Skip to main content

Peptide Toxicity Prediction

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1268))

Abstract

Last decade has witnessed the revival of interest in peptides as potential therapeutics candidates. However, one of the bottlenecks in the success of therapeutic peptides in clinics is their toxicity towards eukaryotic cells. Therefore, considerable efforts have been made over the years both in wet and dry lab to overcome this limitation. With the advances in peptide synthesis, now it is possible to fine-tune the physicochemical properties of peptides by incorporating several chemical modifications and thus to optimize the peptide functionality in order to minimize the toxicity without compromising their therapeutic activity. Also various in silico tools for peptide toxicity prediction and peptide designing have been developed, which facilitates designing of therapeutic peptides with desired toxicity. In this chapter, we have discussed both wet lab and dry lab approaches used to optimize peptide toxicity. More emphasis has been given to describe the in silico method, ToxinPred, to predict the toxicity of peptide and about how to design a peptide or protein with desired toxicity by mutating minimum number of amino acids.

This is a preview of subscription content, log in via an institution.

Buying options

eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Thundimadathil J (2012) Cancer treatment using peptides: current therapies and future prospects. J Amino Acids 2012:967347

    Article  PubMed Central  PubMed  Google Scholar 

  2. Saladin PM, Zhang BD, Reichert JM (2009) Current trends in the clinical development of peptide therapeutics. IDrugs 12:779–784

    CAS  PubMed  Google Scholar 

  3. Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M (2010) Synthetic therapeutic peptides: science and market. Drug Discov Today 15:40–56

    Article  CAS  PubMed  Google Scholar 

  4. Craik DJ, Fairlie DP, Liras S, Price D (2013) The future of peptide-based drugs. Chem Biol Drug Des 81:136–147

    Article  CAS  PubMed  Google Scholar 

  5. Descotes J (2006) Methods of evaluating immunotoxicity. Expert Opin Drug Metab Toxicol 2:249–259

    Article  CAS  PubMed  Google Scholar 

  6. Dhanda SK, Gupta S, Vir P, Raghava GPS (2013) Prediction of IL4 inducing peptides. Clin Dev Immunol. doi:10.1155/2013/263952

    PubMed Central  PubMed  Google Scholar 

  7. Nielsen M, Lund O, Buus S, Lundegaard C (2010) MHC class II epitope predictive algorithms. Immunology 130:319–328

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Singh H, Raghava GP (2001) ProPred: prediction of HLA-DR binding sites. Bioinformatics 17:1236–1237

    Article  CAS  PubMed  Google Scholar 

  9. Gupta S, Ansari HR, Gautam A, Raghava GP (2013) Identification of B-cell epitopes in an antigen for inducing specific class of antibodies. Biol Direct 8:27

    Article  PubMed Central  PubMed  Google Scholar 

  10. Dhanda SK, Vir P, Raghava GPS (2013) Designing of interferon-gamma inducing MHC class-II binders. Biol Direct 8:30

    Article  PubMed Central  PubMed  Google Scholar 

  11. Goodwin D, Simerska P, Toth I (2012) Peptides as therapeutics with enhanced bioactivity. Curr Med Chem 19:4451–4461

    Article  CAS  PubMed  Google Scholar 

  12. Uchide N, Ohyama K, Bessho T, Toyoda H (2009) Lactate dehydrogenase leakage as a marker for apoptotic cell degradation induced by influenza virus infection in human fetal membrane cells. Intervirology 52:164–173

    Article  CAS  PubMed  Google Scholar 

  13. Fotakis G, Timbrell JA (2006) In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol Lett 160:171–177

    Article  CAS  PubMed  Google Scholar 

  14. Cree IA, Andreotti PE (1997) Measurement of cytotoxicity by ATP-based luminescence assay in primary cell cultures and cell lines. Toxicol In Vitro 11:553–556

    Article  CAS  PubMed  Google Scholar 

  15. Kalcheim C, Goldstein RS (1991) Segmentation of sensory and sympathetic ganglia: interactions between neural crest and somite cells. J Physiol Paris 85:110–116

    CAS  PubMed  Google Scholar 

  16. Kondejewski LH, Jelokhani-Niaraki M, Farmer SW, Lix B, Kay CM, Sykes BD, Hancock RE, Hodges RS (1999) Dissociation of antimicrobial and hemolytic activities in cyclic peptide diastereomers by systematic alterations in amphipathicity. J Biol Chem 274:13181–13192

    Article  CAS  PubMed  Google Scholar 

  17. Nell MJ, Tjabringa GS, Wafelman AR, Verrijk R, Hiemstra PS, Drijfhout JW, Grote JJ (2006) Development of novel LL-37 derived antimicrobial peptides with LPS and LTA neutralizing and antimicrobial activities for therapeutic application. Peptides 27:649–660

    Article  CAS  PubMed  Google Scholar 

  18. Albada HB, Prochnow P, Bobersky S, Langklotz S, Bandow JE, Metzler-Nolte N (2013) Short antibacterial peptides with significantly reduced hemolytic activity can be identified by a systematic L-to-D exchange scan of their amino acid residues. ACS Comb Sci 15:585–592

    Article  CAS  PubMed  Google Scholar 

  19. Veronese FM, Harris JM (2002) Introduction and overview of peptide and protein pegylation. Adv Drug Deliv Rev 54:453–456

    Article  CAS  PubMed  Google Scholar 

  20. Fox MA, Thwaite JE, Ulaeto DO, Atkins TP, Atkins HS (2012) Design and characterization of novel hybrid antimicrobial peptides based on cecropin A, LL-37 and magainin II. Peptides 33:197–205

    Article  CAS  PubMed  Google Scholar 

  21. Morris CJ, Beck K, Fox MA, Ulaeto D, Clark GC, Gumbleton M (2012) Pegylation of antimicrobial peptides maintains the active peptide conformation, model membrane interactions, and antimicrobial activity while improving lung tissue biocompatibility following airway delivery. Antimicrob Agents Chemother 56:3298–3308

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. He Q, Han W, He Q, Huo L, Zhang J, Lin Y, Chen P, Liang S (2010) ATDB 2.0: a database integrated toxin-ion channel interaction data. Toxicon. doi:10.1016/j.toxicon.2010.05.013

    Google Scholar 

  23. Chen L, Xiong Z, Sun L, Yang J, Jin Q (2012) VFDB 2012 update: toward the genetic diversity and molecular evolution of bacterial virulence factors. Nucleic Acids Res 40:D641–D645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Chakraborty A, Ghosh S, Chowdhary G, Maulik U, Chakrabarti S (2012) DBETH: a database of bacterial exotoxins for human. Nucleic Acids Res 40:D615–D620

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Kaas Q, Yu R, Jin A-H, Dutertre S, Craik DJ (2012) ConoServer: updated content, knowledge, and discovery tools in the conopeptide database. Nucleic Acids Res 40:D325–D330

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Apweiler R, Bairoch A, Wu CH et al (2004) UniProt: the Universal Protein knowledgebase. Nucleic Acids Res 32:D115–D119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Naamati G, Askenazi M, Linial M (2009) ClanTox: a classifier of short animal toxins. Nucleic Acids Res 37:W363–W368

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Saha S, Raghava GPS (2007) BTXpred: prediction of bacterial toxins. In Silico Biol 7:405–412

    CAS  PubMed  Google Scholar 

  29. Saha S, Raghava GPS (2007) Prediction of neurotoxins based on their function and source. In Silico Biol 7:369–387

    CAS  PubMed  Google Scholar 

  30. Saha S, Raghava GPS (2006) VICMpred: an SVM-based method for the prediction of functional proteins of Gram-negative bacteria using amino acid patterns and composition. Genomics Proteomics Bioinformatics 4:42–47

    Article  CAS  PubMed  Google Scholar 

  31. Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Raghava GPS (2013) In silico approach for predicting toxicity of peptides and proteins. PLoS One 8:e73957

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gajendra P. S. Raghava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., Raghava, G.P.S. (2015). Peptide Toxicity Prediction. In: Zhou, P., Huang, J. (eds) Computational Peptidology. Methods in Molecular Biology, vol 1268. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2285-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2285-7_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2284-0

  • Online ISBN: 978-1-4939-2285-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics