Skip to main content

Regulation of Taurine Biosynthesis and Its Physiological Significance in the Brain

  • Chapter
Taurine 3

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 442))

Abstract

Cysteine sulfinic acid decarboxylase (CSAD), the rate-limiting enzyme in taurine biosynthesis, was found to be activated under conditions that favor protein phosphorylation and inactivated under conditions favoring protein dephosphorylation. Direct incorporation of 32P into purified CSAD has been demonstrated with [γ32P]ATP and PKC, but not PKA. In addition, the 32P labeling of CSAD was inhibited by PKC inhibitors suggesting that PKC is responsible for phosphorylation of CSAD in the brain. Okadaic acid had no effect on CSAD activity at 10 μM suggesting that protein phosphatase-2C (PrP-2C) might be involved in the dephosphorylation of CSAD. Furthermore, it was found that either glutamate- or high K+-induced depolarization increased CSAD activity as well as 32P-incorporation into CSAD in neuronal cultures, supporting the notion that the CSAD activity is endogenously regulated by protein phosphorylation in the brain. A model to link neuronal excitation, phosphorylation of CSAD and increase in taurine biosynthesis is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bao, J., Cheung, W. Y., and Wu, J.-Y., 1995, Brain L-glutamate decarboxylase: Inhibition by phosphorylation and activation by dephosphorylation, J. Biol. Chem., 270:6464–6467.

    Article  PubMed  CAS  Google Scholar 

  2. Bao, J., Nathan, B., and Wu, J.-Y., 1994, Role of protein phosphorylation in the regulation of brain L-glutamate decarboxylase activity, J. Biomed. Sci., 1:237–244.

    Article  PubMed  CAS  Google Scholar 

  3. Hayes, K. C., Carey, R. E., and Schmidt, S. Y., 1975, Retinal degeneration associated with taurine deficiency in the cat, Science, 188:949–951.

    Article  PubMed  CAS  Google Scholar 

  4. Jacobsen, J. G. and Smith, L. H., 1968, Biochemistry and physiology of taurine and taurine derivatives, Physiol. Rev., 48:424–511.

    PubMed  CAS  Google Scholar 

  5. Kuriyama, K., 1980, Taurine as a neuromodulator, Fed. Proc., 39:2680–2684.

    PubMed  CAS  Google Scholar 

  6. Lazarewicz, J. W., Noremberg, K., Lehmann, A., and Hamberger, A., 1985, Effects of taurine on calcium binding and accumulation in rabbit hippocampal and cortical synaptosomes, Neurochem. Int., 7:421–428.

    Article  PubMed  CAS  Google Scholar 

  7. Lin, C.-T., Su, Y. Y. T., Song, G.-X., and Wu, J.-Y., 1985, Is taurine a neurotransmitter in rabbit retina? Brain Res., 337:293–298.

    Article  PubMed  CAS  Google Scholar 

  8. Lombardini, J. B., 1985, Effects of taurine on calicum ion uptake and protein phosphorylation in rat retinal membrane preparations, J. Neurochem., 45:268–275.

    Article  PubMed  CAS  Google Scholar 

  9. Moran, J., Salazar, P., and Pasantes-Morales, H., 1988, Effect of tocopherol and taurine on membrane fluidity of retinal rod outer segments, Experimental Eye Res., 45:769–776.

    Article  Google Scholar 

  10. Okamoto, K., Kimura, H., and Sakai, Y., 1983, Evidence for taurine as an inhibitory neurotransmitter in cerebellar stellate interneurons: Selective antagonism by TAG (6-aminomethyl-3-methyl-4H,1, 2,4-benzothiadiazine-1,1-dioxide), Brain Res., 265:163–168.

    Article  PubMed  CAS  Google Scholar 

  11. Pasantes-Morales, H. and Cruz, C., 1985, Taurine and hypotaurine inhibit light-induced lipid peroxidation and protect rod outer segment structures, Brain Res., 330:154–157.

    Article  PubMed  CAS  Google Scholar 

  12. Pion, P. D., Kittleson, M. D., Rogers, Q. R., and Morris, J. G., 1987, Myocardial failure in cats associated with low plasma taurine: A reversible cardiomyopathy, Science, 237:764–768.

    Article  PubMed  CAS  Google Scholar 

  13. Solis, J. M., Herranz, A. S., Herreras, J., Lerma, J., and Del Rio, R. M., 1988, Does taurine act as an osmoregulatory substance in the rat brain, Neurosci. Lett., 91:53–58.

    Article  PubMed  CAS  Google Scholar 

  14. Sturman, J. A., 1993, Taurine in development, Physiol. Rev., 73:119–147.

    PubMed  CAS  Google Scholar 

  15. Sturman, J. A., Moretz, R. C, French, J. H., and Wisniewski, H. M., 1985, Postnatal taurine deficiency in the kitten results in a persistence of the cerebellar external granule cell layer: Correction by taurine feeding, J. Neuro. Res., 13:521–528.

    Article  CAS  Google Scholar 

  16. Taber, T. C., Line, C.-T., Song, G.-X., Thalman, R. H., and Wu, J.-Y., 1986, Taurine in the rat hippocampus-localization and postsynaptic action, Brain Res., 386:113–121.

    Article  PubMed  CAS  Google Scholar 

  17. Tang, X. W., Deupree, D. L., Sun, Y., and Wu, J.-Y., 1996, Biphasic effect of taurine on excitatory amino acid-induced neurotoxicity, in: “Taurine: Basic and Clinical Aspects”, Huxtable, R. J., Azuma, J., Nakagawa, M., Kuriyama, A. and Bala, A., eds., Plenum Publishing Co., pp. 499-506.

    Google Scholar 

  18. Tang, X. W., Hsu, C.-C., Sun, Y., Wu, E., Yang, C. Y., and Wu, J.-Y., 1996, Multiplicity of brain cysteine sulfinic acid decarboxylase-purification, characterization and subunit structure, J. Biomed. Sci., 3:442–453.

    Article  PubMed  CAS  Google Scholar 

  19. Wade, J. V., Olsen, J. P., Samson, F. E., Nelson, S. R., and Pazdernik, T. L., 1988, A possible role for taurine in osmoregulation within the brain, J. Neurochem., 541:740–745.

    Article  Google Scholar 

  20. Wu, J.-Y., 1982, Purification and characterization of cysteic/cysteinesulfinic acids decarboxylase and L-glutamate decarboxylase in bovine brain, Proc. Natl. Acad. Sci. USA, 79:4270–4274.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wu, JY., Tang, X.W., Schloss, J.V., Faiman, M.D. (1998). Regulation of Taurine Biosynthesis and Its Physiological Significance in the Brain. In: Schaffer, S., Lombardini, J.B., Huxtable, R.J. (eds) Taurine 3. Advances in Experimental Medicine and Biology, vol 442. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0117-0_42

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0117-0_42

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0119-4

  • Online ISBN: 978-1-4899-0117-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics