Skip to main content

Malarial Lipids

An Overview

  • Chapter
Intracellular Parasites

Part of the book series: Subcellular Biochemistry ((SCBI,volume 18))

Abstract

The process of erythrocyte invasion by the malaria-causing protozoan, Plasmodium, is associated with the sudden appearance of a membrane-delimited foreign body and the growth of the intracellular parasite is associated with a dramatic increase in the total membrane area. This heterotrophic organism installs structures to converse with the host erythrocyte, producing appropriate changes by remote control in the erythrocytic host membrane to assure its own nutrition, maturation, and survival against the host immune system. Plasmodium has proved to be a useful and rich model because it concentrates complex biochemistry and very intricate mechanisms to escape host immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aikawa, M., 1988, Morphological changes in erythrocytes induced by malarial parasites, Biol. Cell 64:173–181.

    Article  PubMed  CAS  Google Scholar 

  • Aikawa, M., and Miller, L. H., 1983, Structural alteration of the erythrocyte membrane during malarial parasite invasion and intraerythrocytic development, in Malaria and the Red Cell (Ciba Symposium 94), pp. 45–63, Pitman, London.

    Google Scholar 

  • Allred, D. R., Sterling, C. R., and Morse, P. D., 1983, Increased fluidity of Plasmodium berghei-infected mouse red blood cell membrane detected by electron spin resonance spectroscopy, Mol. Biochem. Parasitol. 7:27–39.

    Article  PubMed  CAS  Google Scholar 

  • Allred, D. R., Gruenberg, J. E., and Sherman, I. W., 1986, Dynamic rearrangements of erythrocyte membrane internal architecture induced by infection with Plasmodium falciparum, J. Cell Sci. 81:1–16.

    PubMed  CAS  Google Scholar 

  • Al Rifai, W. A., Maurois, P., Fruchart, J. C., and Charet, P., 1982, A lipose tissue lipoprotein lipase activity in Plasmodium chabaudi and Plasmodium vinckei rodent malaria, Biochimie 64:127–132.

    Article  PubMed  CAS  Google Scholar 

  • Ancelin, M. L., and Vial, H. J., 1986a, Choline kinase activity in Plasmodium-intected erythrocytes: Characterisation and utilization as useful parasite specific marker in malarial fractionation studies, Biochim. Biophys. Acta 875:52–58.

    Article  PubMed  CAS  Google Scholar 

  • Ancelin, M. L., and Vial, H. J., 1986b, Several lines of evidence demonstrating that Plasmodium falciparum, a parasitic organism, has distinct enzymes for the phosphorylation of choline and ethanolamine, FEBS Lett. 202:217–223.

    Article  PubMed  CAS  Google Scholar 

  • Ancelin, M. L., and Vial, H. J., 1986c, Quaternary ammonium compounds efficiently inhibit Plasmodium falciparum growth in vitro by impairment of choline transport, Antimicrob. Agents Chemother. 29:814–820.

    Article  PubMed  CAS  Google Scholar 

  • Ancelin, M. L., and Vial, H. J., 1989, Regulation of phosphatidylcholine biosynthesis in Plasmodium-infected erythrocytes, Biochim. Biophys, Acta 1001:82–89.

    Article  CAS  Google Scholar 

  • Ancelin, M. L., Vial, H. J., and Philippot, J. R., 1985, Inhibitors of choline transport into Plasmodium-infected erythrocytes are effective antiplasmodial compounds in vitro, Biochem. Pharmacol. 34:4068–4071.

    Article  PubMed  CAS  Google Scholar 

  • Ancelin, M. L., Vial, H. J., and Philippot, J. R., 1986, Characterization of choline and ethanolamine kinase activities in Plasmodium-infected erythrocytes, in Enzymes of Lipid Metabolism II (L. Freysz, H. Dreyfus, R. Massarelli, and S. Gatt, eds.), pp. 59–64, Plenum Press, New York.

    Chapter  Google Scholar 

  • Ancelin, M. L., Parant, M., Thuet, M. J., Philippot, J. R., and Vial, H. J., 1991, Increased permeability to choline in simian erythrocytes after Plasmodium knowlesi infection, Biochem. J. 273:701–709.

    PubMed  CAS  Google Scholar 

  • Angus, M. G. N., Fletcher, K. A., and Maegraith, B. G., 1971a, Studies on the lipids of Plasmodium knowlesi-iniected rhesus monkeys (Macaca mulatto). I: Changes in serum lipids, Ann. Trop. Med. Parasitol. 65:135–154.

    PubMed  CAS  Google Scholar 

  • Angus, M. G. N., Fletcher, K. A., and Maegraith, B. G., 1971b, Studies on the lipids of Plasmodium knowlesi-iniected rhesus monkeys (Macaca mulatto). II: Changes in serum non-esterified fatty acids, Ann. Trop. Med. Parasitol. 65:155–167.

    PubMed  CAS  Google Scholar 

  • Angus, M. G. N., Fletcher, K. A., and Maegraith, B. G., 1971c, Studies on the lipids of Plasmodium knowlesi-infected rhesus monkeys (Macaca mulatto). IV: Changes in erythrocytic lipids, Ann. Trop. Med. Parasitol. 65:429–439.

    PubMed  CAS  Google Scholar 

  • Angus, M. G. N., Fletcher, K. A., and Maegraith, B. G., 1971d, Studies on the lipids of Plasmodium knowlesi-infected rhesus monkeys (Macaca mulatto). III: Changes in liver lipids, Ann. Trop. Med. Parasitol. 65:419–427.

    PubMed  CAS  Google Scholar 

  • Ardeshir, F., Flint, J. F., Richman, S. J., and Reese, R. T., 1987, A 75 Kd merozoite surface protein of Plasmodium falciparum which is related to the 70 Kd heat-shock proteins, EMBO J. 6:493–499.

    PubMed  CAS  Google Scholar 

  • Atkinson, C. T., Aikawa, M., Perry, G., Fujino, T., Bennett, V., Davidson, E. A., and Howard, R. J., 1987, Ultrastructural localization of erythrocyte cytoskeletal and integral membrane proteins in Plasmodium falciparum-infected erythrocytes, Eur. J. Cell Biol. 45:192–199.

    Google Scholar 

  • Bannister, L. H., and Mitchell, G. H., 1986, Lipidic vacuoles in Plasmodium knowlesi erythrocytic schizonts, J. Protozool. 33:271–275.

    PubMed  CAS  Google Scholar 

  • Bannister, I. H., and Mitchell, C. M., 1989, The fine structure of secretion by Plasmodium knowlesi merozoites during red cell invasion, J. Protozool. 36:275–283.

    Google Scholar 

  • Beach, D. H., Sherman, I. W., and Holz, G. G., 1977, Lipids of Plasmodium lophurae, and of erythrocytes and plasmas of normal and P. lophurae-infected Pekin Ducklings, J. Parasitol. 63:62–75.

    Article  PubMed  CAS  Google Scholar 

  • Beaumelle, B. D., 1987, Metabolisme des acides gras et dynamique des phospholipides dand l’érythrocyte infecté par 1e parasite du paludisme. Thesis, Université des Sciences et Techniques du Languedoc, Montpellier.

    Google Scholar 

  • Beaumelle, B.D., and Vial, H. J., 1986, Modification of the fatty acid composition of phospholipids and neutral lipids after infection of the simian erythrocyte by Plasmodium knowlesi, Biochim. Biophys. Acta 877:262–270.

    Article  PubMed  CAS  Google Scholar 

  • Beaumelle, B. D., and Vial, H. J., 1988a, Acyl-CoA synthetase activity in Plasmodium knowlesi-infected erythrocytes displays peculiar substrate specificities, Biochim. Biophys. Acta 958:1–9.

    Article  PubMed  CAS  Google Scholar 

  • Beaumelle, B.D., and Vial, H. J., 1988b, Correlation of the efficiency of fatty acid derivatives in suppressing Plasmodium falciparum growth in culture with their inhibitory effect on acyl-CoA synthetase activity, Mol. Biochem. Parasitol. 28:39–42.

    Article  PubMed  CAS  Google Scholar 

  • Beaumelle, B. D., and Vial, H. J., 1988c, Uninfected red cells from malaria-infected blood: Alteration of fatty acid composition involving a seric protein: An in vivo and in vitro study, In Vitro Cell. Develop. Biol. 24:711–718.

    Article  CAS  Google Scholar 

  • Beaumelle, B. D., Vial, H. J., and Philippot, J. R., 1987, Reevaluation, using marker enzymes, of the ability of saponin and ammonium chloride to free Plasmodium from infected erythrocytes, J. Parasitol. 73:743–748.

    Article  PubMed  CAS  Google Scholar 

  • Beaumelle, B. D., Vial, H. J., and Bienvenue, A., 1988, Enhanced transbilayer mobility of phospholipids in malaria-infected monkey erythrocytes. A spin label study, J. Cell Physiol. 135:94–100.

    Article  PubMed  CAS  Google Scholar 

  • Bell, R. M., and Coleman, R., 1980, Enzymes of glycerolipid synthesis in eukaryotes, Annu. Rev. Biochem. 49:459–487.

    Article  PubMed  CAS  Google Scholar 

  • Bianco, A. E., Favarolo, J. M., Burkot, T. R., Culvenor, J. G., Crewther, P. E., Brown, G. V., Anders, R. F., Coppel, R. L., and Kemp, D. J., 1986, A repetitive antigen of Plasmodium falciparum that is homologous to heat shock protein 70 of Drosophila melanogaster, Proc. Natl. Acad. Sci. USA 83:8713–8717.

    Article  PubMed  CAS  Google Scholar 

  • Bishop, W., and Bell, R. M., 1988, Assembly of phospholipids into cellular membranes. Biosynthesis, transmembrane movement and intracellular translocation, Annu. Rev. Cell. Biol. 1988:579–610.

    Article  Google Scholar 

  • Boonpucknavig, V., Srichaikul, T., and Punyagupta, T., 1984, Clinical pathology, in Antimalarial Drugs I (W. Peters and W. H. Richards, eds.), pp. 127–176, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Buffinton, G. D., Hunt, N., Cowden, W., and Clark, A., 1986, Malaria: A role for reactive oxygen species in parasite killing and host pathology, in Free Radicals, Cell Damage and Disease (C. Rice-Evans, ed.), pp. 201–220, Richelieu Press, London.

    Google Scholar 

  • Burns, E. R., and Pollack, S., 1988, P. falciparum infected erythrocytes are capable of endocytosis, In Vitro Cell Develop. Biol. 24:481–486.

    Article  CAS  Google Scholar 

  • Butler, K. W., Deslauriers, R., and Smith, I. C. P., 1984, Plasmodium berghei: Electron spin resonance and lipid analysis of infected mouse erythrocyte membranes, Exp. Parasitol. 57:178–184.

    Article  PubMed  CAS  Google Scholar 

  • Cabantchik, Z. I., 1989, Altered membrane transport of malaria-infected erythrocytes: A possible pharmacological target, Blood 74:1464–1471.

    PubMed  CAS  Google Scholar 

  • Carman, G., and Henry, S., 1989, Phospholipid biosynthesis in yeast, Annu. Rev. Biochem. 1989:635–639.

    Article  Google Scholar 

  • Cenedella, R. J., Jarrell, J. J., and Saxe, L. H., 1969, Lipid synthesis in vivo from 1-14C-oleic acid and 6-3H-glucose by intraerythrocytic Plasmodium berghei, Mil. Med. 134:1045–1055.

    PubMed  CAS  Google Scholar 

  • Deguercy, A., Schrevel, J. Duportail, G., Laustriat, G., and Kuhry, J. G., 1986, Membrane fluidity changes in P. berghei-infected erythrocytes, investigated with a specific plasma membrane fluorescent probe, Biochem. Int. 12:21–31.

    PubMed  CAS  Google Scholar 

  • Dei-Cas, E., Maurois, P., and Vernes, A., 1986, Physiopathologie du Paludisme, Médecine/Sciences 2:322–330.

    Google Scholar 

  • Devaux, P. F., 1988, Phospholipid flippases, FEBS Lett. 234:8–12.

    Article  PubMed  CAS  Google Scholar 

  • De Zeeuw, R. A., Wisbeck, J., Rock, R. C., and McCormick, G. I., 1972, Composition of phospholipids in Plasmodium knowlesi membranes and in host rhesus erythrocyte membranes, Proc. Helminthol. Soc. Wash. 39:412–418.

    Google Scholar 

  • Eisenberg, S., Levy, R. I., Paoletti, R., and Kritchevsky, D., 1975, Lipoprotein metabolism during experimental rodent malaria, Adv. Lipid Res. 13:1–89.

    PubMed  CAS  Google Scholar 

  • Forte, T., and Roca, L., 1989, Thermal properties of red blood cells infected by malaria parasites, Exp. Parasitol. 69:272–280.

    Article  PubMed  CAS  Google Scholar 

  • Gennis, R. B., 1989, Biomembranes, Molecular Structure and Function, Springer-Verlag, New York.

    Google Scholar 

  • Ginsburg, H., and Stein, D., 1987, New permeability pathways induced by the malarial parasite in the membrane of its host erythrocyte: Potential routes for targeting of drugs into infected cells, Biosci. Rep. 7:455–463.

    Article  PubMed  CAS  Google Scholar 

  • Ginsburg, H., Kutner, S., Zangwil, M., and Cabantchik, Z. I., 1986, Selectivity of pores induced in host erythrocyte membrane by Plasmodium falciparum. Effect of parasite maturation, Biochim. Biophys. Acta 861:194–196.

    PubMed  CAS  Google Scholar 

  • Ginsburg, H., Landau, I., and Baccam, D., 1988, Effect of cholesterol-rich diet on the susceptibility of rodent malarial parasites to chloroquine chemotherapy, Life Sci. 42:7–10.

    Article  PubMed  CAS  Google Scholar 

  • Glatz, J. F. C., and Veerkamp, J. H., 1985, Intracellular fatty acid-binding proteins, Int. J. Biochem. 17:13–22.

    Article  PubMed  CAS  Google Scholar 

  • Golender, J., and Chevio, M., 1989, Oxidant stress and malaria: Host-parasite interrelationships in normal and abnormal erythrocytes, Semin. Hematol. 26:313–325.

    Google Scholar 

  • Guidon, P. T., and Hightower, L. E., 1986, The 73 kilodalton heat shock cognate protein purified from rat brain contains nonesterified palmitic and stearic acids, J. Cell. Physiol. 128:239–245.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, C. M., and Mishra, G. C., 1981, Transbilayer phospholipids asymmetry in Plasmodium knowlesi-infected host cell membrane, Science 212:1047–1049.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, C. M., Alam, A., Mathur, P. N., and Dutta, G. P., 1982, A new look at nonparasitized red cells of malaria-infected monkeys, Nature 299:259–261.

    Article  PubMed  CAS  Google Scholar 

  • Haldar, K., DeAmorim, A. F., and Cross, G. A. M., 1989, Transport of fluorescent phospholipid analogues from the erythrocyte membrane to the parasite in Plasmodium falciparum infected erythrocytes, J. Cell Biol. 108:2183–2192.

    Article  PubMed  CAS  Google Scholar 

  • Holz, G. G., 1977, Lipids and the malarial parasite, Bull. WHO 55:237–248.

    PubMed  CAS  Google Scholar 

  • Holz, G. G., Beach, D. H., and Sherman, I. W., 1977, Octadecenoic fatty acids and their association with hemolysis in malaria, J. Protozool. 24:566–574.

    PubMed  CAS  Google Scholar 

  • Homewood, C. A., and Neame, K. D., 1974, Malaria and the permeability of the host erythrocyte, Nature 252:718–719.

    Article  PubMed  CAS  Google Scholar 

  • Hommel, M., and Semoff, S., 1988, Expression and function of erythrocyte-associated surface antigens in malaria, Biol. Cell 64:183–203.

    Article  PubMed  CAS  Google Scholar 

  • Howard, R. J., 1988a, Malarial proteins at the membrane of Plasmodium falciparum-intected erythrocytes and their involvement in cytoadherence to endothelial cells, Prog. Allergy 41:98–147.

    PubMed  CAS  Google Scholar 

  • Howard, R. J., 1988b, Plasmodium falciparum proteins at the host erythrocyte membrane: Their biological and immunogical significance and novel parasite organelles which deliver them to the cell surface, in The Biology of Parasitism (P. P. Englund and C. A. Sher, eds.), pp. 111–145, Alan R. Liss, New York

    Google Scholar 

  • Howard, R. J., and Sawyer, W. H., 1980, Changes in the membrane microviscosity of mouse red blood cells infected with Plasmodium berghei detected using n-(9-anthroloxy) fatty acid fluorescent probes, Parasitology 80:331–342.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, R. L., Morrisett, J. D., and Gotto, A. M., 1976, Lipoprotein structure and metabolism, Physiol Rev. 56:259–316.

    PubMed  CAS  Google Scholar 

  • Jett, M., Martin, S., and Schneider, I., 1989, Phosphoinositide hydrolysis in P. falciparum malaria, FASEB J. 3:A371.

    Google Scholar 

  • Joshi, P., and Gupta, C.M., 1988, Abnormal membrane organization in P. falciparum human erythrocytes, Br. J. Haematol. 68:255–259.

    Article  PubMed  CAS  Google Scholar 

  • Joshi, P., Alam, A., Chandra, R., Puri, S. K., and Gupta, C. M., 1986, Possible basis for membrane changes in nonparasitized erythrocytes of malaria-infected animals, Biochim. Biophys. Acta 862:220–222.

    Article  PubMed  CAS  Google Scholar 

  • Joshi, P., Dutta, G. P., and Gupta, C. M., 1987, An intracellular simian malarial parasite (Plasmodium knowlesi) induces stage-dependent alterations in membrane phospholipid organization of its host erythrocyte, Biochem. J. 246:103–108.

    PubMed  CAS  Google Scholar 

  • Kennedy, E. P., 1986, The biosynthesis of phospholipids, in Lipids and Membranes, Past, Present and Future (Op den Kamp et al., eds.), pp. 171–207, Elsevier, Amsterdam.

    Google Scholar 

  • Koppaka, V., Sharma, R., and Lala, A. K., 1989, Fluorescence studies on erythrocyte membrane isolated from Plasmodium berghei-infected mice, Mol. Cell Biochem. 91:167–172.

    Article  PubMed  CAS  Google Scholar 

  • Krugliak, M., Waldman, Z., and Ginsburg, H., 1987, Gentamicin and amikacin repress the growth of Plasmodium falciparum in culture, probably by inhibiting a parasite acid phospholipase, Life Sci. 40:1253–1257.

    Article  PubMed  CAS  Google Scholar 

  • Krungkrai, J., and Yuthavong, Y., 1983, Enhanced Ca2+ uptake by mouse erythrocytes in malarial (Plasmodium berghei) infection, Mol. Biochem. Parasitol. 7:227–235.

    Article  PubMed  CAS  Google Scholar 

  • Kutner, S., Breuer, W. V., Ginnsburg, H., Aley, S. B., and Cabantchik, Z. I., 1985, Characterization of permeation pathways in the plasma membrane of human erythrocytes infected with early stages of Plasmodium falciparum. Association with parasite development, J. Cell Physiol. 125:521–527.

    Article  PubMed  CAS  Google Scholar 

  • Lange, Y., and D’Alessandro, J. S., 1977, Characterization of mechanisms for transfer of cholesterol between human erythrocytes and plasma, Biochemistry 16:4339–4343.

    Article  PubMed  CAS  Google Scholar 

  • Lange, Y., Dolde, J., and Steck, T. L., 1981, The rate of transmembrane movement of cholesterol in the human erythrocyte, J. Biol. Chem. 256:5321–5323.

    PubMed  CAS  Google Scholar 

  • Lange, Y., Swaisgood, M. H., Ramos, B. V., and Steck, T. L., 1989, Plasma membranes contain half the phospholipid and 90% of the cholesterol and sphingomyelin in cultured human fibroblasts, J. Biol. Chem. 264:3786–3793.

    PubMed  CAS  Google Scholar 

  • Langreth, S. G., Jensen, J. B., Reese, R. T., and Trager, W., 1978, Fine structure of human malaria in vitro, J. Protozol. 25:443–452.

    CAS  Google Scholar 

  • Laser, H., Klein, R. A., Kemp, P., Lander, D., and Miller, N. G. A., 1975, Changes in the neutral lipid content of erythrocytes parasitized by Plasmodium knowlesi, Proc. Brit. Soc. Parasitol. 71:5–7.

    Google Scholar 

  • Leida, M. N., Mahoney, J. R., and Eaton, J. W., 1981, Intraerythrocytic calcium metabolism, Biochem. Biophys. Res. Commun. 103:402–406.

    Article  PubMed  CAS  Google Scholar 

  • Levander, O. A., Ager, A., Morris, V., and May, R., 1989, Menhaden-fish oil in a vitamin E-deficient diet: Protection against chloroquine-resistant malaria in mice, Am. J. Clin. Nutr. 50:1237–1239.

    PubMed  CAS  Google Scholar 

  • Levander, O. A., Ager, A., Morris, V., and May, R., 1990, Plasmodium yoelii: Comparative antimalarial activities of dietary fish oils and fish oil concentrates in vitamin E-deficient mice, Exp. Parasitol. 70:323–329.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, D. V., and Thompson, G. A., 1984, Retailored lipid molecular species: A tactical mechanism for modulating membrane properties, Trends Biochem. Sci. 9:442–445.

    Article  CAS  Google Scholar 

  • Maguire, P. A., and Sherman, I. W. S., 1990, Phospholipid composition, cholesterol content and cholesterol exchange in Plasmodium falciparum-intected red cells, Mol. Biochem. Parasitol. 38:105–112.

    Article  PubMed  CAS  Google Scholar 

  • Majumdar, R. S., Chandanani, R. E., Ganduli, N. K., Chakarvarti, R. N., and Mahajan, R. C., 1981, Red cell and plasma lipids in monkeys infected with Plasmodium knowlesi, Ind. J. Med. Res. 73:50–54.

    Google Scholar 

  • Maurois, P., Vernes, A., Charet, P., Nouvelot, A., Becquet, R., and Giard, R., 1979, Changes in serum lipoproteins during malaria therapy with Plasmodium vivax, Ann. Trop. Med. Parasitol. 73:491–493.

    PubMed  CAS  Google Scholar 

  • Maurois, P., Charet, P., Nouvelot, A., Fruchart, J. C., Vernes, A., and Biguet, J., 1980, Kinetic study of serum lipoproteins, total cholesterol and triacylglycerides in various models of experimental rodent malaria, Ann. Trop. Med. Parasitol. 74:17–28.

    PubMed  CAS  Google Scholar 

  • Maurois, P., Charet, P., Fournet, B., and Fruchart, J. C., 1981, Metabolism of lipoproteins in rodent malaria: Relationship between lipolysis, steatosis and increased biosynthesis of VLDL, Ann. Parasitol. (Paris) 56:9–19.

    CAS  Google Scholar 

  • Maurois, P., Pessah, M., Briche, I., and Alcindor, L. G., 1985, Alterations of lecithin-cholesterol acyltransferase activity during Plasmodium chabaudi rodent malaria, Biochimie 67:227–239.

    Article  PubMed  CAS  Google Scholar 

  • McClean, S., Kabat, A., Sampugna, J., Purdy, W. C., and McCormick, G., 1976a, Analysis of the effect of malaria on lipid composition of Rhesus plasma, Anal. Chim. Acta 86:255–261.

    Article  PubMed  CAS  Google Scholar 

  • McClean, S., Purdy, W. C., Kabat, A., Sampugna, J., DeZeeuw, R., and McCormick, G., 1976b, Analysis of the phospholipid composition of Plasmodium knowlesi and Rhesus erythrocyte membranes, Anal. Chim. Acta 82:175–185.

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen, R. B., Kamber, M., Wadwa, K. S., Lin, P. S., and Schmidt-Ullrich, R., 1988, The role of lipids in Plasmodium falciparum invasion of erythrocytes: A coordinated biochemical and microscopic analysis, Proc. Natl. Acad. Sci. USA 85:5956–5960.

    Article  PubMed  CAS  Google Scholar 

  • Miller, L. H., 1989, Malaria. Binding of infected red cells, Nature 341:18.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, G. H., and Bannister, L. H., 1988, Malarial parasite invasion. Interaction with red cell membrane, CRC Crit. Rev. Oncol./Haematol. 8:255–310.

    Article  Google Scholar 

  • Moll, G. N., Vial, H. J., Ancelin, M. L., Op den Kamp, J. A. F., Roelofsen, B., and Van Deenen, L. L., 1988, Phospholipid uptake by Plasmodium knowlesi infected erythrocytes, FEBS Lett. 232:341–346.

    Article  PubMed  CAS  Google Scholar 

  • Moll, G. N., Vial, H. J., Bevers, E. M., Ancelin, M. L., Roelofsen, B., Comfurius, P., Slotboom, A. J., Zwaal, R. F. A., Op den Kamp, J. A. F., and Van Deenen, L. L., 1990a, Phospholipid asymmetry in the plasma membrane of malaria infected erythrocytes, Biochem. Cell Biol. 68:579–585.

    Article  PubMed  CAS  Google Scholar 

  • Moll, G. N., Vial, H. J., Ancelin, M. L., Op den Kamp, J. A. F., Roelofsen, B., Slotboom, A. J., and Van Deenen, L. L. M., 1990b, Selective elimination of malaria-infected erythrocytes by a modified phospholipase A2, Biochim. Biophys. Acta 1024:189–192.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, G. J., 1972, Lipid composition and metabolism of erythrocytes, in Blood Lipids and Lipoproteins (G. J., Nelson, ed.), pp. 317–386, John Wiley and Sons, New York.

    Google Scholar 

  • Nishizuka, Y., 1988, The molecular heterogeneity of protein kinase C and its implication for cellular regulation, Nature 234:661–665.

    Article  Google Scholar 

  • Ononghbu, I. C., and Onyeneke, E. C., 1983, Plasma lipid changes in human malaria, Tropenmed. Parasit. 34:193–196.

    Google Scholar 

  • Op den Kamp, J., 1979, Lipid asymmetry in membranes, Annu. Rev. Biochem. 48:47–71.

    Article  PubMed  CAS  Google Scholar 

  • Pelech, S. L., and Vance, D. E., 1989, Signal transduction via phosphatidylcholine cycles, Trends Biochem. Sci. 14:28–30.

    Article  CAS  Google Scholar 

  • Raetz, C. R. H., and Dowhan, W., 1990, Biosynthesis and function of phospholipids in Escherichia coli, J. Biol. Chem. 265:1235–1238.

    PubMed  CAS  Google Scholar 

  • Rock, R. C., 1971a, Incorporation of 14C-labelled fatty acids into lipids of rhesus erythrocytes and Plasmodium knowlesi in vitro, Comp. Biochem. Physiol. 40B:893–906.

    Google Scholar 

  • Rock, R. C., 1971b, Incorporation of 14C-labelled non-lipid precursors into lipids of Plasmodium knowlesi in vitro, Comp. Biochem. Physiol. 40B:657–669.

    Google Scholar 

  • Rock, R. C., Standefer, J., and Little, W., 1971a, Incorporation of 32P-orthophosphate into membrane phospholipids of Plasmodium knowlesi and host erythrocytes of Macaca mulata, Comp. Biochem. Physiol. 40B:543–561.

    Google Scholar 

  • Rock, R. C., Standefer, J. C., Cook, R. T., Little, W., and Sprintz, H., 1971b, Lipid composition of Plasmodium knowlesi membranes: Comparison of parasites and microsomal subfractions with host rhesus erythrocyte membranes, Comp. Biochem. Physiol. 38B:425–437.

    Google Scholar 

  • Rodriguez, M. H., and Jungery, M., 1986, A protein on Plasmodium falciparum-infected erythrocytes functions as a transferrin receptor, Nature 324:388–391.

    Article  PubMed  CAS  Google Scholar 

  • Sanghera, J. S., and Vance, D. E., 1989, CTP:phosphocholine cytidylyltransferase is a substrate for cAMP-dependent protein kinase in vitro, J. Biol. Chem. 264:1215–1223.

    PubMed  CAS  Google Scholar 

  • Schauer, R., Wember, M., and Howard, R. J., 1984, Malaria parasites do not contain or synthesize sialic acids, Hoppe Seylers Z. Physiol. Chem. 365:185–194.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, R. S., Chiu, D., and Lubin, B., 1985a, Plasma membrane phospholipid organization in human erythrocytes, Curr. Top. Hematol. 5:63–112.

    PubMed  CAS  Google Scholar 

  • Schwartz, R. S., Tanaka, Y., Fidler, I. J., Chiu, D. T., Lubin, B., and Schroit, A. J., 1985b, Increased adherence of sickled and phosphatidylserine-enriched human erythrocytes of cultured human peripheral blood monocytes, J. Clin. Invest. 75:1965–1972.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, R. S., Olson, J. A., Raventos-Suarez, C., Yee, M., Heath, R. H., Lubin, B., and Nagel, R. L., 1987, Altered plasma membrane phospholipid organization in Plasmodium falciparum-infected human erythrocytes, Blood 69:401–407.

    PubMed  CAS  Google Scholar 

  • Seed, T. M., and Kreier, J. P., 1972, Plasmodium gallinaceum: Erythrocyte membrane alteration and associated plasma changes induced by experimental infection, Proc. Helminthol. Soc. 39:387–411.

    Google Scholar 

  • Sherman, I. W., 1979, Biochemistry of Plasmodium (malarial parasites), Microbiol. Rev. 43:453–495.

    PubMed  CAS  Google Scholar 

  • Sherman, I. W., 1984, Metabolism, in Antimalarial Drugs, vol. I. (W. Peters and W. H. Richards, eds.), pp. 31–71, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Sherman, I. W., 1988, Mechanisms of molecular trafficking in malaria, Parasitology 96:857–881.

    Article  Google Scholar 

  • Sherman, I. W., and Greenan, R. T., 1984, Altered red cell membrane fluidity during schizogonic development of malarial parasites (Plasmodium falciparum and P. lophurae), Trans. Roy. Soc. Trop. Hyg. 78:641–644.

    Article  CAS  Google Scholar 

  • Sherwood, J. A., Spitalnik, S. L., Aley, S. B., Quakyi, I. A., and Howard, R. J., 1986, Plasmodium falciparum and P. knowlesi: Initial identification and characterization of malaria synthesized glycolipids, Exp. Parasitol. 62:127–141.

    Article  PubMed  CAS  Google Scholar 

  • Simoes, A. P., Moll, G. N., Vial, H. J., Beaumelle, B., Roelofsen, B., and Op Den Kamp, J., 1990, Plasmodium knowlesi induces alterations in phosphatidylcholine and phosphatidylethanolamine molecular species composition of parasitized monkey erythrocytes, Biochim. Biophys. Acta 1022:135–145.

    Article  PubMed  CAS  Google Scholar 

  • Skou, J. C., 1988, Overview: The Na, K-pump, Methods Enzymol. 156:1–25.

    Article  PubMed  CAS  Google Scholar 

  • Slomiany, B. L., Murty, L. N., Liau, Y. H., and Slomiany, A., 1987, Animal glycoglycerolipids, Prog. Lipid Res. 26:29–51.

    Article  PubMed  CAS  Google Scholar 

  • Spector, A. A., and Yorek, M. A., 1986, Membrane lipid composition and cellular function, J. Lipid Res. 26:1013–1025.

    Google Scholar 

  • Stocker, R., Cowden, W. B., Tellam, R. L., Weidemann, M. J., and Hunt, N. H., 1987, Lipids from Plasmodium vinckei-infected erythrocytes and their susceptibility to oxidative damage, Lipids 22:51–57.

    Article  PubMed  CAS  Google Scholar 

  • Stremmel, W., and Berk, P. D., 1986, Hepatocellular influx of [14C]oleate reflects membrane transport rather than intracellular metabolism or binding, Proc. Natl. Acad. Sci. USA 83:3086–3090.

    Article  PubMed  CAS  Google Scholar 

  • Stubbs, C. D., and Smith, A. D., 1984, The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function, Biochim. Biophys. Acta 779:89–137.

    Article  PubMed  CAS  Google Scholar 

  • Tanabe, K., Mikkelsen, R. B., and Wallach, D. F. H., 1982, Calcium transport of Plasmodium chabaudi-infected erythrocytes, J. Cell Biol. 93:680–684.

    Article  PubMed  CAS  Google Scholar 

  • Taraschi, T. F., Parashar, A., Hooks, M., and Rubin, H., 1986, Perturbation of red cell membrane structure during intracellular maturation of Plasmodium falciparum, Science 232:102–104.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, D. W., Para, M., and Stearns, M. E., 1987, Plasmodium falciparum: Fine structural changes in the cytoskeletons of infected erythrocytes, Exp. Parasitol. 64:178–176.

    Article  PubMed  CAS  Google Scholar 

  • Tilley, L., Cribier, S., Roelofsen, B., Op den Kamp, J. A. F., and Van Deenen, L. L. M., 1986, ATP-dependent translocation of amino phospholipids across the human erythrocyte membrane, FEBS Lett. 194:21–27.

    Article  PubMed  CAS  Google Scholar 

  • Trager, W., and Gill, G. S., 1989, Plasmodium falciparum gametocyte formation in vitro: Its stimulation by phorbol diesters and by 8-bromo cyclic adenosine monophosphate, J. Protozool. 36:451–454.

    PubMed  CAS  Google Scholar 

  • Trigg, P. I., 1968, Sterol metabolism of Plasmodium knowlesi in vitro, Ann. Trop. Med. Parasitol. 62:481–487.

    PubMed  CAS  Google Scholar 

  • Vance, D. E., and Pelech, S. L., 1984, Enzyme translocation in the regulation of phosphatidylcholine biosynthesis, Trends Biochem. Sci. 9:17–20.

    Article  CAS  Google Scholar 

  • Vance, D. E., and Ridgway, D., 1988, The methylation of phosphatidylethanolamine, Prog. Lipid Res. 27:61–79.

    Article  PubMed  CAS  Google Scholar 

  • Van Deenen, L. L. M., and De Gier, J., 1975, Lipids of the red cell membrane, in The Red Blood Cell (G. Surgenor, ed.), pp. 147–211, Academic Press, New York.

    Google Scholar 

  • Van Der Schaft, P. H., Beaumelle, B., Vial, H., Roelofsen, B., Op Den Kamp, J. A. F., and Van Deenen, L. L. M., 1987, Phospholipid organization in monkey erythrocytes upon Plasmodium knowlesi infection, Biochim. Biophys, Acta 901:1–14.

    Article  Google Scholar 

  • Van der Wiele, F., Atsma, W, Roelofsen, B., Van Linde, M., Van Binsbergen, J., Radvanyi, F., Raykova, D., Slotboom, A. J., and De Haas, G. H., 1988, Site-specific epsilon-NH2 monoacylation of pancreatic phospholipase A2.2. Transformation of soluble phospholipase A2 into a highly penetrating “membrane-bound” form, Biochemistry 27:1688–1694.

    Article  PubMed  Google Scholar 

  • Vial, H., Thuet, M., and Philippot, J., 1982a, Phospholipid biosynthesis in synchronous Plasmodium falciparum cultures, J. Protozool. 29:258–263.

    PubMed  CAS  Google Scholar 

  • Vial, H., Thuet, M., Broussal, J., and Philippot, J., 1982b, Phospholipid biosynthesis by Plasmodium knowlesi-infected erythrocytes: The incorporation of phospholipid precursors and the identification of previously undetected metabolic pathways, J. Parasitol. 68:379–391.

    Article  PubMed  CAS  Google Scholar 

  • Vial, H. J., Philippot, J. R., and Wallach, D. F. M., 1984a, A reevaluation of the status of cholesterol in erythrocytes infected by Plasmodium knowlesi and Plasmodium falciparum, Moi Biochem. Parasitai. 13:53–65.

    Article  CAS  Google Scholar 

  • Vial, H. J., Thuet, M. J., Ancelin, M. L., Philippot, J. R., and Chavis, C., 1984b, Phospholipid metabolism as a new target for malaria chemotherapy. Mechanism of action of D-2-amino-1-butanol, Biochem. Pharmacol. 33:2761–2770.

    Article  PubMed  CAS  Google Scholar 

  • Vial, H. J., Thuet, M. J., and Philippot, J. R., 1984c, Cholinephosphotransferase and eth-anolaminephosphotransferase activities in P. knowlesi infected erythrocytes. Their use as parasite specific markers, Biochim. Biophys. Acta 795:372–383.

    Article  PubMed  CAS  Google Scholar 

  • Vial, H. J., Ancelin, M. L., Thuet, M. J., and Philippot, J. R., 1989a, Phospholipid metabolism in Plasmodium knowlesi-infected erythrocytes: Guidelines for further studies on radioactive precursor incorporation, Parasitology 98:351–357.

    Article  PubMed  CAS  Google Scholar 

  • Vial, H. J., Van der Schaft, P., Beaumelle, B. D., Thuet, M. J., and Op Den Kamp, J., 1989b, Improved isolation of Plasmodium knowlesi-infected erythrocyte host-cell membrane on polycationic beads, Parasitai. Res. 75:419–421.

    Article  CAS  Google Scholar 

  • Vial, H. J., Ancelin, M. L., Philippot, J. R., and Thuet, M. J., 1990, Biosynthesis and dynamics of lipids in Plasmodium-infected mature mammalian erythrocytes, Blood Cells 16:531–555.

    PubMed  CAS  Google Scholar 

  • Watkins, J. D., and Kent, C., 1990, Phosphorylation of CTP:phosphocholine cytidylyltransferase in vivo. Lack of phorbol ester treatment in HeLa Cells, J. Biol. Chem. 265:2190–2197.

    PubMed  CAS  Google Scholar 

  • Weatherall, D. J., Abdalla, S., and Pippard, M. J., 1983, The anemia of Plasmodium falciparum malaria, in Malaria and the Red Cell (Ciba Foundation Symposium), pp. 74–94, Pitman, London.

    Google Scholar 

  • Williamsom, P., Antia, R., and Schlegel, R. A., 1987, Maintenance of membrane phospholipid asymmetry. Lipid-cytoskeletal interactions or lipid pump? FEBS Lett. 219:316–320.

    Article  Google Scholar 

  • Woodward, C. B., and Zwaal, R. F. A., 1972, The lytic behavior of pure phospholipases A2 and C towards osmotically swollen erythrocytes and resealed ghosts, Biochim. Biophys. Acta 274:272–278.

    Article  PubMed  CAS  Google Scholar 

  • Wunderlich, F., Helwig, M., Schillinger, G., Vial, H., Philippot, J., and Speth, V., 1987, Isolation and characterization of parasites and host cell ghosts from erythrocytes infected with Plasmodium chaubaudi, Mol. Biochem. Parasitai. 23:103–115.

    Article  CAS  Google Scholar 

  • Yeagle, P. L., 1985, Cholesterol and the cell membrane, Biochim. Biophys. Acta 822:267–287.

    Article  PubMed  CAS  Google Scholar 

  • Yeagle, P., 1987, The Membrane of the Cell, Academic Press, New York.

    Google Scholar 

  • Zachowski, A., Favre, E., Hervé, P., and Devaux, P., 1986, Outside-inside translocation of ami-nophospholipids in the human erythrocyte membrane is mediated by a specific enzyme, Biochemistry 25:2585–2590.

    Article  PubMed  CAS  Google Scholar 

  • Zolg, J. W., Macleod, A. J., Scaife, J. G., and Beaudoin, R. L., 1984, The accumulation of lactic acid and its influence on the growth of Plasmodium falciparum in synchronized cultures, In Vitro Cell. Develop. Biol. 20:205–215.

    CAS  Google Scholar 

  • Zwaal, R. F. A., and Bevers, E. M., 1986, Structural and functional aspects of the platelet plasma membrane, in Lipids and Membranes: Past, Present and Future (J. A. Op den Kamp, B. Roelofsen, and K. W. Wirtz, eds.), pp. 231–258, Elsevier, Amsterdam.

    Google Scholar 

  • Zwall, R. F. A., Bevers, E., Comfurius, P., Rosing, J., Tilly, R., and Verhallen, P., 1989, Loss of membrane phospholipid asymmetry during activation of blood platelets and sickled red cells; mechanisms and physiological significance, Mol. Cell. Biochem. 91:23–31.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vial, H.J., Ancelin, M.L. (1992). Malarial Lipids. In: Avila, J.L., Harris, J.R. (eds) Intracellular Parasites. Subcellular Biochemistry, vol 18. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1651-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1651-8_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1653-2

  • Online ISBN: 978-1-4899-1651-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics