Skip to main content

Primate Follicular Development and Oocyte Maturation In Vitro

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 761))

Abstract

The factors and processes involved in primate follicular development are complex and not fully understood. An encapsulated three-dimensional (3D) follicle culture system could be a valuable in vitro model to study the dynamics and regulation of folliculogenesis in intact individual follicles in primates. Besides the research relevance, in vitro follicle maturation (IFM) is emerging as a promising approach to offer options for fertility preservation in female patients with cancer. This review summarizes the current published data on in vitro follicular development from the preantral to small antral stage in nonhuman primates, including follicle survival and growth, endocrine (ovarian steroid hormone) and paracrine/autocrine (local factor) function, as well as oocyte maturation and fertilization. Future directions include major challenges and strategies to further improve follicular growth and differentiation with oocytes competent for in vitro fertilization and subsequent embryonic development, as well as opportunities to investigate primate folliculogenesis by utilizing this 3D culture system. The information may be valuable in identifying optimal conditions for human follicle culture, with the ultimate goal of translating the experimental results and products to patients, thereby facilitating diagnostic and therapeutic approaches for female fertility.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abir R, Franks S, Mobberley MA et al (1997) Mechanical isolation and in vitro growth of preantral and small antral human follicles. Fertil Steril 68:682–688

    PubMed  CAS  Google Scholar 

  • Abir R, Roizman P, Fisch B et al (1999) Pilot study of isolated early human follicles cultured in collagen gels for 24 hours. Hum Reprod 14:1299–1301

    PubMed  CAS  Google Scholar 

  • Abir R, Fisch B, Nitke S et al (2001) Morphological study of fully and partially isolated early human follicles. Fertil Steril 75:141–146

    PubMed  CAS  Google Scholar 

  • Acevedo N, Ding J, Smith GD (2007) Insulin signaling in mouse oocytes. Biol Reprod 77:872–879

    PubMed  CAS  Google Scholar 

  • Adriaens I, Cortvrindt R, Smitz J (2004) Differential FSH exposure in preantral follicle culture has marked effects on folliculogenesis and oocyte developmental competence. Hum Reprod 19: 398–408

    PubMed  CAS  Google Scholar 

  • Aittomäki K, Herva R, Stenman UH et al (1996) Clinical features of primary ovarian failure caused by a point mutation in the follicle stimulating hormone receptor gene. J Clin Endocrinol Metab 81:3722–3726

    PubMed  Google Scholar 

  • Albertini DF, Combelles CM, Benecchi E et al (2001) Cellular basis for paracrine regulation of ovarian follicle development. Reproduction 121:647–653

    PubMed  CAS  Google Scholar 

  • Barbieri RL, Makris A, Ryan KJ (1984) Insulin stimulates androgen accumulation in incubations of human ovarian stroma and theca. Obstet Gynecol 64:73S–80S

    PubMed  CAS  Google Scholar 

  • Brogan RS, Mix S, Puttabyatappa M et al (2010) Expression of the insulin-like growth factor and insulin systems in the luteinizing macaque ovarian follicle. Fertil Steril 93:1421–1429

    PubMed  CAS  Google Scholar 

  • Cecconi S, Barboni B, Coccia M et al (1999) In vitro development of sheep preantral follicles. Biol Reprod 60:594–601

    PubMed  CAS  Google Scholar 

  • Chand AL, Harrison CA, Shelling AN (2010) Inhibin and premature ovarian failure. Hum Reprod Update 16:39–50

    PubMed  CAS  Google Scholar 

  • Cortvrindt R, Hu Y, Smitz J (1998) Recombinant luteinizing hormone as a survival and differentiation factor increases oocyte maturation in recombinant follicle stimulating hormone-supplemented mouse preantral follicle culture. Hum Reprod 13:1292–1302

    PubMed  CAS  Google Scholar 

  • D’Hooghe TM, Mwenda JM, Hill JA (2004) A critical review of the use and application of the baboon as a model for research in women’s reproductive health. Gynecol Obstet Invest 57:1–60

    PubMed  Google Scholar 

  • Davoren JB, Hsueh AJ (1984) Insulin enhances FSH-stimulated steroidogenesis by cultured rat granulosa cells. Mol Cell Endocrinol 35:97–105

    PubMed  CAS  Google Scholar 

  • Dell’Aquila ME, De Felici M, Massari S et al (1999) Effects of fetuin on zona pellucida hardening and fertilizability of equine oocytes matured in vitro. Biol Reprod 61:533–540

    PubMed  Google Scholar 

  • Demetriou M, Binkert C, Sukhu B et al (1996) Fetuin/alpha2-HS glycoprotein is a transforming growth factor-b type II receptor mimic and cytokine antagonist. J Biol Chem 271: 12755–12761

    PubMed  CAS  Google Scholar 

  • Devine PJ, Perreault SD, Luderer U (2012) Roles of reactive oxygen species and antioxidants in ovarian toxicity. Biol Reprod 86:27

    PubMed  Google Scholar 

  • Dierich A, Sairam MR, Monaco L et al (1998) Impairing follicle-stimulating hormone (FSH) signaling in vivo: targeted disruption of the FSH receptor leads to aberrant gametogenesis and hormonal imbalance. Proc Natl Acad Sci USA 95:13612–13617

    PubMed  CAS  Google Scholar 

  • Dittrich R, Lotz L, Keck G et al (2012) Live birth after ovarian tissue autotransplantation following overnight transportation before cryopreservation. Fertil Steril 97:387–390

    PubMed  Google Scholar 

  • Donnez J, Dolmans MM, Demylle D et al (2004) Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet 364:1405–1410

    PubMed  CAS  Google Scholar 

  • Drummond AE (2006) The role of steroids in follicular growth. Reprod Biol Endocrinol 4:16

    PubMed  Google Scholar 

  • Durlinger AL, Visser JA, Themmen AP (2002) Regulation of ovarian function: the role of anti-Müllerian hormone. Reproduction 124:601–609

    PubMed  CAS  Google Scholar 

  • el-Roeiy A, Chen X, Roberts VJ et al (1993) Expression of insulin-like growth factor-I (IGF-I) and IGF-II and the IGF-I, IGF-II, and insulin receptor genes and localization of the gene products in the human ovary. J Clin Endocrinol Metab 77:1411–1418

    PubMed  CAS  Google Scholar 

  • Eppig JJ, O’Brien MJ, Pendola FL et al (1998) Factors affecting the developmental competence of mouse oocytes grown in vitro: follicle-stimulating hormone and insulin. Biol Reprod 59:1445–1453

    PubMed  CAS  Google Scholar 

  • Erickson GF, Magoffin DA, Cragun JR et al (1990) The effects of insulin and insulin-like growth factors-I and -II on estradiol production by granulosa cells of polycystic ovaries. J Clin Endocrinol Metab 70:894–902

    PubMed  CAS  Google Scholar 

  • Evans MD, Dizdaroglu M, Cooke MS (2004) Oxidative DNA damage and disease: induction, repair and significance. Mutat Res 567:1–61

    PubMed  CAS  Google Scholar 

  • Ewens KG, Stewart DR, Ankener W et al (2010) Family-based analysis of candidate genes for polycystic ovary syndrome. J Clin Endocrinol Metab 95:2306–2315

    PubMed  CAS  Google Scholar 

  • Fauser BC, Van Heusden AM (1997) Manipulation of human ovarian function: physiological concepts and clinical consequences. Endocr Rev 18:71–106

    PubMed  CAS  Google Scholar 

  • Findlay JK, Drummond AE (1999) Regulation of the FSH receptor in the ovary. Trends Endocrinol Metab 10:183–188

    PubMed  CAS  Google Scholar 

  • Fortune JE, Kito S, Wandji SA et al (1998) Activation of bovine and baboon primordial follicles in vitro. Theriogenology 49:441–449

    PubMed  CAS  Google Scholar 

  • Fujinaga H, Yamoto M, Shikone T et al (1994) FSH and LH up-regulate epidermal growth factor receptors in rat granulosa cells. J Endocrinol 140:171–177

    PubMed  CAS  Google Scholar 

  • Goldenberg RL, Powell RD, Rosen SW et al (1976) Ovarian morphology in women with anosmia and hypogonadotropic hypogonadism. Am J Obstet Gynecol 126:91–94

    PubMed  CAS  Google Scholar 

  • Gougeon A (1996) Regulation of ovarian follicular development in primates: facts and hypotheses. Endocr Rev 17:121–155

    PubMed  CAS  Google Scholar 

  • Gougeon A (2005) The biological aspects of risks of infertility due to age: the female side. Rev Epidemiol Sante Publique 53:2S37–2S45

    PubMed  Google Scholar 

  • Greenaway J, Connor K, Pedersen HG et al (2004) Vascular endothelial growth factor and its receptor, Flk-1/KDR, are cytoprotective in the extravascular compartment of the ovarian follicle. Endocrinology 145:2896–2905

    PubMed  CAS  Google Scholar 

  • Hirshfeld-Cytron JE, Duncan FE, Xu M et al (2011) Animal age, weight and estrus cycle stage impact the quality of in vitro grown follicles. Hum Reprod 26:2473–2485

    PubMed  CAS  Google Scholar 

  • Hoang YD, Nakamura BN, Luderer U (2009) Follicle-stimulating hormone and estradiol interact to stimulate glutathione synthesis in rat ovarian follicles and granulosa cells. Biol Reprod 81:636–646

    PubMed  CAS  Google Scholar 

  • Hornick JE, Duncan FE, Shea LD et al (2012) Isolated primate primordial follicles require a rigid physical environment to survive and grow in vitro. Hum Reprod 27:1801–1810

    PubMed  CAS  Google Scholar 

  • Høyer PE, Terkelsen OB, Grete Byskov A et al (2001) Fetuin and fetuin messenger RNA in granulosa cells of the rat ovary. Biol Reprod 65:1655–1662

    PubMed  Google Scholar 

  • Jeruss JS, Woodruff TK (2009) Preservation of fertility in patients with cancer. N Engl J Med 360:902–911

    PubMed  CAS  Google Scholar 

  • Kalab P, Shultz RM, Kopf GS (1993) Modifications of the mouse zona pellucida during oocyte maturation: inhibitory effects of follicular fluid, fetuin, and α2HS-glycoprotein. Biol Reprod 49:561–567

    PubMed  CAS  Google Scholar 

  • Khattab TY, Jequier AM (1979) Serum follicle stimulating hormone levels in human pregnancy. Br J Obstet Gynaecol 86:354–363

    PubMed  CAS  Google Scholar 

  • Kimura N, Hoshino Y, Totsukawa K et al (2007) Cellular and molecular events during oocyte maturation in mammals: molecules of cumulus-oocyte complex matrix and signalling pathways regulating meiotic progression. Soc Reprod Fertil Suppl 63:327–342

    PubMed  CAS  Google Scholar 

  • Kocabas AM, Crosby J, Ross PJ et al (2006) The transcriptome of human oocytes. Proc Natl Acad Sci USA 103:14027–14032

    PubMed  CAS  Google Scholar 

  • Kreeger PK, Fernandes NN, Woodruff TK et al (2005) Regulation of mouse follicle development by follicle-stimulating hormone in a three-dimensional in vitro culture system is dependent on follicle stage and dose. Biol Reprod 73:942–950

    PubMed  CAS  Google Scholar 

  • Kumar TR, Wang Y, Lu N et al (1997) Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility. Nat Genet 15:201–204

    PubMed  CAS  Google Scholar 

  • La Marca A, Broekmans FJ, Volpe A et al (2009) Anti-Mullerian hormone (AMH): what do we still need to know? Hum Reprod 24:2264–2275

    PubMed  Google Scholar 

  • Langhout DJ, Spicer LJ, Geisert RD (1991) Development of a culture system for bovine granulosa cells: effects of growth hormone, estradiol, and gonadotropins on cell proliferation, steroidogenesis, and protein synthesis. J Anim Sci 69:3321–3334

    PubMed  CAS  Google Scholar 

  • LaVoie HA, Garmey JC, Day RN et al (1999) Concerted regulation of low density lipoprotein receptor gene expression by follicle-stimulating hormone and insulin-like growth factor I in porcine granulosa cells: promoter activation, messenger ribonucleic acid stability, and sterol feedback. Endocrinology 140:178–186

    PubMed  CAS  Google Scholar 

  • Lee DM, Yeoman RR, Battaglia DE et al (2004) Live birth after ovarian tissue transplant. Nature 428:137–138

    PubMed  CAS  Google Scholar 

  • Louhio H, Hovatta O, Sjöberg J et al (2000) The effects of insulin, and insulin-like growth factors I and II on human ovarian follicles in long-term culture. Mol Hum Reprod 6:694–698

    PubMed  CAS  Google Scholar 

  • Luo H, Kimura K, Aoki M et al (2002) Effect of vascular endothelial growth factor on maturation, fertilization and developmental competence of bovine oocytes. J Vet Med Sci 64:803–806

    PubMed  CAS  Google Scholar 

  • Matzuk MM (2000) Revelations of ovarian follicle biology from gene knockout mice. Mol Cell Endocrinol 163:61–66

    PubMed  CAS  Google Scholar 

  • McGee EA, Smith R, Spears N et al (2001) Müllerian inhibitory substance induces growth of rat preantral ovarian follicles. Biol Reprod 64:293–298

    PubMed  CAS  Google Scholar 

  • McNatty KP, Makris A, Osathanondh R et al (1980) Effects of luteinizing hormone on steroidogenesis by thecal tissue from human ovarian follicles in vitro. Steroids 36:53–63

    PubMed  CAS  Google Scholar 

  • Nayudu PL, Wu J, Michelmann HW (2003) In vitro development of marmoset monkey oocytes by pre-antral follicle culture. Reprod Domest Anim 38:90–96

    PubMed  CAS  Google Scholar 

  • Nie Z (1992) Fetuin: its enigmatic property of growth promotion. Am J Physiol 263:C551–C562

    PubMed  CAS  Google Scholar 

  • Orisaka M, Orisaka S, Jiang JY et al (2006) Growth differentiation factor 9 is antiapoptotic during follicular development from preantral to early antral stage. Mol Endocrinol 20:2456–2468

    PubMed  CAS  Google Scholar 

  • Pangas SA, Saudye H, Shea LD et al (2003) Novel approach for the three-dimensional culture of granulose cell-oocyte complexes. Tissue Eng 9:1013–1021

    PubMed  CAS  Google Scholar 

  • Peluffo MC, Barrett SL, Stouffer RL et al (2010) Cumulus-oocyte complexes from small antral follicles during the early follicular phase of menstrual cycles in rhesus monkeys yield oocytes that reinitiate meiosis and fertilize in vitro. Biol Reprod 3:525–532

    Google Scholar 

  • Peluffo MC, Ting AY, Zamah AM, Conti M et al (2012) Amphiregulin promotes the maturation of oocytes isolated from the small antral follicles of the rhesus macaque. Hum Reprod 27:2430–2437

    PubMed  CAS  Google Scholar 

  • Peters H (1979) The human ovary in childhood and early maturity. Eur J Obstet Gynecol Reprod Biol 9:137–144

    CAS  Google Scholar 

  • Picton HM, Harris SE, Muruvi W et al (2008) The in vitro growth and maturation of follicles. Reproduction 136:703–715

    PubMed  CAS  Google Scholar 

  • Rabin D, Spitz I, Bercovici B et al (1972) Isolated deficiency of follicle-stimulating hormone: clinical and laboratory features. N Engl J Med 287:1313–1317

    PubMed  CAS  Google Scholar 

  • Ravindranath N, Little-Ihrig L, Phillips HS et al (1992) Vascular endothelial growth factor messenger ribonucleic acid expression in the primate ovary. Endocrinology 131:254–260

    PubMed  CAS  Google Scholar 

  • Redding GP, Bronlund JE, Hart AL (2007) Mathematical modelling of oxygen transport-limited follicle growth. Reproduction 133:1095–1106

    PubMed  CAS  Google Scholar 

  • Redding GP, Bronlund JE, Hart AL (2008) Theoretical investigation into the dissolved oxygen levels in follicular fluid of the developing human follicle using mathematical modelling. Reprod Fertil Dev 20:408–417

    PubMed  CAS  Google Scholar 

  • Rodrigues P, Limback D, McGinnis LK et al (2009) Multiple mechanisms of germ cell loss in the perinatal mouse ovary. Reproduction 137:709–720

    PubMed  CAS  Google Scholar 

  • Roy SK, Treacy BJ (1993) Isolation and long-term culture of human preantral follicles. Fertil Steril 59:783–790

    PubMed  CAS  Google Scholar 

  • Salmon NA, Handyside AH, Joyce IM (2004) Oocyte regulation of anti-Mullerian hormone expression in granulosa cells during ovarian follicle development in mice. Dev Biol 266:201–208

    PubMed  CAS  Google Scholar 

  • Samoto T, Maruo T, Ladines-Llave CA et al (1993) Insulin receptor expression in follicular and stromal compartments of the human ovary over the course of follicular growth, regression and atresia. Endocr J 40:715–726

    PubMed  CAS  Google Scholar 

  • Sánchez F, Adriaenssens T, Romero S et al (2010) Different follicle-stimulating hormone exposure regimens during antral follicle growth alter gene expression in the cumulus-oocyte complex in mice. Biol Reprod 83:514–524

    PubMed  Google Scholar 

  • Schmidt KL, Kryger-Baggesen N, Byskov AG et al (2005) Anti-Müllerian hormone initiates growth of human primordial follicles in vitro. Mol Cell Endocrinol 234:87–93

    PubMed  CAS  Google Scholar 

  • Schoot DC, Harlin J, Shoham Z et al (1994) Recombinant human follicle-stimulating hormone and ovarian response in gonadotrophin-deficient women. Hum Reprod 9:1237–1242

    PubMed  CAS  Google Scholar 

  • Schramm RD, Bavister BD (1999) Onset of nucleolar and extranucleolar transcription and expression of fibrillarin in macaque embryos developing in vitro. Biol Reprod 60:721–728

    PubMed  CAS  Google Scholar 

  • Schroeder AC, Schultz RM, Kopf GS et al (1990) Fetuin inhibits zona pellucida hardening and conversion of ZP2 to ZP2f during spontaneous mouse oocyte maturation in vitro in the absence of serum. Biol Reprod 43:891–897

    PubMed  CAS  Google Scholar 

  • Shikanov A, Xu M, Woodruff TK et al (2009) Interpenetrating fibrin-alginate matrices for in vitro ovarian follicle development. Biomaterials 30:5476–5485

    PubMed  CAS  Google Scholar 

  • Shweiki D, Itin A, Soffer D et al (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359:843–845

    PubMed  CAS  Google Scholar 

  • Silber SJ, DeRosa M, Pineda J et al (2008) A series of monozygotic twins discordant for ovarian failure: ovary transplantation (cortical versus microvascular) and cryopreservation. Hum Reprod 23:1531–1537

    PubMed  CAS  Google Scholar 

  • Silva AE, Rodriguez P, Cavalcante LF et al (2009) The influence of oxygen tension on cumulus cell viability of canine COCs matured in high-glucose medium. Reprod Domest Anim 44(Suppl 2): 259–262

    PubMed  Google Scholar 

  • Silva CM, Matos MH, Rodrigues GQ et al (2010) In vitro survival and development of goat preantral follicles in two different oxygen tensions. Anim Reprod Sci 117:83–89

    PubMed  CAS  Google Scholar 

  • Smitz J, Dolmans MM, Donnez J et al (2010) Current achievements and future research directions in ovarian tissue culture, in vitro follicle development and transplantation: implications for fertility preservation. Hum Reprod Update 16:395–414

    PubMed  CAS  Google Scholar 

  • Stouffer RL, Martínez-Chequer JC, Molskness TA et al (2001) Regulation and action of angiogenic factors in the primate ovary. Arch Med Res 32:567–575

    PubMed  CAS  Google Scholar 

  • Telfer EE, McLaughlin M, Ding C et al (2008) A two-step, serum-free culture system supports development of human oocytes from primordial follicles in the presence of activin. Hum Reprod 23:1151–1158

    PubMed  CAS  Google Scholar 

  • Thomas FH, Telfer EE, Fraser HM (2007) Expression of anti-Mullerian hormone protein during early follicular development in the primate ovary in vivo is influenced by suppression of gonadotropin secretion and inhibition of vascular endothelial growth factor. Endocrinology 148:2273–2281

    PubMed  CAS  Google Scholar 

  • Thompson WE, Asselin E, Branch A et al (2004) Regulation of prohibitin expression during follicular development and atresia in the mammalian ovary. Biol Reprod 71:282–290

    PubMed  CAS  Google Scholar 

  • Ting AY, Yeoman RR, Lawson MS et al (2011) In vitro development of secondary follicles from cryopreserved rhesus macaque ovarian tissue after slow-rate freeze or vitrification. Hum Reprod 26:2461–2472

    PubMed  Google Scholar 

  • Ting AY, Yeoman RR, Lawson MS et al (2012) Synthetic polymers improve vitrification outcomes of macaque ovarian tissue as assessed by histological integrity and the in vitro development of secondary follicles. Cryobiology 65:1–11

    PubMed  CAS  Google Scholar 

  • Tsai AG, Friesenecker B, Mazzoni MC et al (1998) Microvascular and tissue oxygen gradients in the rat mesentery. Proc Natl Acad Sci USA 95:6590–6595

    PubMed  CAS  Google Scholar 

  • Vanacker J, Camboni A, Dath C et al (2011) Enzymatic isolation of human primordial and primary ovarian follicles with Liberase DH: protocol for application in a clinical setting. Fertil Steril 96:379–383

    PubMed  CAS  Google Scholar 

  • VandeVoort CA, Hung PH, Schramm RD (2007) Prevention of zona hardening in non-human primate oocytes cultured in protein-free medium. J Med Primatol 36:10–16

    PubMed  Google Scholar 

  • Veldhuis JD (1988) Follicle-stimulating hormone regulates low density lipoprotein metabolism by swine granulosa cells. Endocrinology 123:1660–1667

    PubMed  CAS  Google Scholar 

  • Wandji SA, Srsen V, Nathanielsz PW et al (1997) Initiation of growth of baboon primordial follicles in vitro. Hum Reprod 12:1993–2001

    PubMed  CAS  Google Scholar 

  • Weenen C, Laven JS, Von Bergh AR et al (2004) Anti-Müllerian hormone expression pattern in the human ovary: potential implications for initial and cyclic follicle recruitment. Mol Hum Reprod 10:77–83

    PubMed  CAS  Google Scholar 

  • West ER, Xu M, Woodruff TK et al (2007) Physical properties of alginate hydrogels and their effects on in vitro follicle development. Biomaterials 28:4439–4448

    PubMed  CAS  Google Scholar 

  • Woodruff TK (2007) The emergence of a new interdiscipline: oncofertility. Cancer Treat Res 138:3–11

    PubMed  Google Scholar 

  • Wright CS, Hovatta O, Margara R et al (1999) Effects of follicle-stimulating hormone and serum substitution on the in-vitro growth of human ovarian follicles. Hum Reprod 14:1555–1562

    PubMed  CAS  Google Scholar 

  • Wu J, Nayudu PL, Kiesel PS et al (2000) Luteinizing hormone has a stage-limited effect on preantral follicle development in vitro. Biol Reprod 63:320–327

    PubMed  CAS  Google Scholar 

  • Xu F, Hazzard TM, Evans A et al (2005) Intraovarian actions of anti-angiogenic agents disrupt periovulatory events during the menstrual cycle in monkeys. Contraception 71:239–248

    PubMed  CAS  Google Scholar 

  • Xu M, Kreeger PK, Shea LD et al (2006a) Tissue-engineered follicles produce live, fertile offspring. Tissue Eng 12:2739–2746

    PubMed  CAS  Google Scholar 

  • Xu M, West E, Shea LD et al (2006b) Identification of a stage-specific permissive in vitro culture environment for follicle growth and oocyte development. Biol Reprod 75:916–923

    PubMed  CAS  Google Scholar 

  • Xu M, West-Farrell ER, Stouffer RL et al (2009a) Encapsulated three-dimensional culture supports development of nonhuman primate secondary follicles. Biol Reprod 81:587–594

    PubMed  CAS  Google Scholar 

  • Xu M, Barrett SL, West-Farrell E et al (2009b) In vitro grown human ovarian follicles from cancer patients support oocyte growth. Hum Reprod 24:2531–2540

    PubMed  CAS  Google Scholar 

  • Xu J, Bernuci MP, Lawson MS et al (2010) Survival, growth, and maturation of secondary follicles from prepubertal, young and older adult, rhesus monkeys during encapsulated three-dimensional (3D) culture: effects of gonadotropins and insulin. Reproduction 140:685–697

    PubMed  CAS  Google Scholar 

  • Xu J, Lawson MS, Yeoman RR et al (2011a) Secondary follicle growth and oocyte maturation during encapsulated three-dimensional culture in rhesus monkeys: effects of gonadotrophins, oxygen and fetuin. Hum Reprod 26:1061–1072

    PubMed  CAS  Google Scholar 

  • Xu M, Fazleabas AT, Shikanov A et al (2011b) In vitro oocyte maturation and preantral follicle culture from the luteal-phase baboon ovary produce mature oocytes. Biol Reprod 84:689–697

    PubMed  CAS  Google Scholar 

  • Xu J, Lawson MS, Yeoman RR et al (2013) Fibrin promotes development and function of macaque primary follicles during encapsulated three-dimensional culture. Hum Reprod 28:2187–2200

    Google Scholar 

  • Yamamoto S, Konishi I, Tsuruta Y et al (1997) Expression of vascular endothelial growth factor (VEGF) during folliculogenesis and corpus luteum formation in the human ovary. Gynecol Endocrinol 11:371–381

    PubMed  CAS  Google Scholar 

  • Zelinski-Wooten MB, Hutchison JS, Hess DL et al (1995) Follicle stimulating hormone alone supports follicle growth and oocyte development in gonadotrophin-releasing hormone antagonist-treated monkeys. Hum Reprod 10:1658–1666

    PubMed  CAS  Google Scholar 

Download references

Funding

National Institute of Health (NIH) UL1DE019587, RL1HD058293, RL1HD058294, RL1HD058295, PL1EB008542 (the Oncofertility Consortium), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) through cooperative agreement as part of the Specialized Cooperative Center Program in Reproduction and Infertility Research (Grant Number U54HD18185), Office of Research on Women’s Health (ORWH)/NICHD 2K12HD043488 (Building Interdisciplinary Research Careers in Women’s Health), and ONPRC 8P51OD011092.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Xu Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Xu, J. et al. (2013). Primate Follicular Development and Oocyte Maturation In Vitro. In: Kim, S. (eds) Oocyte Biology in Fertility Preservation. Advances in Experimental Medicine and Biology, vol 761. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8214-7_5

Download citation

Publish with us

Policies and ethics