Skip to main content

Host Range Restricted, Non-Replicating Vaccinia Virus Vectors as Vaccine Candidates

  • Chapter
Novel Strategies in the Design and Production of Vaccines

Abstract

The use of a recombinant virus containing a heterologous gene of another microorganism as a live vaccine was suggested more than 10 years ago (Mackett et al, 1982; Panicali and Paoletti, 1982). Vaccinia virus was considered for such a purpose because of its success as a smallpox vaccine and ease and economy of production, distribution and administration (Fermer et al., 1988). The extensive experimental use of recombinant vaccinia viruses was facilitated by the construction of plasmid transfer vectors containing a vaccinia virus promoter, one or more convenient restriction endonuclease sites for inserting a foreign gene, flanking DNA sequences for homologous recombination into a non-essential site of the vaccinia virus genome and for selection and/or screening of recombinant viruses (Chakrabarti et al., 1985; Mackett et al., 1984). Humoral and cell mediated immune responses to an expressed foreign protein and protection of experimental animals against challenge with the corresponding pathogen were demonstated in a variety of animal model systems (Cox et al., 1992; Moss, 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrew, M. E., Coupar, B. E. H., Ada, G. L. and Boyle, D. B., 1986, Cell-mediated immune response to influenza virus antigens expressed by vaccinia virus recombinants, Microb. Path. 1:443–452.

    Article  CAS  Google Scholar 

  • Bennink, J. R., Yewdell, J. W., Smith, J. W., Möller, C. and Moss, B., 1984, Recombinant vaccinia virus primes and stimulates influenza virus HA-specific CTL, Nature 311:578–579.

    Article  PubMed  CAS  Google Scholar 

  • Bronte, V, Tsung, K., Rao, J. B., Chen, P. W., Wang, M., Rosenberg, S. A. and Restifo, N. P., 1995, IL-2 enhances the function of recombinant poxvirus-based vaccines in the treatment of established pulmonary metastases, J. Immunol. 154:5282–5292.

    PubMed  CAS  Google Scholar 

  • Buller, R. M., Chakrabarti, S., Cooper, J. A., Twardzik, D. R. and Moss, B., 1988, Deletion of the vaccinia virus growth factor gene reduces virus virulence, J. Virol. 62:866–877.

    PubMed  CAS  Google Scholar 

  • Buller, R. M. L., Smith, G. L., Cremer, K., Notkins, A. L. and Moss, B., 1985, Decreased virulence of recombinant vaccinia virus expression vectors is associated with a thymidine kinase-negative phenotype, Nature 317:813–815.

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarti, S., Brechling, K. and Moss, B., 1985, Vaccinia virus expression vector: Coexpression of β-galactosidase provides visual screening of recombinant virus plaques, Mol. Cell. Biol. 5:3403–3409.

    PubMed  CAS  Google Scholar 

  • Cooney, E. L., Collier, A. C., Greenberg, P. D., Coombs, R. W., Zarling, J., Ardirti, D. E., Hoffman, M. C., Hu, S. L. and Corey, L., 1991, Safety of and immunological response to a recombinant vaccinia virus vaccine expressing HIV envelope glycoprotein, Lancet 337: 567–572.

    Article  PubMed  CAS  Google Scholar 

  • Cox, W. L, Tartaglia, J. and Paoletti, E., 1992, Poxvirus recombinants as live vaccines, Recombinant poxviruses. (Binns, M. M. and Smith, G. L., eds.), 123–162. CRC Press, Boca Raton.

    Google Scholar 

  • Daniel, M. D., Kirchhoff, F., Czajak, S. C., Sehgal, P. K. and Desrosiers, R. C., 1992, Protective effects of a live attenuated SIV vaccine with a deletion in the nef gene, Science 258:1938–1941.

    Article  PubMed  CAS  Google Scholar 

  • Fermer, F., Henderson, D. A., Arita, I., Jezek, Z. and Ladnyi, I. D., 1988, Smallpox and its eradication, World Health Organization, Geneva.

    Google Scholar 

  • Flexner, C., Hugin, A. and Moss, B., 1987, Prevention of vaccinia virus infection in immunodeficient nude mice by vector-directed IL-2 expression, Nature 330:259–262.

    Article  PubMed  CAS  Google Scholar 

  • Giavedoni, L. D., Planelles, V, Haigwood, N. L., Ahmad, S., Kluge, J. D., Marthas, M. L., Gardner, M. B., Luciw, P. A. and Yilma, T. D., 1993, Immune response of rhesus macaques to recombinant simian immunodeficiency virus-gp 130 does not protect from challenge infection, J. Virol. 67:577–583.

    PubMed  CAS  Google Scholar 

  • Goldstein, S., Elkins, W. R., London, W. T., Hahn, A., Goeken, R., Martin, J. E. and Hirsch, V M., 1994, Immunization with whole inactivated vaccine protects from infection by SIV grown in human but not macaque cells, J. Med. Primatol. 23: 75–82.

    Article  PubMed  CAS  Google Scholar 

  • Hirsch, V. M., Goldstein, S., Chanock, R., Elkins, W. R., Sutter, G., Moss, B., Sisler, J., Lifson, J. and Fuerst, T., 1995, Limited virus replication following SIV challenge of macaques immunized with attenuated MVA vaccinia expressing SIVsm env and gag-pol, Vaccines 95:195–200.

    Google Scholar 

  • Hochstein-Mintzel, V, Huber, H. C. and Stickl, H., 1972, Virulenz und immunogenität eines modifizierten vaccinia-virus (Stamm MVA), Z. Immun.-Forsch. 144:140–145.

    Google Scholar 

  • Hu, S.-L., Abrams, K., Barber, G. N., Moran, P., Zarling, J. M., Langlois, A. J., Kuller, L., Morton, W. R. and Beneviste, R. E., 1992, Protection of macaques against SIV infection by subunit vaccines of SIV envelope glycoprotein gp160. Science 255:456–459.

    Article  PubMed  CAS  Google Scholar 

  • Israel, Z. R., Edmonson, P. F., Maul, D. H., O’Neill, S. P., Mossman, S. P., Thiriart, C., Fabry, L., Van Opstal, O., Bruck, C., Bex, F., Burny, A., Fultz, P. N., Mullins, J. I. and Hoover, E. A., 1994, Incomplete protection, but suppression of virus burden, elicited by subunit simian immunodeficiency virus vaccines, J. Virol. 68:1843–1853.

    PubMed  CAS  Google Scholar 

  • Johnson, P. R., Montefiori, D. C., Goldstein, S., Hamm, T. E., Zhou, J. Y., Kitov, S., Haigwood, N. L., Misher, L., London, W. T., Gerin, J. L., Allison, A., Purcell, R. H., Chanock, R. M. and Hirsch, V. M., 1992, Inactivated whole SIV vaccine in Macaques-evaluation of protective efficacy against challenge with cell-free virus or infected cells, AIDS Res. Human Retroviruses, 8:1501–1505.

    Article  CAS  Google Scholar 

  • Mackett, M., Smith, G. L. and Moss, B., 1982, Vaccinia virus: a selectable eukaryotic cloning and expression vector, Proc. Natl. Acad. Sci. USA, 79:7415–7419.

    Article  PubMed  CAS  Google Scholar 

  • Mackett, M., Smith, G. L. and Moss, B., 1984, General method for production and selection of infectious vaccinia virus recombinants expressing foreign genes, J. Virol. 49:857–864.

    PubMed  CAS  Google Scholar 

  • Mayr, A. and Danner, K., 1979, Bedeutung von tierpocken für den menschen nach aufhebung der pflichtimpfung gegen pocken, Berl. Münck. Tierärztl. Wochenschr. 92:251–256.

    CAS  Google Scholar 

  • Mayr, A., Hochstein-Mintzel, V. and Stickl, H., 1975, Abstammung, eigenschaften und Verwendung des attenuierten vaccinia-stammes MVA, Infection 3:6–14.

    Article  Google Scholar 

  • Mayr, A., Stickl, H., Müller, H. K., Danner, K. and Singer, H., 1978, Pockenimpfstamm MVA: marker, genetische Struktur, erfahrungen mit der parenteralen Schutzimpfung und verhalten im abwehrgeschwächten Organismus, Zbl. Bakt. Hyg. I.Abt. Orig. B 167:375–390.

    CAS  Google Scholar 

  • Meyer, H., Sutter, G. and Mayr, A., 1991, Mapping of deletions in the genome of the highly attenuated vaccinia virus MVA and their influence on virulence, J. Gen. Virol. 72:1031–1038.

    Article  PubMed  CAS  Google Scholar 

  • Moss, B., 1991, Vaccinia virus: a tool for research and vaccine development. Science 252:1662–1667.

    Article  PubMed  CAS  Google Scholar 

  • Panicali, D. and Paoletti, E., 1982, Construction of poxviruses as cloning vectors: insertion of the thymidine kinase gene from herpes simplex virus into the DNA of infectious vaccinia virus, Proc. Natl. Acad. Sci. USA 79:4927–4931.

    Article  PubMed  CAS  Google Scholar 

  • Ramshaw, A., Andrew, M. E., Phillips, S. M., Boyle, D. B. and Coupar, B. E. H., 1987, Recovery of immunodeficient mice from a vaccinia virus/IL-2 recombinant infection, Nature 329:545–546.

    Article  PubMed  CAS  Google Scholar 

  • Stickl, H., Hochstein-Mintzel, V, Mayr, A., Huber, H. C., Schäfer, H. and Holzner, A., 1974, MVA-stufenimpfung gegen pocken. Kleinische erprobung des attenuierten pocken-lebendimpfstoffes, stamm MVA. Dtsch. Med. Wschr. 99:2386–2392.

    Article  PubMed  CAS  Google Scholar 

  • Sutter, G. and Moss, B., 1992, Nonreplicating vaccinia vector efficiently expresses recombinant genes, Proc. Natl. Acad. Sci. USA 89:10847–10851.

    Article  PubMed  CAS  Google Scholar 

  • Sutter, G., Wyatt, L. S., Foley, P. L., Bennink, J. R. and Moss, B., 1994, A recombinant vector derived from the host range-restricted and highly attenuated MVA strain of vaccinia virus stimulates protective immunity in mice to influenza virus, Vaccine 12:1032–1040.

    Article  PubMed  CAS  Google Scholar 

  • Tartaglia, J., Perkus, M. E., Taylor, J., Norton, E. K., Audonnet, J. C., Cox, W. I., Davis, S. W., Vanderhoeven, J., Meignier, B., Riviere, M., Languet, B. and Paoletti, E., 1992, NYVAC-A highly attenuated strain of vaccinia virus, Virology 188:217–232.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, J., Weinberg, R., Tartaglia, J., Richardson, C., Alkhatib, G., Breidis, D., Appel, M., Norton, E. and Paoletti, E., 1992, Nonreplicating viral vectors as potential vaccines: recombinant canarypox virus expressing measles virus fusion (F) and hemagglutinin (HA) glycoproteins, Virology 187:321–328.

    Article  PubMed  CAS  Google Scholar 

  • Wang, M., Bronte, V., Chen, P. W, Gritz, L., Panicali, D., Rosenberg, S. A. and Restifo, N. P., 1995, Active immunotherapy of cancer with a non-replicating recombinant fowlpox virus encoding a model tumor-associated antigen. J. Immunol. 154:4685–4692.

    PubMed  CAS  Google Scholar 

  • Werner, G. T., Jentsch, U., Metzger, E. and Simon, J., 1980, Studies on poxvirus infection in irradiated animals, Arch. Virol. 64:247–256.

    Article  PubMed  CAS  Google Scholar 

  • Yewdell, J. W, Bennink, J. R., Smith, G. L. and Moss, B., 1985, Influenza A virus nucleoprotein is a major target for cross-reactive anti-influenza virus cytotoxic T lymphocytes, Proc. Natl. Acad. Sci. USA 82:1785–1789.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Moss, B. et al. (1996). Host Range Restricted, Non-Replicating Vaccinia Virus Vectors as Vaccine Candidates. In: Cohen, S., Shafferman, A. (eds) Novel Strategies in the Design and Production of Vaccines. Advances in Experimental Medicine and Biology, vol 397. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1382-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1382-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1384-5

  • Online ISBN: 978-1-4899-1382-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics