Skip to main content

Irreversibility in the Post-Transfusion Phase of Hemorrhagic Shock

  • Chapter
The Fundamental Mechanisms of Shock

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 23))

Abstract

The concept of irreversibility in shock was popularized by Wiggers (94) about two decades ago. He demonstrated that, if dogs are bled enough to create profound hypotension, early replacement of normal blood volume results in survival, while late replacement is followed by a gradual drop in blood pressure and death—despite post-treatment restoration of blood pressure to normal and a normal blood volume. Wiggers called this latter phase “normovolemic shock” and indicated that it was resistant to all modes of therapy then current. Some feel that this concept is of little use in describing clinical shock, stating (a) that human shock is rarely permitted to reach the levels used in canine experiments, (b) that no such clear-cut moment exists in clinical shock when irreversibility supervenes, and (c) that, in any case, the dog is an unacceptable model for human shock (64). However, the concept of irreversibility persists as a challenge to many investigators and appears to have outgrown the old connotations of the experimental model, reflecting instead the current state of the art. Thus, clinical shock which fails to respond to all the agents we command is irreversible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amsterdam, E.A., D. Foley, R. Zelis, T. Lais, and D.T. Mason. Effects of inotropic and metabolic interventions on myocardial mechanics during severe hypoxia. Clin. Res. 19: 302, 1971.

    Google Scholar 

  2. Ashford, T., C. Palmerio, and J. Fine. Structural analogue in vascular muscle to the functional disorder in refractory traumatic shock and reversal by corticosteroid: Electron microscopic evaluation. Ann. Surg. 164: 575, 1966.

    Article  PubMed  CAS  Google Scholar 

  3. Attar, S., J. McLaughlin, P. Hanashiro, and R.A. Cowley. The kallikreins in human shock and trauma. Surg. Forum 22: 11, 1971.

    PubMed  CAS  Google Scholar 

  4. Attar, S., P. Hanashiro, A. Mansberger, J. McLaughlin, H. Firminger, and R.A. Cowley. Intravascular coagulation: Reality or myth? Surgery 68: 27, 1970.

    PubMed  CAS  Google Scholar 

  5. Bacalzo, L.V., Jr., A.L. Cary, L.D. Miller, and W.M. Parkins. Methods and critical uptake volume for hemorrhagic shock in rats. Surgery 70: 555, 1971.

    PubMed  Google Scholar 

  6. Bainbridge, F.A., and J.W. Trevor. Memorandum upon surgical shock and some allied conditions. Brit. Med. J. 1: 381, 1917.

    Article  Google Scholar 

  7. Baue, A., M.A. Worth, and M.M. Sayeed. Alterations in activated magnesium and sodium plus potassium adenosine triphosphatase and the Krebs cycle in hemorrhagic shock. Surg. Forum 21: 8, 1970.

    PubMed  CAS  Google Scholar 

  8. Baue, A., and M.S. Mohammed. Alterations in the functional capacity of mitochondria in hemorrhagic shock. Surgery 68: 40, 1970.

    PubMed  CAS  Google Scholar 

  9. Bell, M., A.H. Herman, R. Egdahl, E.E. Smith, and A.M. Rutenburg. Role of lysosomal disruption in the development of refractory shock. Surg. Forum 21: 10, 1970.

    PubMed  CAS  Google Scholar 

  10. Bing, O.H.L., W.W. Brooks, and J.V. Messer. Mechanical benefits and hazards of isoproterenol during myocardial hypoxia. Clin. Res. 17: 305, 1971.

    Google Scholar 

  11. Bounous, G., N.G. Sutherland, A.H. McArdle, and F.N. Gurd. The prophylactic use of an “elemental” diet in experimental hemorrhagic shock and intestinal ischemia. Ann. Surg. 166: 312, 1967.

    Article  PubMed  CAS  Google Scholar 

  12. Brand, E.D., T.K. Suh, and M.C. Avery. Reversal of postoligemic shock in the cat by hypervenobaric massive fluid therapy. Am. J. Physiol. 211: 1232, 1966.

    CAS  Google Scholar 

  13. Butcher, H.R., Jr., and A. Braitberg. Hemorrhagic shock in rats: A method of therapeutic bioassay. Arch. Surg. 98: 685, 1969.

    Article  PubMed  Google Scholar 

  14. Campion, D.S., L.J. Lynch, F.C. Rector, Jr., N. Carter, and G.T. Shires. Effect of hemorrhagic shock on transmembrane potential. Surgery 66: 1051, 1969.

    PubMed  CAS  Google Scholar 

  15. Case, R.B., J.J. Sarnoff, P.E. Waithe, and L.C. Sarnoff. Intra-arterial and intravenous blood infusion in hemorrhagic shock. JAMA 152: 208, 1953.

    Article  CAS  Google Scholar 

  16. Cloutier, C.T., B.D. Lowery, and L.C. Carey. Acid-base disturbances in hemorrhagic shock. Arch. Surg. 98: 551, 1969.

    Article  PubMed  CAS  Google Scholar 

  17. Crowell, J.W., and A.C. Guyton. Evidence favoring a cardiac mechanism in irreversible hemorrhagic shock. Am. J. Physiol. 201: 893, 1961.

    CAS  Google Scholar 

  18. Crowell, J.W., and E.E. Smith. Oxygen deficit and irreversible hemorrhagic shock. Am. J. Physiol. 206: 313, 1964.

    PubMed  CAS  Google Scholar 

  19. Cunningham, J.N., G.T. Shires, and Y. Wagner. Changes in intracellular sodium and potassium content of red blood cells in trauma and shock. Am. J. Surg. 122: 650, 1971.

    Article  PubMed  Google Scholar 

  20. Cunningham, J.N., G.T. Shires, and Y. Wagner. Cellular transport defects in hemorrhagic shock. Surgery 70: 215, 1971.

    PubMed  Google Scholar 

  21. Doty, D.B., and M.H. Weil. Comparison of microcirculatory and central hematocrit as measures of circulatory shock. Surg. Gynecol. Obstet. 124: 1263, 1967.

    PubMed  CAS  Google Scholar 

  22. De Palma, R., Y. Harano, A.V. Robinson, and W.D. Holden. Structure and function of hepatic mitochondria in hemorrhage and endotoxemia. Surg. Forum 21: 3, 1970.

    Google Scholar 

  23. Drucker, W.R., and H.K. Wright. The use of vasopressors in hemorrhagic shock. In: Shock and Hypertension, edited by L.C. Mills and J.H. Moyer. New York: Grune & Stratton, 1965, p. 401.

    Google Scholar 

  24. Eckenhoff, J.E., and L.H. Cooperman. Clinical application of phenoxybenzamine in shock and vasoconstrictive states. Surg. Gynecol. Obstet. 121: 483, 1965.

    PubMed  CAS  Google Scholar 

  25. Edwards, W.S., A. Siegal, and R.J. Bing. Studies on myocardial metabolism. III. Coronary blood flow, myocardial oxygen consumption, and carbohydrate metabolism in experimental hemorrhagic shock. J. Clin. Invest. 33: 1646, 1954.

    Article  PubMed  CAS  Google Scholar 

  26. Enerson, D.M. Cellular swelling. I. Hypothermia, graded hypoxia and the osmotic effects of low-molecular-weight dextran on isolateci tissues. Ann. Surg. 163: 169, 1966.

    Article  PubMed  CAS  Google Scholar 

  27. Engel, F.L. The significance of the metabolic changes during shock. Ann. N.Y. Acad. Sci. 55: 381, 1952.

    Article  PubMed  CAS  Google Scholar 

  28. Fulton, R.L. Adsorption of sodium and water by collagen during hemorrhagic shock. Ann. Surg. 172: 861, 1970.

    Article  Google Scholar 

  29. Gillett, D.J., and F.J. Halmagyi. Red cell circulation in irreversible shock in sheep and dogs. J. Surg. Res. 10: 443, 1970.

    Article  PubMed  CAS  Google Scholar 

  30. Glenn, T.M., J.R. Morris, A.M. Lefer, A.M. Lopez-Rasi, W.W. Ferguson, T.S. Serate, and S.L. Wangensteen. Influence of lysosomal enzymes on circulatory function. Surg. Forum 22: 14, 1971.

    PubMed  CAS  Google Scholar 

  31. Green, H.D. Physiology of peripheral circulation in shock. Fed. Proc. 20: 61, 1961.

    Google Scholar 

  32. Guyton, A.C. A concept of negative interstitial pressure based on pressures in implanted perforated capsules. Circ. Res. 12: 399, 1963.

    Google Scholar 

  33. Hagberg, S., H. Haljamae, and H. Rockert. Shock reactions in skeletal muscle. III. The electrolyte content of tissue fluid and blood plasma before and after induced hemorrhagic shock. Ann. Surg. 168: 243, 1968.

    Article  PubMed  CAS  Google Scholar 

  34. Haljamae, H. “Hidden” cellular electrolyte responses to hemorrhagic shock and their significance. Rev. Surg., Sept.- Oct., 1970, p. 315.

    Google Scholar 

  35. Hardaway, R.M., and F.H. Weiss. Intracapillary clotting as the etiology of shock. Arch. Surg. 83: 851, 1961.

    Article  PubMed  CAS  Google Scholar 

  36. Hardaway, R.M., W.H. Brune, E.F. Geever, J.W. Burns, and H.P. Mock. Studies on the role of intravascular coagulation in irreversible hemorrhagic shock. Ann. Surg. 155: 241, 1962.

    PubMed  CAS  Google Scholar 

  37. Harrison, T.S., R.C. Chawla, and R.S. Wojtalik. Steroidal influences on catecholamines. N. Engl. J. Med. 279: 136, 1968.

    CAS  Google Scholar 

  38. Hidai, K.R., R.W. Hopkins, and F.A. Simeone. Studies of thoracic duct lymph in hemorrhagic shock. In: Lymph and the Lymphatic System. Springfield, Ill.: Charles C Thomas, 1969, p. 260.

    Google Scholar 

  39. Hissen, W., R.L. Swank, L. Lino, and G.V.F. Seaman. Physio-chemical changes in circulating canine blood on exsanguination or administration of histamine. Surg. Gynecol. Obstet. 122: 1003, 1966.

    CAS  Google Scholar 

  40. Holden, W.D., R.G. DePalma, W.R. Drucker, and A. McKalen. Ultrastructural changes in hemorrhagic shock: Electron microscopic study of liver, kidney, and striated muscle cells in rats. Ann. Surg. 162: 517, 1965.

    Article  PubMed  CAS  Google Scholar 

  41. Hollenberg, N.K., J.R. Waters, M.R. Toews, R.O. Davies, and M. Nickerson. Nature of cardiovascular decompensation during hemorrhagic hypotension. Am. J. Physiol. 219: 1476, 1970.

    CAS  Google Scholar 

  42. Hunt, T.K., B.H. Zederfeldt, T.K. Goldstick, and W.B. Conolly. Tissue oxygen tension during controlled hemorrhage. Surg. Forum 18: 3, 1967.

    CAS  Google Scholar 

  43. Jones, C.E., and Crowell, J.W. Energy base loss in shock. Fed. Proc. 26: 331, 1967.

    Google Scholar 

  44. Jones, C.E., J.W. Crowell, and E.E. Smith. A cause-effect relationship between oxygen deficit and irreversible hemorrhagic shock. Surg. Gynecol. Obstet. 127: 1, 1968.

    Google Scholar 

  45. Kibbey, I.I., F.E. D’Amour, and D.L. Smith. Effect of ACTH on rate of oxygen consumption in experimental traumatic shock. Am. J. Physiol. 174: 241, 1953.

    CAS  Google Scholar 

  46. La Brosse, L.H. Plasma amino acids in normal humans and patients with shock. Surg. Gynecol. Obstet. 125: 516, 1967.

    Google Scholar 

  47. Lazarus, H.M., A.H. Herman, A.M. Rutenburg, and R.H. Egdahl. Hepatic nuclear ribonucleic acid synthesis in hemorrhagic shock. Surg. Forum 21: 14, 1970.

    PubMed  CAS  Google Scholar 

  48. Lemieux, M.D., R.N. Smith, and N.P. Couch. Electrometric surface pH of skeletal muscle in hypovolemia. Am. J. Surg. 117: 627, 1969.

    Article  CAS  Google Scholar 

  49. Lewis, D.H., and L. Appelgren. Capillary transport function in skeletal muscle in hemorrhagic shock. Surg. Forum 20: 7, 1969.

    PubMed  CAS  Google Scholar 

  50. Lovett, W.L., S.L. Wangensteen, T.M. Glenn, and A.M. Lefer. Presence of a myocardial depressant factor in patients in circulatory shock. Surgery 70: 223, 1971.

    PubMed  CAS  Google Scholar 

  51. Manger, W.M., G.G. Nahas, D. Hassam, D.V. Habif, and E.M. Papper. Effect of pH control and increased O2 delivery in the course of hemorrhagic shock. Ann. Surg. 156: 503, 1962.

    Article  PubMed  CAS  Google Scholar 

  52. Marks, L.J., D.W. King, and H.F. McCarthy. Physiological role of Cortisol in the plasma volume response to hemorrhage. Surgery 61: 422, 1967.

    PubMed  CAS  Google Scholar 

  53. Massion, W.H. Value of high-energy compounds in the treatment of shock. Am. J. Surg. 110: 342, 1965.

    Article  Google Scholar 

  54. Matsumoto, T., R.M. Hardaway, and J.E. McClain. Microcirculation in hemorrhagic shock with relationship to blood pressure. Arch. Surg. 95: 911, 1967.

    Article  PubMed  CAS  Google Scholar 

  55. McArdle, A.H., D. Mavrias, G. Bounous, and F.N. Gurd. Energy production in the dog intestine following hemorrhagic shock. Surg. Forum 19: 8, 1968.

    PubMed  CAS  Google Scholar 

  56. Mela, L., L.V. Bacalzo, R.R. White, IV, and L.D. Miller. Shock-induced alterations of mitochondrial-energy-linked functions. Surg. Forum 21: 8, 1970.

    Google Scholar 

  57. Mela, L., L.V. Bacalzo, Jr., and L.D. Miller. Defective oxidative metabolism of rat liver mitochondria in hemorrhagic and endotoxin shock. Am. J. Physiol. 220: 571, 1971.

    PubMed  CAS  Google Scholar 

  58. Mela, L., K. Olofsson, L.D. Miller, L.V. Bacalzo, and R.R. White, IV. Effect of lysosomes and hypoxia on mitochondria in shock. Surg. Forum 22: 19, 1971.

    PubMed  CAS  Google Scholar 

  59. Middleton, E.S., R. Mathews, and G.T. Shires. Radiosulphate as a measure of the extracellular fluid in acute hemorrhagic shock. Ann. Surg. 170: 174, 1969.

    Article  PubMed  CAS  Google Scholar 

  60. Migone, L. Metabolic aspects of shock. In: Shock: Pathogenesis and Therapy: An Intevnation Symposium, Stockholm, June, 1961.

    Google Scholar 

  61. Miles, A.A. Local and systemic factors in shock. Fed. Proc. 20: 141, 1961.

    Google Scholar 

  62. Moffat, J.G., J.A. King, and W.R. Drucker. Tolerance to prolonged hypovolemic shock: Effects of infusion of an energy substrate. Surg. Forum 20: 8, 1968.

    Google Scholar 

  63. Monafo, W.W., T.L. Wachtel, and F. Deitz. Bioassay of hemorrhagic shock in rats. Arch. Surg. 98: 275, 1969.

    Article  PubMed  CAS  Google Scholar 

  64. Moore, F.D. Relevance of experimental shock studies to clinical shock problems. Fed. Proc. (Suppl. 9 ) 20: 227, 1960.

    Google Scholar 

  65. Moyer, C.A., and H.R. Butcher. Burns, Shock and Plasma Volume Regulation. St. Louis: C.V. Mosby Co., 1967.

    Google Scholar 

  66. Moyo, C.T., J.B. Dossetor, and L.D. MacLean. Hemodialysis in the treatment of shock. J. Surg. Res. 4: 3801, 1964.

    Article  Google Scholar 

  67. Nagy, S., K. Tarnoky, and G. Petri. Effect of a water-soluble corticosteroid analogue in experimental hemorrhagic shock. J. Surg. Res. 4: 62, 1964.

    Article  CAS  Google Scholar 

  68. Naylor, B.A., M.H. Welch, A.W. Shafer, and C.A. Guenter. Oxyhemoglobin dissociation in hemorrhagic and endotoxic shock. Clin. Res. 18: 631, 1970.

    Google Scholar 

  69. Nickerson, M., and S.A. Carter. Protection against acute trauma and traumatic shock by vasodilators. Can. J. Biochem. Physiol. 37: 1161, 1959.

    Article  PubMed  CAS  Google Scholar 

  70. Prentice, T.C., J.M. Olney, Jr., C.P. Artz, and J.M. Howard. Studies of blood volume and transfusion therapy in the Korean battle casualty. Battle Casualties in Korea; Studies of the Surgical Research Team 2: 114, 1956.

    Google Scholar 

  71. Randall, H.T. The shifts of fluid and electrolytes in shock. Ann. N.Y. Acad. Sci. 55: 412, 1952.

    Article  PubMed  CAS  Google Scholar 

  72. Reich, T., B.M. Dierolf, and B.M. Reynolds. Plasma cathepsin-like acid proteinase activity during hemorrhagic shock. J. Surg. Res. 5: 116, 1965.

    CAS  Google Scholar 

  73. Reich, M.P., and B. Eiseman. Tissue oxygenation following resuscitation with crystalloid solution following experimental acute blood loss. Surgery 69: 928, 1971.

    PubMed  CAS  Google Scholar 

  74. Replogle, R.L., H. Kundler, M. Schottenfeld, and S. Spear. Hemodynamic effects of dexamethasone in experimental hemorrhagic shock: Negative results. Ann. Surg. 174: 126, 1971.

    Article  PubMed  CAS  Google Scholar 

  75. Robb, H.J. The role of microembolism in the production of irreversible shock. Ann. Surg. 158: 685, 1963.

    Article  PubMed  CAS  Google Scholar 

  76. Rothe, C.F. Heart failure and fluid loss in hemorrhagic shock. Fed. Proc. 29: 1854, 1970.

    PubMed  CAS  Google Scholar 

  77. Rush, B.F., Jr. Treatment of experimental shock: Comparison of the effects of norepinephrine, Dibenzyline, dextran, whole blood and balanced saline solutions. Surgery 61: 938, 1967.

    PubMed  Google Scholar 

  78. Rush, B.F., Jr., and R.J. Wilder. Renal necrosis and mortality in hemorrhagic shock: Effects of heparin and plastic or glass systems. Surgery 58: 720, 1965.

    Google Scholar 

  79. Sacks, E.I., J. Fewel, J. Hsieh, and B.F. Rush, Jr. Electrolyte and enzyme gradients in plasma, lymph and “interstitial” fluid during shock. Surg. Forum 21: 44, 1970.

    PubMed  CAS  Google Scholar 

  80. Schloerb, P.R., C.E. Peters, G.K. Cage, J.C. Kearns, and J.K. Lam. Evaluation of the sulfate space as a measure of extracellular fluid. Surg. Forum 18: 39, 1968.

    Google Scholar 

  81. Schumer, W. Lactate studies of the dog in oligemic shock. J. Surg. Res. 8: 491, 1968.

    Article  Google Scholar 

  82. Schumer, W., S.K. Kapica, and T.L. Teng. Validity of the lysosomal theory in oligemic shock. Arch. Surg. 99: 325, 1969.

    Article  PubMed  CAS  Google Scholar 

  83. Selkurt, E.E. Status of investigative aspects of hemorrhagic shock. Fed. Proc. 29: 1832, 1970.

    Google Scholar 

  84. Selkurt, E.E., and R.F. Rothe. Critical analysis of experimental hemorrhagic shock models. Fed. Proc. 20: 30, 1961.

    PubMed  Google Scholar 

  85. Shires, T., F.T. Brown, P.C. Conizano, and N. Somerville. Distributional changes in extracellular fluid during acute hemorrhagic shock. Surg. Forum 11: 15, 1960.

    Google Scholar 

  86. Shizgal, H.M., G.A. Lopez, and J.R. Gutelius. Extracellular fluid volume changes following hemorrhagic shock. Surg. Forum 18: 35, 1968.

    Google Scholar 

  87. Shoemaker, W.C., and F. Iida. Studies on the equilibrium of labelled red cells and T-1824 in hemorrhagic shock. Surg. Gynecol. Obstet. 114: 539, 1962.

    PubMed  CAS  Google Scholar 

  88. Shoemaker, W.C., and R.S. Brown. The dilemma of vasopressors and vasodilators in the therapy of shock. Surg. Gynecol. Obstet. 132: 51, 1971.

    PubMed  CAS  Google Scholar 

  89. Simeone, F.A. Experimental hemorrhagic shock and irreversibility. In: Shook and Hypotension, edited by L.C. Mills and J.H. Moyer. New York: Grune & Stratton, 1965.

    Google Scholar 

  90. Stallworth, J.M., H. Ramirez, B.A. Barrington, Jr., and R.R. Bradham. Hypovolemic shock microcirculatory changes during and after specific therapy. Am. Surg. 169: 694, 1969.

    CAS  Google Scholar 

  91. Staples, D., C. Topuzlu, and E. Blair. A comparison of ATP levels in hemorrhagic and in endotoxin shock. Clin. Res. 16: 555, 1968.

    Google Scholar 

  92. Stoner, H.B., and C.J. Threlfall. The Biochemical Response to Injury. Oxford: Blackwell, 1960.

    Google Scholar 

  93. Talaat, S.M., W.H. Massion, and J.A. Schilling. Effects of adenosine triphosphate administration in irreversible hemorrhagic shock. Surgery 55: 813, 1964.

    PubMed  CAS  Google Scholar 

  94. Wiggers, C.J. Physiology of Shock. New York: The Commonwealth Fund, 1950.

    Google Scholar 

  95. Wilson, R.F., and R.R. Fisher. The hemodynamic effects of massive steroids in clinical shock. Surg. Gynecol. Obstet. 127: 769, 1968.

    PubMed  CAS  Google Scholar 

  96. Wolfman, E.F., Jr., S.A. Neill, D.K. Heaps, and G.D. Quidema. Donor blood and isotonic salt solution: Effect on survival after hemorrhagic shock and operation. Arch. Surg. 86: 869, 1963.

    Article  PubMed  Google Scholar 

  97. Zweifach, B.W. Microcirculatory derangements as a basis for the lethal manifestations of experimental shock. Brit. J. Anaesthesiol. 30: 466, 1958.

    Article  CAS  Google Scholar 

  98. Zweifach, B.W., A.L. Nagler, and W. Troll. Some effects of proteolytic inhibitors on tissue injury and systemic anaphylaxis. J. Exptl. Med. 113: 437, 1961.

    Article  CAS  Google Scholar 

  99. Zweifach, B.W. Functional deterioration of terminal vascular beds in irreversible hemorrhagic shock. Ann. N.Y. Acad. Sci. 55: 370, 1952.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1972 Plenum Press, New York

About this chapter

Cite this chapter

Rush, B.F. (1972). Irreversibility in the Post-Transfusion Phase of Hemorrhagic Shock. In: Hinshaw, L.B., Cox, B.G. (eds) The Fundamental Mechanisms of Shock. Advances in Experimental Medicine and Biology, vol 23. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9014-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9014-9_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9016-3

  • Online ISBN: 978-1-4615-9014-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics