Koehler PJ, Greenblatt SH. The Chiari malformation. In: Koehler PJ, Bruyn GW, Pearce JMS, editors. Neurological eponyms. New York: Oxford University Press; 2000. p. 277–82.

    Google Scholar 

  26. Lang J. Skull base and related structures: atlas of clinical anatomy. 2nd ed. Stuttgart: Schattauer; 2001.

    Google Scholar 

  27. Lichtenstein BW. Distant neuroanatomic complications of spina bifida (spinal dysraphism). Arch Neurol Psychiatry. 1942;47:195–214.

    Article  Google Scholar 

  28. Marin-Padilla M, Marin-Padilla TM. Morphogenesis of experimentally induced Arnold-Chiari malformation. J Neurol Sci. 1981;50(1):29–55.

    Article  PubMed  CAS  Google Scholar 

  29. Masters CL. Pathogenesis of the Arnold-Chiari malformation: the significance of hydrocephalus and aqueduct stenosis. J Neuropathol Exp Neurol. 1978;37(1):56–74.

    Article  PubMed  CAS  Google Scholar 

  30. McLone DG. The Chiari II malformation of the hindbrain and the associated hydromyelia. In: Anson JA, Benzel EC, Awad IA, editors. Syringomyelia and the Chiari malformations. Park Ridge: The American Association of Neurological Surgeons; 1997. p. 69–82.

    Google Scholar 

  31. McLone DG, Knepper PA. The cause of Chiari II malformation: a unified theory. Pediatr Neurosci. 1989;15(1):1–12.

    Article  PubMed  CAS  Google Scholar 

  32. Menezes AH. Primary craniovertebral anomalies and the hindbrain herniation syndrome (Chiari I): data base analysis. Pediatr Neurosurg. 1995;23(5):260–9.

    Article  PubMed  CAS  Google Scholar 

  33. Moase CE, Trasler DG. Splotch locus mouse mutants: models for neural tube defects and Waardenburg syndrome type I in humans. J Med Genet. 1992;29(3):145–51.

    Article  PubMed  CAS  Google Scholar 

  34. Muhleman M, Charran O, Matusz P, Shoja MM, Tubbs RS, Loukas M. The proatlas: a comprehensive review with clinical implications. Childs Nerv Syst. 2012. doi:10.1007/s00381-012-1698-8.

    Google Scholar 

  35. Naidich TP, Pudlowski RM, Naidich JB. Computed tomographic signs of the Chiari II malformation. III: ventricles and cisterns. Radiology. 1980;134(3):657–63.

    PubMed  CAS  Google Scholar 

  36. Nishikawa M, Sakamoto H, Hakuba A, Nakanishi N, Inoue Y. Pathogenesis of Chiari malformation: a morphometric study of the posterior cranial fossa. J Neurosurg. 1997;86(1):40–7.

    Article  PubMed  CAS  Google Scholar 

  37. Oldfield EH, Muraszko K, Shawker TH, Patronas NJ. Pathophysiology of syringomyelia associated with Chiari I malformation of the cerebellar tonsils. Implications for diagnosis and treatment. J Neurosurg. 1994;80(1):3–15.

    Article  PubMed  CAS  Google Scholar 

  38. O’Shea KS, Liu LH. Basal lamina and extracellular matrix alterations in the caudal neural tube of the delayed Splotch embryo. Brain Res. 1987;465(1–2):11–20.

    PubMed  Google Scholar 

  39. Padget DH. The development of the cranial venous system in man, from the viewpoint of comparative anatomy. Contrib Embryol. 1957;36:79–104.

    Google Scholar 

  40. Padget DH. Development of so-called dysraphism; with embryologic evidence of clinical Arnold-Chiari and Dandy-Walker malformations. Johns Hopkins Med J. 1972;130(3):127–65.

    PubMed  CAS  Google Scholar 

  41. Patten BM. Overgrowth of the neural tube in young human embryos. Anat Rec. 1952;113(4):381–93.

    Article  PubMed  CAS  Google Scholar 

  42. Patten BM. Embryological stages in the establishing of myeloschisis with spina bifida. Am J Anat. 1953;93(3):365–95.

    Article  PubMed  CAS  Google Scholar 

  43. Peach B. Arnold-Chiari malformation: anatomic features of 20 cases. Arch Neurol. 1965;12:613–21.

    Article  PubMed  CAS  Google Scholar 

  44. Peach B. The Arnold-Chiari malformation; morphogenesis. Arch Neurol. 1965;12:527–35.

    Article  PubMed  CAS  Google Scholar 

  45. Penfield W, Cone W. Spina bifida and cranium bifidum: results of plastic repair of meningocele and myelomeningocele by a new method. JAMA. 1932;93:454–61.

    Google Scholar 

  46. Penfield W, Coburn DF. Arnold-Chiari malformation and its operative treatment. AMA Arch Neurol Psychiatry. 1938;40:328–36.

    Article  Google Scholar 

  47. Pollay M. The function and structure of the cerebrospinal fluid outflow system. Cerebrospinal Fluid Res. 2010. doi:10.1186/1743-8454-7-9.

    PubMed  Google Scholar 

  48. Pooh RK, Pooh KH. Fetal central nervous system. In: Kurjak A, Chervenak FA, editors. Donald School textbook of ultrasound in obstetrics & gynecology. 3rd ed. New Delhi: Jypee; 2011. p. 233–76.

    Chapter  Google Scholar 

  49. Radkowski MA (translator). Concerning alterations in the cerebellum resulting from cerebral hydrocephalus, 1891 by Hans Chiari [original article in German]. Pediatr Neurosci. 1987;13(1):3–8.

    Google Scholar 

  50. Roth M. Cranio-cervical growth collision: another explanation of the Arnold-Chiari malformation and of basilar impression. Neuroradiology. 1986;28(3):187–94.

    Article  PubMed  CAS  Google Scholar 

  51. Russell DS, Donald C. The mechanism of internal hydrocephalus in spina bifida. Brain. 1935;58:203–15.

    Article  Google Scholar 

  52. Schady W, Metcalfe RA, Butler P. The incidence of craniocervical bony anomalies in the adult Chiari malformation. J Neurol Sci. 1987;82(1–3):193–203.

    Article  PubMed  CAS  Google Scholar 

  53. Smoker WR. Craniovertebral junction: normal anatomy, craniometry, and congenital anomalies. Radiographics. 1994;14(2):255–77.

    PubMed  CAS  Google Scholar 

  54. Stein SC, Schut L. Hydrocephalus in myelomeningocele. Childs Brain. 1979;5(4):413–9.

    PubMed  CAS  Google Scholar 

  55. Stovner LJ, Rinck P. Syringomyelia in Chiari malformation: relation to extent of cerebellar tissue herniation. Neurosurgery. 1992;31(5):913–7.

    Article  PubMed  CAS  Google Scholar 

  56. Tubbs RS, Dockery SE, Salter G, Elton S, Blount JP, Grabb PA, et al. Absence of the falx cerebelli in a Chiari II malformation. Clin Anat. 2002;15(3):193–5.

    Article  PubMed  Google Scholar 

  57. Tubbs RS, Smyth MD, Wellons 3rd JC, Oakes WJ. Arachnoid veils and the Chiari I malformation. J Neurosurg. 2004;100(5 Suppl Pediatrics):465–7.

    PubMed  Google Scholar 

  58. Tubbs RS, Loukas M, Shoja MM, Oakes WJ. Observations at the craniocervical junction with simultaneous caudal traction of the spinal cord. Childs Nerv Syst. 2007;23(4):367–9.

    Article  PubMed  Google Scholar 

  59. Tubbs RS, Shoja MM, Ardalan MR, Shokouhi G, Loukas M. Hindbrain herniation: a review of embryological theories. Ital J Anat Embryol. 2008;113(1):37–46.

    PubMed  Google Scholar 

  60. Tubbs RS, Beckman J, Naftel RP, Chern JJ, Wellons 3rd JC, Rozzelle CJ, et al. Institutional experience with 500 cases of surgically treated pediatric Chiari malformation Type I. J Neurosurg Pediatr. 2011;7(3):248–56.

    Article  PubMed  Google Scholar 

  61. van Hoytema GJ, van den Berg R. Embryological studies of the posterior fossa in connection with Arnold-Chiari malformation. Dev Med Child Neurol. 1966;Suppl 11:61–76.

    Google Scholar 

  62. Vogan KJ, Epstein DJ, Trasler DG, Gros P. The splotch-delayed (Spd) mouse mutant carries a point mutation within the paired box of the Pax-3 gene. Genomics. 1993;17(2):364–9.

    Article  PubMed  CAS  Google Scholar 

  63. Weed LH. The development of the cerebrospinal spaces in pig and in man. Contrib Embryol. 1917;5:1–116.

    Google Scholar 

  64. Williams B. On the pathogenesis of syringomyelia: a review. J R Soc Med. 1980;73(11):798–806.

    PubMed  CAS  Google Scholar 

  65. Williams B. Syringomyelia. Neurosurg Clin N Am. 1990;1(3):653–85.

    PubMed  CAS  Google Scholar 

  66. Williams H. A unifying hypothesis for hydrocephalus, Chiari malformation, syringomyelia, anencephaly and spina bifida. Cerebrospinal Fluid Res. 2008. doi:10.1186/1743-8454-5-7.

    PubMed  Google Scholar 

  67. Yang XM, Trasler DG. Abnormalities of neural tube formation in pre-spina bifida splotch-delayed mouse embryos. Teratology. 1991;43(6):643–57.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Shane Tubbs MS, PA-C, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shoja, M.M., Tubbs, R.S., Oakes, W.J. (2013). Embryology and Pathophysiology of the Chiari I and II Malformations. In: Tubbs, R., Oakes, W. (eds) The Chiari Malformations. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6369-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6369-6_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6368-9

  • Online ISBN: 978-1-4614-6369-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics