Skip to main content

In Situ Hybridization (Both Radioactive and Nonradioactive) and Spatiotemporal Gene Expression Analysis

  • Protocol
  • First Online:
Mouse Genetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1194))

Abstract

Section in situ hybridization using either radioactive or nonradioactive labeled cDNA probes is an invaluable technique that enables the investigator to detect and localize mRNA expression within tissue sections and cells. Here, we describe the labeling of 35S-UTP radioactive and nonradioactive digoxigenin probes, preparation of tissue sections, hybridization, and washing of non-hybridized probes, followed by the detection of radioactive signals via dipping in nuclear emulsion and the immunohistochemical and subsequent colorimetric detection of nonradioactive signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gall JG, Pardue ML (1969) Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc Natl Acad Sci U S A 63(2):378–383

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Angerer LM, Angerer RC (1981) Detection of poly A + RNA in sea urchin eggs and embryos by quantitative in situ hybridization. Nucleic Acids Res 9(12):2819–2840

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Wilcox JN (1993) Fundamental principles of in situ hybridization. J Histochem Cytochem 41(12):1725–1733

    Article  CAS  PubMed  Google Scholar 

  4. Conway SJ (1996) In situ hybridization of cells and tissue sections. Methods Mol Med 6:193–206

    CAS  PubMed  Google Scholar 

  5. Micales BK, Lyons GE (2001) In situ hybridization: use of 35S-labeled probes on paraffin tissue sections. Methods 23(4):313–323

    Article  CAS  PubMed  Google Scholar 

  6. Liu CQ, Shan L, Balesar R, Luchetti S, Van Heerikhuize JJ, Luo JH, Swaab DF, Bao AM (2010) A quantitative in situ hybridization protocol for formalin-fixed paraffin-embedded archival post-mortem human brain tissue. Methods 52(4):359–366

    Article  CAS  PubMed  Google Scholar 

  7. Winzer-Serhan UH, Broide RS, Chen Y, Leslie FM (1999) Highly sensitive radioactive in situ hybridization using full length hydrolyzed riboprobes to detect alpha 2 adrenoceptor subtype mRNAs in adult and developing rat brain. Brain Res Brain Res Protoc 3(3):229–241

    Article  CAS  PubMed  Google Scholar 

  8. Nuovo GJ (2010) In situ detection of microRNAs in paraffin embedded, formalin fixed tissues and the co-localization of their putative targets. Methods 52(4):307–315

    Article  CAS  PubMed  Google Scholar 

  9. Cloëz-Tayarani I, Fillion G (1997) The in situ hybridization and immunocytochemistry techniques for characterization of cells expressing specific mRNAs in paraffin-embedded brains. Brain Res Brain Res Protoc 1(2):195–202

    Article  PubMed  Google Scholar 

  10. Toledano H, D’Alterio C, Loza-Coll M, Jones DL (2012) Dual fluorescence detection of protein and RNA in Drosophila tissues. Nat Protoc 7(10):1808–1817

    Article  CAS  PubMed  Google Scholar 

  11. Koushik SV, Bundy J, Conway SJ (1999) Sodium-calcium exchanger is initially expressed in a heart-restricted pattern within the early mouse embryo. Mech Dev 88(1):119–122

    Article  CAS  PubMed  Google Scholar 

  12. Snider P, Hinton RB, Moreno-Rodriguez RA, Wang J, Rogers R, Lindsley A, Li F, Ingram DA, Menick D, Field L, Firulli A, Molkentin JD, Markwald R, Conway SJ (2008) Periostin is required for maturation and extracellular matrix stabilization of noncardiomyocyte lineages of the heart. Circ Res 102(7):752–760

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by American Heart Association 12PRE9430047 Predoctoral Fellowship (OS); as well as the Riley Children’s Foundation, the Indiana University Department of Pediatrics (Neonatal–Perinatal Medicine) and NIH HL60714 grant (SJC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon J. Conway .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Simmons, O., Bolanis, E.M., Wang, J., Conway, S.J. (2014). In Situ Hybridization (Both Radioactive and Nonradioactive) and Spatiotemporal Gene Expression Analysis. In: Singh, S., Coppola, V. (eds) Mouse Genetics. Methods in Molecular Biology, vol 1194. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1215-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1215-5_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1214-8

  • Online ISBN: 978-1-4939-1215-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics