Skip to main content

Mesenchymal Stem Cells in Lipogems, a Reverse Story: from Clinical Practice to Basic Science

  • Protocol
  • First Online:
Mesenchymal Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1416))

Abstract

The idea that basic science should be the starting point for modern clinical approaches has been consolidated over the years, and emerged as the cornerstone of Molecular Medicine. Nevertheless, there is increasing concern over the low efficiency and inherent costs related to the translation of achievements from the bench to the bedside. These burdens are also perceived with respect to the effectiveness of translating basic discoveries in stem cell biology to the newly developing field of advanced cell therapy or Regenerative Medicine. As an alternative paradigm, past and recent history in Medical Science provides remarkable reverse stories in which clinical observations at the patient’s bedside have fed major advances in basic research which, in turn, led to consistent progression in clinical practice. Within this context, we discuss our recently developed method and device, which forms the core of a system (Lipogems) for processing of human adipose tissue solely with the aid of mild mechanical forces to yield a microfractured tissue product.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gallo RC, Montagnier L (2003) The discovery of HIV as the cause of AIDS. N Engl J Med 349:2283–2285

    Article  CAS  PubMed  Google Scholar 

  2. Clements JA (1997) Lung surfactant: a personal perspective. Annu Rev Physiol 59:1–21

    Article  CAS  PubMed  Google Scholar 

  3. Clements JA, Avery ME (1998) Lung surfactant and neonatal respiratory distress syndrome. Am J Respir Crit Care Med 157(4 Pt 2):S59–S66

    Article  CAS  PubMed  Google Scholar 

  4. Jensen EV, Jordan VC (2003) The estrogen receptor: a model for molecular medicine. Clin Cancer Res 9:1980–1989

    CAS  PubMed  Google Scholar 

  5. Turer AT, Hill JA, Elmquist JK et al (2012) Adipose tissue biology and cardiomyopathy: translational implications. Circ Res 111:1565–1577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bianchi F, Maioli M, Leonardi E et al (2013) A new nonenzymatic method and device to obtain a fat tissue derivative highly enriched in pericyte-like elements by mild mechanical forces from human lipoaspirates. Cell Transplant 22:2063–2077

    Article  PubMed  Google Scholar 

  7. Rigotti G, Marchi A, Galiè M et al (2007) Clinical treatment of radiotherapy tissue damage by lipoaspirate transplant: a healing process mediated by adipose-derived adult stem cells. Plast Reconstr Surg 119:1409–1422

    Article  CAS  PubMed  Google Scholar 

  8. Coleman SR (2006) Structural fat grafting: more than a permanent filler. Plast Reconstr Surg 118(3 Suppl):108S–120S

    Article  CAS  PubMed  Google Scholar 

  9. Reckhenrich AK, Kirsch BM, Wahl EA et al (2014) Surgical sutures filled with adipose-derived stem cells promote wound healing. PLoS One 9, e91169

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tremolada C, Palmieri G, Ricordi C (2010) Adipocyte transplantation and stem cells: plastic surgery meets regenerative medicine. Cell Transplant 19:1217–1223

    Article  PubMed  Google Scholar 

  11. Giori A, Tremolada C, Vailati R et al (2015) Recovery of Function in Anal Incontinence after Micro-Fragmented Fat Graft (Lipogems®) Injection: Two Years Follow Up of the First 5 Cases. CellR4 3 (2): e1544

    Google Scholar 

  12. Olson LE, Soriano P (2011) PDGFRβ signaling regulates mural cell plasticity and inhibits fat development. Dev Cell 20:815–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yoshimura K, Shigeura T, Matsumoto D et al (2006) Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J Cell Physiol 208:64–76

    Article  CAS  PubMed  Google Scholar 

  14. Zimmerlin L, Donnenberg VS, Pfeifer ME et al (2010) Stromal vascular progenitors in adult human adipose tissue. Cytometry A 77:22–30

    PubMed  PubMed Central  Google Scholar 

  15. Carelli S, Messaggio F, Canazza A et al (2015) Characteristics and properties of mesenchymal stem cells derived from micro-fragmented adipose tissue. Cell Transplant 24(7):1233–1252

    Article  PubMed  Google Scholar 

  16. Bosetti M, Borrone A, Follenzi A et al (2015) Human lipoaspirate as autologous injectable active scaffold for one-step repair of cartilage defects. Cell Transplant, Sep 21. [Epub ahead of print]

    Google Scholar 

  17. Ventura C, Maioli M (2000) Opioid peptide gene expression primes cardiogenesis in embryonal pluripotent stem cells. Circ Res 87:189–194

    Article  CAS  PubMed  Google Scholar 

  18. Ventura C, Zinellu E, Maninchedda E, Maioli M (2003) Dynorphin B is an agonist of nuclear opioid receptors coupling nuclear protein kinase C activation to the transcription of cardiogenic genes in GTR1 embryonic stem cells. Circ Res 92:623–629

    Article  CAS  PubMed  Google Scholar 

  19. Ventura C, Zinellu E, Maninchedda E et al (2003) Protein kinase C signaling transduces endorphin-primed cardiogenesis in GTR1 embryonic stem cells. Circ Res 92:617–622

    Article  CAS  PubMed  Google Scholar 

  20. Ventura C, Maioli M, Asara Y et al (2004) Butyric and retinoic mixed ester of hyaluronan: a novel differentiating glycoconjugate affording a high-throughput of cardiogenesis in embryonic stem cells. J Biol Chem 279:23574–23579

    Article  CAS  PubMed  Google Scholar 

  21. Ventura C, Cantoni S, Bianchi F et al (2007) Hyaluronan mixed esters of butyric and retinoic acid drive cardiac and endothelial fate in term placenta human mesenchymal stem cells and enhance cardiac repair in infarcted rat hearts. J Biol Chem 282:14243–14252

    Article  CAS  PubMed  Google Scholar 

  22. Lionetti V, Cantoni S, Cavallini C et al (2010) Hyaluronan mixed esters of butyric and retinoic acid affording myocardial survival and repair without stem cell transplantation. J Biol Chem 285:9949–9961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Maioli M, Santaniello S, Montella A et al (2010) Hyaluronan esters drive Smad gene expression and signaling enhancing cardiogenesis in mouse embryonic and human mesenchymal stem cells. PLoS One 5(11), e15151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ventura C, Maioli M, Pintus G (2000) Elf-pulsed magnetic fields modulate opioid peptide gene expression in myocardial cells. Cardiovasc Res 45:1054–1064

    Article  CAS  PubMed  Google Scholar 

  25. Ventura C, Maioli M, Asara Y et al (2005) Turning on stem cell cardiogenesis with extremely low frequency magnetic fields. FASEB J 19:155–157

    CAS  PubMed  Google Scholar 

  26. Maioli M, Rinaldi S, Santaniello S et al (2012) Radiofrequency energy loop primes cardiac, neuronal, and skeletal muscle differentiation in mouse embryonic stem cells: a new tool for improving tissue regeneration. Cell Transplant 21:1225–1233

    Article  PubMed  Google Scholar 

  27. Maioli M, Rinaldi S, Santaniello S et al (2014) Radio electric asymmetric conveyed fields and human adipose-derived stem cells obtained with a non-enzymatic method and device: a novel approach to multipotency. Cell Transplant 23(12):1489–1500

    Article  PubMed  Google Scholar 

  28. Cavallari G, Olivi E, Bianchi F et al (2012) Mesenchymal stem cells and islet cotransplantation in diabetic rats: improved islet graft revascularization and function by human adipose tissue-derived stem cells preconditioned with natural molecules. Cell Transplant 21:2771–2781

    Article  PubMed  Google Scholar 

  29. Castagna A, Fontani V, Rinaldi S et al (2011) Radio electric tissue optimization in the treatment of surgical wounds. Clin Cosmet Investig Dermatol 4:133–137

    PubMed  PubMed Central  Google Scholar 

  30. Fontani V, Castagna A, Mannu P et al (2011) Radioelectric asymmetric stimulation of tissues as treatment for post-traumatic injury symptoms. Int J Gen Med 4:627–634

    PubMed  PubMed Central  Google Scholar 

  31. Yoon DS, Kim YH, Jung HS et al (2011) Importance of Sox2 in maintenance of cell proliferation and multipotency of mesenchymal stem cells in low-density culture. Cell Prolif 44:428–440

    Article  CAS  PubMed  Google Scholar 

  32. Baal N, Reisinger K, Jahr H et al (2004) Expression of transcription factor Oct-4 and other embryonic genes in CD133 positive cells from human umbilical cord blood. Thromb Haemost 92:767–775

    CAS  PubMed  Google Scholar 

  33. Goodell MA (2003) Stem-cell “plasticity”: befuddled by the muddle. Curr Opin Hematol 10:208–213

    Article  PubMed  Google Scholar 

  34. Lang KC, Lin IH, Teng HF et al (2009) Simultaneous overexpression of Oct4 and Nanog abrogates terminal myogenesis. Am J Physiol Cell Physiol 297:C43–C54

    Article  CAS  PubMed  Google Scholar 

  35. Park SB, Seo KW, So AY et al (2012) SOX2 has a crucial role in the lineage determination and proliferation of mesenchymal stem cells through Dickkopf-1 and c-MYC. Cell Death Differ 19:534–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Ventura M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Tremolada, C., Ricordi, C., Caplan, A.I., Ventura, C. (2016). Mesenchymal Stem Cells in Lipogems, a Reverse Story: from Clinical Practice to Basic Science. In: Gnecchi, M. (eds) Mesenchymal Stem Cells. Methods in Molecular Biology, vol 1416. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3584-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3584-0_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3582-6

  • Online ISBN: 978-1-4939-3584-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics