Skip to main content

Effects of Glucocorticoids in the Immune System

  • Chapter
Book cover Glucocorticoid Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 872))

Abstract

Glucocorticoids (GCs) are steroid hormones with widespread effects. They control intermediate metabolism by stimulating gluconeogenesis in the liver, mobilize amino acids from extra hepatic tissues, inhibit glucose uptake in muscle and adipose tissue, and stimulate fat breakdown in adipose tissue. They also mediate stress response. They exert potent immune-suppressive and anti-inflammatory effects particularly when administered pharmacologically. Understanding these diverse effects of glucocorticoids requires a detailed knowledge of their mode of action. Research over the years has uncovered several details on the molecular action of this hormone, especially in immune cells. In this chapter, we have summarized the latest findings on the action of glucocorticoids in immune cells with a view of identifying important control points that may be relevant in glucocorticoid therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grasso P, Gangolli S, Gaunt I. Essentials of pathology for toxicologist. Boca Raton: CRC; 2002. ISBN 978-0-415-25795-4.

    Google Scholar 

  2. Mayer G. Immunology: Innate (Non-Specific) Immunity (Chapter 1). In: Microbiology and Immunology On-line. University of South Carolina. 2009.

    Google Scholar 

  3. Janeway CPT, Walport M, Shlomchik M. Immunobiology. New York and London: Garland Science; 2001.

    Google Scholar 

  4. Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454(7203):428–35.

    CAS  PubMed  Google Scholar 

  5. Okin D, Medzhitov R. Evolution of inflammatory diseases. Curr Biol. 2012;22(17):R733–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Medzhitov R. Inflammation 2010: new adventures of an old flame. Cell. 2010;140(6):771–6.

    CAS  PubMed  Google Scholar 

  7. Baschant U, Tuckermann J. The role of the glucocorticoid receptor in inflammation and immunity. J Steroid Biochem Mol Biol. 2010;120(2–3):69–75.

    CAS  PubMed  Google Scholar 

  8. Chinenov Y, Rogatsky I. Glucocorticoids and the innate immune system: crosstalk with the toll-like receptor signaling network. Mol Cell Endocrinol. 2007;275(1–2):30–42.

    CAS  PubMed  Google Scholar 

  9. Hench P. Effects of cortisone in the rheumatic diseases. Lancet. 1950;2(6634):483–4.

    CAS  PubMed  Google Scholar 

  10. Hench PS, Kendall EC, Slocumb CH, Polley HF. The antirheumatic effects of cortisone and pituitary ACTH. Trans Stud Coll Physicians Phila. 1950;18(3):95–102.

    CAS  PubMed  Google Scholar 

  11. Hench PS, Kendall EC, Slocumb CH, Polley HF. Cortisone, its effects on rheumatoid arthritis, rheumatic fever, and certain other conditions. Merck Rep. 1950;59(4):9–14.

    CAS  PubMed  Google Scholar 

  12. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular biology of the cell. 4th ed. New York: Garland Science; 2002.

    Google Scholar 

  13. Gartner LP, Hiatt JL. Color textbook of histology. 3rd ed. Philadelphia: Elsevier; 2007.

    Google Scholar 

  14. Borregaard N. Neutrophils, from marrow to microbes. Immunity. 2010;33(5):657–70.

    CAS  PubMed  Google Scholar 

  15. Nathan C. Points of control in inflammation. Nature. 2002;420(6917):846–52.

    CAS  PubMed  Google Scholar 

  16. Kobayashi SD, Voyich JM, Burlak C, DeLeo FR. Neutrophils in the innate immune response. Arch Immunol Ther Exp (Warsz). 2005;53(6):505–17.

    CAS  Google Scholar 

  17. Hogan SP, Foster PS, Rothenberg ME. Experimental analysis of eosinophil-associated gastrointestinal diseases. Curr Opin Allergy Clin Immunol. 2002;2(3):239–48.

    PubMed  Google Scholar 

  18. Rothenberg ME, Hogan SP. The eosinophil. Annu Rev Immunol. 2006;24:147–74.

    CAS  PubMed  Google Scholar 

  19. Turner H, Kinet JP. Signalling through the high-affinity IgE receptor Fc epsilonRI. Nature. 1999;402(6760 Suppl):B24–30.

    CAS  PubMed  Google Scholar 

  20. Gilfillan AM, Rivera J. The tyrosine kinase network regulating mast cell activation. Immunol Rev. 2009;228(1):149–69.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Prussin C, Metcalfe DD. 4. IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immunol. 2003;111(2 Suppl):S486–94.

    CAS  PubMed  Google Scholar 

  22. Mills CD. M1 and M2 macrophages: oracles of health and disease. Crit Rev Immunol. 2012;32(6):463–88.

    CAS  PubMed  Google Scholar 

  23. Banchereau J, Briere F, Caux C, et al. Immunobiology of dendritic cells. Annu Rev Immunol. 2000;18:767–811.

    CAS  PubMed  Google Scholar 

  24. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392(6673):245–52.

    CAS  PubMed  Google Scholar 

  25. Kumar R, Thompson EB. Gene regulation by the glucocorticoid receptor: structure:function relationship. J Steroid Biochem Mol Biol. 2005;94(5):383–94.

    CAS  PubMed  Google Scholar 

  26. Grad I, Picard D. The glucocorticoid responses are shaped by molecular chaperones. Mol Cell Endocrinol. 2007;275(1–2):2–12.

    CAS  PubMed  Google Scholar 

  27. Biddie SC, John S, Sabo PJ, et al. Transcription factor AP1 potentiates chromatin accessibility and glucocorticoid receptor binding. Mol Cell. 2011;43(1):145–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Revollo JR, Cidlowski JA. Mechanisms generating diversity in glucocorticoid receptor signaling. Ann N Y Acad Sci. 2009;1179:167–78.

    CAS  PubMed  Google Scholar 

  29. Meijsing SH, Pufall MA, So AY, Bates DL, Chen L, Yamamoto KR. DNA binding site sequence directs glucocorticoid receptor structure and activity. Science. 2009;324(5925):407–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Lonard DM, Kumar R, O’Malley BW. Minireview: the SRC family of coactivators: an entree to understanding a subset of polygenic diseases? Mol Endocrinol. 2010;24(2):279–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Lonard DM, O’Malley BW. Nuclear receptor coregulators: judges, juries, and executioners of cellular regulation. Mol Cell. 2007;27(5):691–700.

    CAS  PubMed  Google Scholar 

  32. Heck S, Kullmann M, Gast A, et al. A distinct modulating domain in glucocorticoid receptor monomers in the repression of activity of the transcription factor AP-1. EMBO J. 1994;13(17):4087–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Surjit M, Ganti KP, Mukherji A, et al. Widespread negative response elements mediate direct repression by agonist-liganded glucocorticoid receptor. Cell. 2011;145(2):224–41.

    CAS  PubMed  Google Scholar 

  34. Hudson WH, Youn C, Ortlund EA. The structural basis of direct glucocorticoid-mediated transrepression. Nat Struct Mol Biol. 2013;20(1):53–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Kassel O, Herrlich P. Crosstalk between the glucocorticoid receptor and other transcription factors: molecular aspects. Mol Cell Endocrinol. 2007;275(1–2):13–29.

    CAS  PubMed  Google Scholar 

  36. Croxtall JD, Choudhury Q, Flower RJ. Glucocorticoids act within minutes to inhibit recruitment of signalling factors to activated EGF receptors through a receptor-dependent, transcription-independent mechanism. Br J Pharmacol. 2000;130(2):289–98.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Oppong E, Flink N, Cato AC. Molecular mechanisms of glucocorticoid action in mast cells. Mol Cell Endocrinol. 2013;380(1–2):119–26.

    CAS  PubMed  Google Scholar 

  38. Stahn C, Buttgereit F. Genomic and nongenomic effects of glucocorticoids. Nat Clin Pract Rheumatol. 2008;4(10):525–33.

    CAS  PubMed  Google Scholar 

  39. Gametchu B. Glucocorticoid receptor-like antigen in lymphoma cell membranes: correlation to cell lysis. Science. 1987;236(4800):456–61.

    CAS  PubMed  Google Scholar 

  40. Gametchu B, Watson CS, Pasko D. Size and steroid-binding characterization of membrane-associated glucocorticoid receptor in S-49 lymphoma cells. Steroids. 1991;56(8):402–10.

    CAS  PubMed  Google Scholar 

  41. Gametchu B, Watson CS, Shih CC, Dashew B. Studies on the arrangement of glucocorticoid receptors in the plasma membrane of S-49 lymphoma cells. Steroids. 1991;56(8):411–9.

    CAS  PubMed  Google Scholar 

  42. Gametchu B, Watson CS, Wu S. Use of receptor antibodies to demonstrate membrane glucocorticoid receptor in cells from human leukemic patients. FASEB J. 1993;7(13):1283–92.

    CAS  PubMed  Google Scholar 

  43. Powell CE, Watson CS, Gametchu B. Immunoaffinity isolation of native membrane glucocorticoid receptor from S-49++ lymphoma cells: biochemical characterization and interaction with Hsp 70 and Hsp 90. Endocrine. 1999;10(3):271–80.

    CAS  PubMed  Google Scholar 

  44. Gametchu B, Chen F, Sackey F, Powell C, Watson CS. Plasma membrane-resident glucocorticoid receptors in rodent lymphoma and human leukemia models. Steroids. 1999;64(1–2):107–19.

    CAS  PubMed  Google Scholar 

  45. Buttgereit F, Scheffold A. Rapid glucocorticoid effects on immune cells. Steroids. 2002;67(6):529–34.

    CAS  PubMed  Google Scholar 

  46. Scheffold A, Assenmacher M, Reiners-Schramm L, Lauster R, Radbruch A. High-sensitivity immunofluorescence for detection of the pro- and anti-inflammatory cytokines gamma interferon and interleukin-10 on the surface of cytokine-secreting cells. Nat Med. 2000;6(1):107–10.

    CAS  PubMed  Google Scholar 

  47. Bartholome B, Spies CM, Gaber T, et al. Membrane glucocorticoid receptors (mGCR) are expressed in normal human peripheral blood mononuclear cells and up-regulated after in vitro stimulation and in patients with rheumatoid arthritis. FASEB J. 2004;18(1):70–80.

    CAS  PubMed  Google Scholar 

  48. Spies CM, Bartholome B, Berki T, et al. Membrane glucocorticoid receptors (mGCR) on monocytes are up-regulated after vaccination. Rheumatology (Oxford). 2007;46(2):364–5.

    CAS  Google Scholar 

  49. Tryc AB, Spies CM, Schneider U, et al. Membrane glucocorticoid receptor expression on peripheral blood mononuclear cells in patients with ankylosing spondylitis. J Rheumatol. 2006;33(11):2249–53.

    PubMed  Google Scholar 

  50. Strehl C, Gaber T, Jakstadt M, et al. High-sensitivity immunofluorescence staining: a comparison of the liposome procedure and the FASER technique on mGR detection. J Fluoresc. 2013;23(3):509–18.

    CAS  PubMed  Google Scholar 

  51. Sekula-Neuner S, Maier J, Oppong E, Cato AC, Hirtz M, Fuchs H. Allergen arrays for antibody screening and immune cell activation profiling generated by parallel lipid dip-pen nanolithography. Small. 2012;8(4):585–91.

    CAS  PubMed  Google Scholar 

  52. Oppong E, Hedde PN, Sekula-Neuner S, et al. Localization and dynamics of glucocorticoid receptor at the plasma membrane of activated mast cells. Small. 2014;10(10):1991–8.

    CAS  PubMed  Google Scholar 

  53. Abraham SM, Lawrence T, Kleiman A, et al. Antiinflammatory effects of dexamethasone are partly dependent on induction of dual specificity phosphatase 1. J Exp Med. 2006;203(8):1883–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Abraham SM, Clark AR. Dual-specificity phosphatase 1: a critical regulator of innate immune responses. Biochem Soc Trans. 2006;34(Pt 6):1018–23.

    CAS  PubMed  Google Scholar 

  55. Nissen RM, Yamamoto KR. The glucocorticoid receptor inhibits NFkappaB by interfering with serine-2 phosphorylation of the RNA polymerase II carboxy-terminal domain. Genes Dev. 2000;14(18):2314–29.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Rogatsky I, Zarember KA, Yamamoto KR. Factor recruitment and TIF2/GRIP1 corepressor activity at a collagenase-3 response element that mediates regulation by phorbol esters and hormones. EMBO J. 2001;20(21):6071–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Rogatsky I, Luecke HF, Leitman DC, Yamamoto KR. Alternate surfaces of transcriptional coregulator GRIP1 function in different glucocorticoid receptor activation and repression contexts. Proc Natl Acad Sci U S A. 2002;99(26):16701–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Chopra AR, Louet JF, Saha P, et al. Absence of the SRC-2 coactivator results in a glycogenopathy resembling Von Gierke’s disease. Science. 2008;322(5906):1395–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Gehin M, Mark M, Dennefeld C, Dierich A, Gronemeyer H, Chambon P. The function of TIF2/GRIP1 in mouse reproduction is distinct from those of SRC-1 and p/CIP. Mol Cell Biol. 2002;22(16):5923–37.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Patchev AV, Fischer D, Wolf SS, et al. Insidious adrenocortical insufficiency underlies neuroendocrine dysregulation in TIF-2 deficient mice. FASEB J. 2007;21(1):231–8.

    CAS  PubMed  Google Scholar 

  61. Chinenov Y, Gupte R, Dobrovolna J, et al. Role of transcriptional coregulator GRIP1 in the anti-inflammatory actions of glucocorticoids. Proc Natl Acad Sci U S A. 2012;109(29):11776–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Tuckermann JP, Kleiman A, Moriggl R, et al. Macrophages and neutrophils are the targets for immune suppression by glucocorticoids in contact allergy. J Clin Invest. 2007;117(5):1381–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Matasic R, Dietz AB, Vuk-Pavlovic S. Dexamethasone inhibits dendritic cell maturation by redirecting differentiation of a subset of cells. J Leukoc Biol. 1999;66(6):909–14.

    CAS  PubMed  Google Scholar 

  64. Woltman AM, de Fijter JW, Kamerling SW, Paul LC, Daha MR, van Kooten C. The effect of calcineurin inhibitors and corticosteroids on the differentiation of human dendritic cells. Eur J Immunol. 2000;30(7):1807–12.

    CAS  PubMed  Google Scholar 

  65. Schwarz BA, Bhandoola A. Trafficking from the bone marrow to the thymus: a prerequisite for thymopoiesis. Immunol Rev. 2006;209:47–57.

    PubMed  Google Scholar 

  66. Broere F, Apasov SG, Sitkovsky MV, van Eden W. T cell subsets and T cell-mediated immunity. 3rd ed. New York: Springer; 2011.

    Google Scholar 

  67. Stemberger C, Neuenhahn M, Buchholz VR, Busch DH. Origin of CD8+ effector and memory T cell subsets. Cell Mol Immunol. 2007;4(6):399–405.

    CAS  PubMed  Google Scholar 

  68. Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O’Garra A, Murphy KM. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science. 1993;260(5107):547–9.

    CAS  PubMed  Google Scholar 

  69. Rogge L, D’Ambrosio D, Biffi M, et al. The role of Stat4 in species-specific regulation of Th cell development by type I IFNs. J Immunol. 1998;161(12):6567–74.

    CAS  PubMed  Google Scholar 

  70. Ahmed R, Gray D. Immunological memory and protective immunity: understanding their relation. Science. 1996;272(5258):54–60.

    CAS  PubMed  Google Scholar 

  71. Flammer JR, Rogatsky I. Minireview: glucocorticoids in autoimmunity: unexpected targets and mechanisms. Mol Endocrinol. 2011;25(7):1075–86.

    CAS  PubMed  Google Scholar 

  72. Elenkov IJ. Glucocorticoids and the Th1/Th2 balance. Ann N Y Acad Sci. 2004;1024:138–46.

    CAS  PubMed  Google Scholar 

  73. Opferman JT, Korsmeyer SJ. Apoptosis in the development and maintenance of the immune system. Nat Immunol. 2003;4(5):410–5.

    CAS  PubMed  Google Scholar 

  74. Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 1999;13(15):1899–911.

    CAS  PubMed  Google Scholar 

  75. Budd RC. Activation-induced cell death. Curr Opin Immunol. 2001;13(3):356–62.

    CAS  PubMed  Google Scholar 

  76. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science. 1997;275(5303):1132–6.

    CAS  PubMed  Google Scholar 

  77. Yang J, Liu X, Bhalla K, et al. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science. 1997;275(5303):1129–32.

    CAS  PubMed  Google Scholar 

  78. Ashwell JD, Lu FW, Vacchio MS. Glucocorticoids in T cell development and function*. Annu Rev Immunol. 2000;18:309–45.

    CAS  PubMed  Google Scholar 

  79. Herold MJ, McPherson KG, Reichardt HM. Glucocorticoids in T cell apoptosis and function. Cell Mol Life Sci. 2006;63(1):60–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Distelhorst CW. Recent insights into the mechanism of glucocorticosteroid-induced apoptosis. Cell Death Differ. 2002;9(1):6–19.

    CAS  PubMed  Google Scholar 

  81. Zamoyska R, Basson A, Filby A, Legname G, Lovatt M, Seddon B. The influence of the src-family kinases, Lck and Fyn, on T cell differentiation, survival and activation. Immunol Rev. 2003;191:107–18.

    CAS  PubMed  Google Scholar 

  82. Palacios EH, Weiss A. Function of the Src-family kinases, Lck and Fyn, in T-cell development and activation. Oncogene. 2004;23(48):7990–8000.

    CAS  PubMed  Google Scholar 

  83. Lowenberg M, Tuynman J, Bilderbeek J, et al. Rapid immunosuppressive effects of glucocorticoids mediated through Lck and Fyn. Blood. 2005;106(5):1703–10.

    PubMed  Google Scholar 

  84. Lowenberg M, Verhaar AP, Bilderbeek J, et al. Glucocorticoids cause rapid dissociation of a T-cell-receptor-associated protein complex containing LCK and FYN. EMBO Rep. 2006;7(10):1023–9.

    PubMed Central  PubMed  Google Scholar 

  85. Bartis D, Boldizsar F, Szabo M, Palinkas L, Nemeth P, Berki T. Dexamethasone induces rapid tyrosine-phosphorylation of ZAP-70 in Jurkat cells. J Steroid Biochem Mol Biol. 2006;98(2–3):147–54.

    CAS  PubMed  Google Scholar 

  86. Boldizsar F, Szabo M, Kvell K, et al. ZAP-70 tyrosines 315 and 492 transmit non-genomic glucocorticoid (GC) effects in T cells. Mol Immunol. 2013;53(1–2):111–7.

    CAS  PubMed  Google Scholar 

  87. Fox S, Leitch AE, Duffin R, Haslett C, Rossi AG. Neutrophil apoptosis: relevance to the innate immune response and inflammatory disease. J Innate Immun. 2010;2(3):216–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Hallett JM, Leitch AE, Riley NA, Duffin R, Haslett C, Rossi AG. Novel pharmacological strategies for driving inflammatory cell apoptosis and enhancing the resolution of inflammation. Trends Pharmacol Sci. 2008;29(5):250–7.

    CAS  PubMed  Google Scholar 

  89. Savill J. Apoptosis in resolution of inflammation. J Leukoc Biol. 1997;61(4):375–80.

    CAS  PubMed  Google Scholar 

  90. Filep JG, El Kebir D. Neutrophil apoptosis: a target for enhancing the resolution of inflammation. J Cell Biochem. 2009;108(5):1039–46.

    CAS  PubMed  Google Scholar 

  91. Lacy P. Mechanisms of degranulation in neutrophils. Allergy Asthma Clin Immunol. 2006;2(3):98–108.

    PubMed Central  PubMed  Google Scholar 

  92. Cox G. Glucocorticoid treatment inhibits apoptosis in human neutrophils. Separation of survival and activation outcomes. J Immunol. 1995;154(9):4719–25.

    CAS  PubMed  Google Scholar 

  93. Aoki K, Ishida Y, Kikuta N, Kawai H, Kuroiwa M, Sato H. Role of CXC chemokines in the enhancement of LPS-induced neutrophil accumulation in the lung of mice by dexamethasone. Biochem Biophys Res Commun. 2002;294(5):1101–8.

    CAS  PubMed  Google Scholar 

  94. Saffar AS, Ashdown H, Gounni AS. The molecular mechanisms of glucocorticoids-mediated neutrophil survival. Curr Drug Targets. 2011;12(4):556–62.

    CAS  PubMed Central  Google Scholar 

  95. Heasman SJ, Giles KM, Ward C, Rossi AG, Haslett C, Dransfield I. Glucocorticoid-mediated regulation of granulocyte apoptosis and macrophage phagocytosis of apoptotic cells: implications for the resolution of inflammation. J Endocrinol. 2003;178(1):29–36.

    CAS  PubMed  Google Scholar 

  96. Barnes PJ. Inhaled corticosteroids are not beneficial in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2000;161(2 Pt 1):342–4. discussion 344.

    CAS  PubMed  Google Scholar 

  97. Nakagawa M, Terashima T, D’Yachkova Y, Bondy GP, Hogg JC, van Eeden SF. Glucocorticoid-induced granulocytosis: contribution of marrow release and demargination of intravascular granulocytes. Circulation. 1998;98(21):2307–13.

    CAS  PubMed  Google Scholar 

  98. Kraft S, Kinet JP. New developments in FcepsilonRI regulation, function and inhibition. Nat Rev Immunol. 2007;7(5):365–78.

    CAS  PubMed  Google Scholar 

  99. Rivera J, Gilfillan AM. Molecular regulation of mast cell activation. J Allergy Clin Immunol. 2006;117(6):1214–25. quiz 1226.

    CAS  PubMed  Google Scholar 

  100. Scharenberg AM, Lin S, Cuenod B, Yamamura H, Kinet JP. Reconstitution of interactions between tyrosine kinases and the high affinity IgE receptor which are controlled by receptor clustering. EMBO J. 1995;14(14):3385–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Scharenberg AM, Kinet JP. Early events in mast cell signal transduction. Chem Immunol. 1995;61:72–87.

    CAS  PubMed  Google Scholar 

  102. Metcalfe DD, Peavy RD, Gilfillan AM. Mechanisms of mast cell signaling in anaphylaxis. J Allergy Clin Immunol. 2009;124(4):639–46. quiz 647-638.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Kassel O, Sancono A, Kratzschmar J, Kreft B, Stassen M, Cato AC. Glucocorticoids inhibit MAP kinase via increased expression and decreased degradation of MKP-1. EMBO J. 2001;20(24):7108–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Andrade MV, Hiragun T, Beaven MA. Dexamethasone suppresses antigen-induced activation of phosphatidylinositol 3-kinase and downstream responses in mast cells. J Immunol. 2004;172(12):7254–62.

    CAS  PubMed  Google Scholar 

  105. Zhou J, Liu D, Liu C, Kang ZM, Shen XH, Chen YZ, Xu T, Jiang CL. Glucocorticoids inhibit degranulation of mast cells in allergic asthma via nongenomic mechanism. Allergy. 2008;63:1177–85.

    CAS  PubMed  Google Scholar 

  106. Liu C, Zhou J, Zhang LD, Wang YX, Kang ZM, Chen YZ, Jiang CL. Rapid inhibitory effect of corticosterone on histamine release from rat peritoneal mast cells. Horm Metab Res. 2007;39:273–7.

    CAS  PubMed  Google Scholar 

  107. Barnes PJ. Anti-inflammatory actions of glucocorticoids: molecular mechanisms. Clin Sci (Lond). 1998;94(6):557–72.

    CAS  Google Scholar 

  108. Kui Wu YB. Kun Sun and Changzheng Wang IL-10-producing type 1 regulatory T cells and allergy. Cell Mol Immunol. 2007;4(4):269–75.

    PubMed  Google Scholar 

  109. Hawrylowicz CM, O’Garra A. Potential role of interleukin-10-secreting regulatory T cells in allergy and asthma. Nat Rev Immunol. 2005;5(4):271–83.

    CAS  PubMed  Google Scholar 

  110. Yamagata S, Tomita K, Sano H, et al. Non-genomic inhibitory effect of glucocorticoids on activated peripheral blood basophils through suppression of lipid raft formation. Clin Exp Immunol. 2012;170(1):86–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Yoshimura C, Miyamasu M, Nagase H, et al. Glucocorticoids induce basophil apoptosis. J Allergy Clin Immunol. 2001;108(2):215–20.

    CAS  PubMed  Google Scholar 

  112. Moser M, De Smedt T, Sornasse T, et al. Glucocorticoids down-regulate dendritic cell function in vitro and in vivo. Eur J Immunol. 1995;25(10):2818–24.

    CAS  PubMed  Google Scholar 

  113. Piemonti L, Monti P, Allavena P, et al. Glucocorticoids affect human dendritic cell differentiation and maturation. J Immunol. 1999;162(11):6473–81.

    CAS  PubMed  Google Scholar 

  114. Piemonti L, Monti P, Allavena P, Leone BE, Caputo A, Di Carlo V. Glucocorticoid increase the endocytic activity of human dendritic cells. Int Immunol. 1999;11(9):1519–26.

    CAS  PubMed  Google Scholar 

  115. Vizzardelli C, Pavelka N, Luchini A, et al. Effects of dexamethazone on LPS-induced activation and migration of mouse dendritic cells revealed by a genome-wide transcriptional analysis. Eur J Immunol. 2006;36(6):1504–15.

    CAS  PubMed  Google Scholar 

  116. Gruver-Yates AL, Quinn MA, Cidlowski JA. Analysis of glucocorticoid receptors and their apoptotic response to dexamethasone in male murine B cells during development. Endocrinology. 2014;155(2):463–74.

    PubMed Central  PubMed  Google Scholar 

  117. Cupps TR, Edgar LC, Thomas CA, Fauci AS. Multiple mechanisms of B cell immunoregulation in man after administration of in vivo corticosteroids. J Immunol. 1984;132(1):170–5.

    CAS  PubMed  Google Scholar 

  118. Cupps TR, Gerrard TL, Falkoff RJ, Whalen G, Fauci AS. Effects of in vitro corticosteroids on B cell activation, proliferation, and differentiation. J Clin Invest. 1985;75(2):754–61.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Oppong Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Oppong, E., Cato, A.C.B. (2015). Effects of Glucocorticoids in the Immune System. In: Wang, JC., Harris, C. (eds) Glucocorticoid Signaling. Advances in Experimental Medicine and Biology, vol 872. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2895-8_9

Download citation

Publish with us

Policies and ethics