Skip to main content

Building Classifier Ensembles for B-Cell Epitope Prediction

  • Protocol
  • First Online:
Immunoinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1184))

Abstract

Identification of B-cell epitopes in target antigens is a critical step in epitope-driven vaccine design, immunodiagnostic tests, and antibody production. B-cell epitopes could be linear, i.e., a contiguous amino acid sequence fragment of an antigen, or conformational, i.e., amino acids that are often not contiguous in the primary sequence but appear in close proximity within the folded 3D antigen structure. Numerous computational methods have been proposed for predicting both types of B-cell epitopes. However, the development of tools for reliably predicting B-cell epitopes remains a major challenge in immunoinformatics.

Classifier ensembles a promising approach for combining a set of classifiers such that the overall performance of the resulting ensemble is better than the predictive performance of the best individual classifier. In this chapter, we show how to build a classifier ensemble for improved prediction of linear B-cell epitopes. The method can be easily adapted to build classifier ensembles for predicting conformational epitopes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbas AK, Lichtman AH, Pillai S (2007) Cellular and molecular immunology, 6th edn. Saunders Elsevier, Philadelphia

    Google Scholar 

  2. Reineke U, Schutkowski M (2009) Epitope mapping protocols, vol 524, 2nd edn, Methods in molecular biology. Humana Press, New York

    Google Scholar 

  3. Ansari HR, Raghava GP (2013) In silico models for B-cell epitope recognition and signaling. Methods Mol Biol 993:129–138

    Article  CAS  PubMed  Google Scholar 

  4. El-Manzalawy Y, Honavar V (2010) Recent advances in B-cell epitope prediction methods. Immunome Res 6(Suppl 2):S2

    Article  PubMed Central  PubMed  Google Scholar 

  5. Yao B, Zheng D, Liang S et al (2013) Conformational B-cell epitope prediction on antigen protein structures: a review of current algorithms and comparison with common binding site prediction methods. PLoS One 8(4):e62249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Emini EA, Hughes JV, Perlow D et al (1985) Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. J Virol 55(3):836–839

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Karplus P, Schulz G (1985) Prediction of chain flexibility in proteins. Naturwissenschaften 72(4):212–213

    Article  CAS  Google Scholar 

  8. Parker JM, Guo D, Hodges RS (1986) New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. Biochemistry 25(19):5425–5432

    Article  CAS  PubMed  Google Scholar 

  9. Pellequer J-L, Westhof E, Van Regenmortel MH (1993) Correlation between the location of antigenic sites and the prediction of turns in proteins. Immunol Lett 36(1):83–99

    Article  CAS  PubMed  Google Scholar 

  10. El-Manzalawy Y, Dobbs D, Honavar V (2008) Predicting linear B-cell epitopes using string kernels. J Mol Recognit 21(4):243–255. doi:10.1002/jmr.893

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. El-Manzalawy Y, Dobbs D (2008) Honavar V (3400678) Predicting flexible length linear B-cell epitopes. Comput Syst Bioinformatics, In, pp 121–132

    Google Scholar 

  12. Larsen JE, Lund O, Nielsen M (2006) Improved method for predicting linear B-cell epitopes. Immunome Res 2:2. doi:10.1186/1745-7580-2-2

    Article  PubMed Central  PubMed  Google Scholar 

  13. Saha S, Raghava GP (2006) Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins 65(1):40–48

    Article  CAS  PubMed  Google Scholar 

  14. Sweredoski MJ, Baldi P (2009) COBEpro: a novel system for predicting continuous B-cell epitopes. Protein Eng Des Sel 22(3):113–120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Haste Andersen P, Nielsen M, Lund O (2006) Prediction of residues in discontinuous B-cell epitopes using protein 3D structures. Protein Sci 15(11):2558–2567

    Article  PubMed Central  PubMed  Google Scholar 

  16. Kringelum JV, Lundegaard C, Lund O et al (2012) Reliable B cell epitope predictions: impacts of method development and improved benchmarking. PLoS Comput Biol 8(12):e1002829

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Ponomarenko J, Bui H-H, Li W et al (2008) ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics 9(1):514

    Article  PubMed Central  PubMed  Google Scholar 

  18. Sun J, Wu D, Xu T et al (2009) SEPPA: a computational server for spatial epitope prediction of protein antigens. Nucleic Acids Res 37(suppl 2):W612–W616

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Sweredoski MJ, Baldi P (2008) PEPITO: improved discontinuous B-cell epitope prediction using multiple distance thresholds and half sphere exposure. Bioinformatics 24(12):1459–1460

    Article  CAS  PubMed  Google Scholar 

  20. Resende DM, Rezende AM, Oliveira NJ et al (2012) An assessment on epitope prediction methods for protozoa genomes. BMC Bioinformatics 13:309

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Wozniak M (2013) Hybrid Classifiers: Methods of Data, Knowledge, and Classifier Combination, vol 519. Studies in Computational Intelligence, Springer Heidelberg London

    Google Scholar 

  22. El-Manzalawy Y (2010) Honavar V A framework for developing epitope prediction tools. In: Proceedings of the First ACM International conference on bioinformatics and computational biology. ACM, pp 660–662

    Google Scholar 

  23. Saha S, Bhasin M, Raghava GP (2005) Bcipep: a database of B-cell epitopes. BMC Genomics 6:79

    Article  PubMed Central  PubMed  Google Scholar 

  24. Frank E, Hall M, Holmes G, Kirkby R, Pfahringer B, Witten IH, Trigg L (2005) Weka: A machine learning workbench for data mining. In Data Mining and Knowledge Discovery Handbook (pp 1305–1314) Springer US

    Google Scholar 

  25. Jungermann F Information extraction with rapidminer. In: Proceedings of the GSCL Symposium’Sprachtechnologie und eHumanities, 2009. pp 50–61

    Google Scholar 

  26. Berthold MR, Cebron N, Dill F et al (2008) KNIME: The Konstanz information miner. Data Analysis, Machine Learning and Applications. Springer Berlin Heidelberg, In, pp 319–326

    Google Scholar 

  27. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  28. Chen J, Liu H, Yang J et al (2007) Prediction of linear B-cell epitopes using amino acid pair antigenicity scale. Amino Acids 33(3):423–428

    Article  CAS  PubMed  Google Scholar 

  29. Wolpert DH (1992) Stacked generalization. Neural Netw 5(2):241–259

    Article  Google Scholar 

  30. Cai C, Han L, Ji ZL et al (2003) SVM-Prot: web-based support vector machine software for functional classification of a protein from its primary sequence. Nucleic Acids Res 31(13):3692–3697

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Bernard S, Heutte L, Adam S (2009) Towards a better understanding of random forests through the study of strength and correlation. Emerging Intelligent Computing Technology and Applications. With Aspects of Artificial Intelligence. Springer, In, pp 536–545

    Google Scholar 

  32. Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140

    Google Scholar 

  34. Freund Y (1996) Schapire RE Experiments with a new boosting algorithm. ICML, In, pp 148–156

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by a grant from the National Institutes of Health (NIH GM066387) and by Edward Frymoyer Chair of Information Sciences and Technology at Pennsylvania State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasant Honavar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

EL-Manzalawy, Y., Honavar, V. (2014). Building Classifier Ensembles for B-Cell Epitope Prediction. In: De, R., Tomar, N. (eds) Immunoinformatics. Methods in Molecular Biology, vol 1184. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1115-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1115-8_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1114-1

  • Online ISBN: 978-1-4939-1115-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics