Skip to main content

A Broad Overview of Computational Methods for Predicting the Pathophysiological Effects of Non-synonymous Variants

  • Protocol
  • First Online:
Data Mining Techniques for the Life Sciences

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1415))

Abstract

Next-generation sequencing has provided extraordinary opportunities to investigate the massive human genetic variability. It helped identifying several kinds of genomic mismatches from the wild-type reference genome sequences and to explain the onset of several pathogenic phenotypes and diseases susceptibility. In this context, distinguishing pathogenic from functionally neutral amino acid changes turns out to be a task as useful as complex, expensive, and time-consuming.

Here, we present an exhaustive and up-to-dated survey of the algorithms and software packages conceived for the estimation of the putative pathogenicity of mutations, along with a description of the most popular mutation datasets that these tools used as training sets. Finally, we present and describe software for the prediction of cancer-related mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marth GT, Yu F, Indap AR, Garimella K, Gravel S, Leong WF, Tyler-Smith C, Bainbridge M, Blackwell T, Zheng-Bradley X, Chen Y, Challis D, Clarke L, Ball EV, Cibulskis K, Cooper DN, Fulton B, Hartl C, Koboldt D, Muzny D, Smith R, Sougnez C, Stewart C, Ward A, Yu J, Xue Y, Altshuler D, Bustamante CD, Clark AG, Daly M, DePristo M, Flicek P, Gabriel S, Mardis E, Palotie A, Gibbs R, Genomes P (2011) The functional spectrum of low-frequency coding variation. Genome Biol 12(9):R84. doi:10.1186/gb-2011-12-9-r84

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29(1):308–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A (2010) Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res 20(1):110–121. doi:10.1101/gr.097857.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Davydov EV, Goode DL, Sirota M, Cooper GM, Sidow A, Batzoglou S (2010) Identifying a high fraction of the human genome to be under selective constraint using GERP++. PLoS Comput Biol 6(12):e1001025. doi:10.1371/journal.pcbi.1001025

    Article  PubMed  PubMed Central  Google Scholar 

  5. Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, Burkhardt K, Feng Z, Gilliland GL, Iype L, Jain S, Fagan P, Marvin J, Padilla D, Ravichandran V, Schneider B, Thanki N, Weissig H, Westbrook JD, Zardecki C (2002) The Protein Data Bank. Acta Crystallogr D Biol Crystallogr 58(Pt 6 No 1):899–907

    Article  PubMed  Google Scholar 

  6. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer EL, Tate J, Punta M (2014) Pfam: the protein families database. Nucleic Acids Res 42(Database issue):D222–D230. doi:10.1093/nar/gkt1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. UniProt C (2015) UniProt: a hub for protein information. Nucleic Acids Res 43(Database issue):D204–D212. doi:10.1093/nar/gku989

    Google Scholar 

  8. Li MX, Kwan JS, Bao SY, Yang W, Ho SL, Song YQ, Sham PC (2013) Predicting mendelian disease-causing non-synonymous single nucleotide variants in exome sequencing studies. PLoS Genet 9(1):e1003143. doi:10.1371/journal.pgen.1003143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, Gibbs RA, Hurles ME, McVean GA, 1000 Genomes Project Consortium (2010) A map of human genome variation from population-scale sequencing. Nature 467(7319):1061–1073. doi:10.1038/nature09534

    Article  PubMed  Google Scholar 

  10. Mottaz A, David FP, Veuthey AL, Yip YL (2010) Easy retrieval of single amino-acid polymorphisms and phenotype information using SwissVar. Bioinformatics 26(6):851–852. doi:10.1093/bioinformatics/btq028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bendl J, Stourac J, Salanda O, Pavelka A, Wieben ED, Zendulka J, Brezovsky J, Damborsky J (2014) PredictSNP: robust and accurate consensus classifier for prediction of disease-related mutations. PLoS Comput Biol 10(1):e1003440. doi:10.1371/journal.pcbi.1003440

    Article  PubMed  PubMed Central  Google Scholar 

  12. Thusberg J, Olatubosun A, Vihinen M (2011) Performance of mutation pathogenicity prediction methods on missense variants. Hum Mutat 32(4):358–368. doi:10.1002/humu.21445

    Article  PubMed  Google Scholar 

  13. Giardine B, Riemer C, Hefferon T, Thomas D, Hsu F, Zielenski J, Sang Y, Elnitski L, Cutting G, Trumbower H, Kern A, Kuhn R, Patrinos GP, Hughes J, Higgs D, Chui D, Scriver C, Phommarinh M, Patnaik SK, Blumenfeld O, Gottlieb B, Vihinen M, Valiaho J, Kent J, Miller W, Hardison RC (2007) PhenCode: connecting ENCODE data with mutations and phenotype. Hum Mutat 28(6):554–562. doi:10.1002/humu.20484

    Article  CAS  PubMed  Google Scholar 

  14. Grimm DG, Azencott CA, Aicheler F, Gieraths U, MacArthur DG, Samocha KE, Cooper DN, Stenson PD, Daly MJ, Smoller JW, Duncan LE, Borgwardt KM (2015) The evaluation of tools used to predict the impact of missense variants is hindered by two types of circularity. Hum Mutat 36(5):513–523. doi:10.1002/humu.22768

    Article  PubMed  Google Scholar 

  15. Yip YL, Famiglietti M, Gos A, Duek PD, David FP, Gateau A, Bairoch A (2008) Annotating single amino acid polymorphisms in the UniProt/Swiss-Prot knowledgebase. Hum Mutat 29(3):361–366. doi:10.1002/humu.20671

    Article  CAS  PubMed  Google Scholar 

  16. Kircher M, Witten DM, Jain P, O'Roak BJ, Cooper GM, Shendure J (2014) A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 46(3):310–315. doi:10.1038/ng.2892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schaafsma GC, Vihinen M (2015) VariSNP, a benchmark database for variations from dbSNP. Hum Mutat 36(2):161–166. doi:10.1002/humu.22727

    Article  CAS  PubMed  Google Scholar 

  18. Landrum MJ, Lee JM, Riley GR, Jang W, Rubinstein WS, Church DM, Maglott DR (2014) ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res 42(Database issue):D980–D985. doi:10.1093/nar/gkt1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Eilbeck K, Lewis SE, Mungall CJ, Yandell M, Stein L, Durbin R, Ashburner M (2005) The Sequence Ontology: a tool for the unification of genome annotations. Genome Biol 6(5):R44. doi:10.1186/gb-2005-6-5-r44

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ruiz-Pesini E, Lott MT, Procaccio V, Poole JC, Brandon MC, Mishmar D, Yi C, Kreuziger J, Baldi P, Wallace DC (2007) An enhanced MITOMAP with a global mtDNA mutational phylogeny. Nucleic Acids Res 35(Database issue):D823–D828. doi:10.1093/nar/gkl927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Castellana S, Ronai J, Mazza T (2015) MitImpact: an exhaustive collection of pre-computed pathogenicity predictions of human mitochondrial non-synonymous variants. Hum Mutat 36(2):E2413–E2422. doi:10.1002/humu.22720

    Article  CAS  PubMed  Google Scholar 

  22. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR (2010) A method and server for predicting damaging missense mutations. Nat Methods 7(4):248–249. doi:10.1038/nmeth0410-248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ng PC, Henikoff S (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 31(13):3812–3814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Reva B, Antipin Y, Sander C (2011) Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res 39(17):e118. doi:10.1093/nar/gkr407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vilella AJ, Severin J, Ureta-Vidal A, Heng L, Durbin R, Birney E (2009) EnsemblCompara GeneTrees: complete, duplication-aware phylogenetic trees in vertebrates. Genome Res 19(2):327–335. doi:10.1101/gr.073585.107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. McLaren W, Pritchard B, Rios D, Chen Y, Flicek P, Cunningham F (2010) Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor. Bioinformatics 26(16):2069–2070. doi:10.1093/bioinformatics/btq330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Consortium EP (2004) The ENCODE (ENCyclopedia Of DNA Elements) Project. Science 306(5696):636–640. doi:10.1126/science.1105136

    Article  Google Scholar 

  28. Schwarz JM, Cooper DN, Schuelke M, Seelow D (2014) MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods 11(4):361–362. doi:10.1038/nmeth.2890

    Article  CAS  PubMed  Google Scholar 

  29. Shihab HA, Gough J, Cooper DN, Stenson PD, Barker GL, Edwards KJ, Day IN, Gaunt TR (2013) Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Hum Mutat 34(1):57–65. doi:10.1002/humu.22225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hicks S, Wheeler DA, Plon SE, Kimmel M (2011) Prediction of missense mutation functionality depends on both the algorithm and sequence alignment employed. Hum Mutat 32(6):661–668. doi:10.1002/humu.21490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mistry J, Finn RD, Eddy SR, Bateman A, Punta M (2013) Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res 41(12):e121. doi:10.1093/nar/gkt263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mi H, Muruganujan A, Casagrande JT, Thomas PD (2013) Large-scale gene function analysis with the PANTHER classification system. Nat Protoc 8(8):1551–1566. doi:10.1038/nprot.2013.092

    Article  PubMed  Google Scholar 

  33. Calabrese R, Capriotti E, Fariselli P, Martelli PL, Casadio R (2009) Functional annotations improve the predictive score of human disease-related mutations in proteins. Hum Mutat 30(8):1237–1244. doi:10.1002/humu.21047

    Article  CAS  PubMed  Google Scholar 

  34. Zeng S, Yang J, Chung BH, Lau YL, Yang W (2014) EFIN: predicting the functional impact of nonsynonymous single nucleotide polymorphisms in human genome. BMC Genomics 15:455. doi:10.1186/1471-2164-15-455

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tavtigian SV, Deffenbaugh AM, Yin L, Judkins T, Scholl T, Samollow PB, de Silva D, Zharkikh A, Thomas A (2006) Comprehensive statistical study of 452 BRCA1 missense substitutions with classification of eight recurrent substitutions as neutral. J Med Genet 43(4):295–305. doi:10.1136/jmg.2005.033878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Luu TD, Rusu A, Walter V, Linard B, Poidevin L, Ripp R, Moulinier L, Muller J, Raffelsberger W, Wicker N, Lecompte O, Thompson JD, Poch O, Nguyen H (2012) KD4v: comprehensible knowledge discovery system for missense variant. Nucleic Acids Res 40(Web Server issue):W71–W75. doi:10.1093/nar/gks474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li B, Krishnan VG, Mort ME, Xin F, Kamati KK, Cooper DN, Mooney SD, Radivojac P (2009) Automated inference of molecular mechanisms of disease from amino acid substitutions. Bioinformatics 25(21):2744–2750. doi:10.1093/bioinformatics/btp528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Choi Y, Sims GE, Murphy S, Miller JR, Chan AP (2012) Predicting the functional effect of amino acid substitutions and indels. PLoS One 7(10):e46688. doi:10.1371/journal.pone.0046688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kumar S, Sanderford M, Gray VE, Ye J, Liu L (2012) Evolutionary diagnosis method for variants in personal exomes. Nat Methods 9(9):855–856. doi:10.1038/nmeth.2147

    Article  CAS  PubMed  Google Scholar 

  40. Venselaar H, Te Beek TA, Kuipers RK, Hekkelman ML, Vriend G (2010) Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinformatics 11:548. doi:10.1186/1471-2105-11-548

    Article  PubMed  PubMed Central  Google Scholar 

  41. Krieger E, Koraimann G, Vriend G (2002) Increasing the precision of comparative models with YASARA NOVA—a self-parameterizing force field. Proteins 47(3):393–402

    Article  CAS  PubMed  Google Scholar 

  42. Hekkelman ML, Te Beek TA, Pettifer SR, Thorne D, Attwood TK, Vriend G (2010) WIWS: a protein structure bioinformatics Web service collection. Nucleic Acids Res 38(Web Server issue):W719–W723. doi:10.1093/nar/gkq453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. De Baets G, Van Durme J, Reumers J, Maurer-Stroh S, Vanhee P, Dopazo J, Schymkowitz J, Rousseau F (2012) SNPeffect 4.0: on-line prediction of molecular and structural effects of protein-coding variants. Nucleic Acids Res 40(Database issue):D935–D939. doi:10.1093/nar/gkr996

    Article  PubMed  PubMed Central  Google Scholar 

  44. Carter H, Douville C, Stenson PD, Cooper DN, Karchin R (2013) Identifying Mendelian disease genes with the variant effect scoring tool. BMC Genomics 14(Suppl 3):S3. doi:10.1186/1471-2164-14-S3-S3

    Article  PubMed  PubMed Central  Google Scholar 

  45. Douville C, Carter H, Kim R, Niknafs N, Diekhans M, Stenson PD, Cooper DN, Ryan M, Karchin R (2013) CRAVAT: cancer-related analysis of variants toolkit. Bioinformatics 29(5):647–648. doi:10.1093/bioinformatics/btt017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yue P, Moult J (2006) Identification and analysis of deleterious human SNPs. J Mol Biol 356(5):1263–1274. doi:10.1016/j.jmb.2005.12.025

    Article  CAS  PubMed  Google Scholar 

  47. Liu X, Jian X, Boerwinkle E (2011) dbNSFP: a lightweight database of human nonsynonymous SNPs and their functional predictions. Hum Mutat 32(8):894–899. doi:10.1002/humu.21517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chun S, Fay JC (2009) Identification of deleterious mutations within three human genomes. Genome Res 19(9):1553–1561. doi:10.1101/gr.092619.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dong C, Wei P, Jian X, Gibbs R, Boerwinkle E, Wang K, Liu X (2015) Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies. Hum Mol Genet 24(8):2125–2137. doi:10.1093/hmg/ddu733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pesole G, Saccone C (2001) A novel method for estimating substitution rate variation among sites in a large dataset of homologous DNA sequences. Genetics 157(2):859–865

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Gonzalez-Perez A, Lopez-Bigas N (2011) Improving the assessment of the outcome of nonsynonymous SNVs with a consensus deleteriousness score, Condel. Am J Hum Genet 88(4):440–449. doi:10.1016/j.ajhg.2011.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Clifford RJ, Edmonson MN, Nguyen C, Buetow KH (2004) Large-scale analysis of non-synonymous coding region single nucleotide polymorphisms. Bioinformatics 20(7):1006–1014. doi:10.1093/bioinformatics/bth029

    Article  CAS  PubMed  Google Scholar 

  53. Stone EA, Sidow A (2005) Physicochemical constraint violation by missense substitutions mediates impairment of protein function and disease severity. Genome Res 15(7):978–986. doi:10.1101/gr.3804205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lopes MC, Joyce C, Ritchie GR, John SL, Cunningham F, Asimit J, Zeggini E (2012) A combined functional annotation score for non-synonymous variants. Hum Hered 73(1):47–51. doi:10.1159/000334984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Frousios K, Iliopoulos CS, Schlitt T, Simpson MA (2013) Predicting the functional consequences of non-synonymous DNA sequence variants--evaluation of bioinformatics tools and development of a consensus strategy. Genomics 102(4):223–228. doi:10.1016/j.ygeno.2013.06.005

    Article  CAS  PubMed  Google Scholar 

  56. Olatubosun A, Valiaho J, Harkonen J, Thusberg J, Vihinen M (2012) PON-P: integrated predictor for pathogenicity of missense variants. Hum Mutat 33(8):1166–1174. doi:10.1002/humu.22102

    Article  CAS  PubMed  Google Scholar 

  57. Capriotti E, Calabrese R, Casadio R (2006) Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinformatics 22(22):2729–2734. doi:10.1093/bioinformatics/btl423

    Article  CAS  PubMed  Google Scholar 

  58. Bromberg Y, Rost B (2007) SNAP: predict effect of non-synonymous polymorphisms on function. Nucleic Acids Res 35(11):3823–3835. doi:10.1093/nar/gkm238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Limongelli I, Marini S, Bellazzi R (2015) PaPI: pseudo amino acid composition to score human protein-coding variants. BMC Bioinformatics 16:123. doi:10.1186/s12859-015-0554-8

    Article  PubMed  PubMed Central  Google Scholar 

  60. Capriotti E, Altman RB, Bromberg Y (2013) Collective judgment predicts disease-associated single nucleotide variants. BMC Genomics 14(Suppl 3):S2. doi:10.1186/1471-2164-14-S3-S2

    Article  PubMed  PubMed Central  Google Scholar 

  61. Carter H, Chen S, Isik L, Tyekucheva S, Velculescu VE, Kinzler KW, Vogelstein B, Karchin R (2009) Cancer-specific high-throughput annotation of somatic mutations: computational prediction of driver missense mutations. Cancer Res 69(16):6660–6667. doi:10.1158/0008-5472.CAN-09-1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D, Jia M, Shepherd R, Leung K, Menzies A, Teague JW, Campbell PJ, Stratton MR, Futreal PA (2011) COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 39(Database issue):D945–D950. doi:10.1093/nar/gkq929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gonzalez-Perez A, Deu-Pons J, Lopez-Bigas N (2012) Improving the prediction of the functional impact of cancer mutations by baseline tolerance transformation. Genome Med 4(11):89. doi:10.1186/gm390

    Article  PubMed  PubMed Central  Google Scholar 

  64. Mao Y, Chen H, Liang H, Meric-Bernstam F, Mills GB, Chen K (2013) CanDrA: cancer-specific driver missense mutation annotation with optimized features. PLoS One 8(10):e77945. doi:10.1371/journal.pone.0077945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216):1061–1068. doi:10.1038/nature07385

    Article  Google Scholar 

  66. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehar J, Kryukov GV, Sonkin D, Reddy A, Liu M, Murray L, Berger MF, Monahan JE, Morais P, Meltzer J, Korejwa A, Jane-Valbuena J, Mapa FA, Thibault J, Bric-Furlong E, Raman P, Shipway A, Engels IH, Cheng J, Yu GK, Yu J, Aspesi P Jr, de Silva M, Jagtap K, Jones MD, Wang L, Hatton C, Palescandolo E, Gupta S, Mahan S, Sougnez C, Onofrio RC, Liefeld T, MacConaill L, Winckler W, Reich M, Li N, Mesirov JP, Gabriel SB, Getz G, Ardlie K, Chan V, Myer VE, Weber BL, Porter J, Warmuth M, Finan P, Harris JL, Meyerson M, Golub TR, Morrissey MP, Sellers WR, Schlegel R, Garraway LA (2012) The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483(7391):603–607. doi:10.1038/nature11003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommaso Mazza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Castellana, S., Fusilli, C., Mazza, T. (2016). A Broad Overview of Computational Methods for Predicting the Pathophysiological Effects of Non-synonymous Variants. In: Carugo, O., Eisenhaber, F. (eds) Data Mining Techniques for the Life Sciences. Methods in Molecular Biology, vol 1415. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3572-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3572-7_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3570-3

  • Online ISBN: 978-1-4939-3572-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics