Skip to main content

Isolation of Ubiquitinated Proteins to High Purity from In Vivo Samples

  • Protocol
  • First Online:
Proteostasis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1449))

Abstract

Ubiquitination pathways are widely used within eukaryotic cells. The complexity of ubiquitin signaling gives rise to a number of problems in the study of specific pathways. One problem is that not all processes regulated by ubiquitin are shared among the different cells of an organism (e.g., neurotransmitter release is only carried out in neuronal cells). Moreover, these processes are often highly temporally dynamic. It is essential therefore to use the right system for each biological question, so that we can characterize pathways specifically in the tissue or cells of interest. However, low stoichiometry, and the unstable nature of many ubiquitin conjugates, presents a technical barrier to studying this modification in vivo. Here, we describe two approaches to isolate ubiquitinated proteins to high purity. The first one favors isolation of the whole mixture of ubiquitinated material from a given tissue or cell type, generating a survey of the ubiquitome landscape for a specific condition. The second one favors the isolation of just one specific protein, in order to facilitate the characterization of its ubiquitinated fraction. In both cases, highly stringent denaturing buffers are used to minimize the presence of contaminating material in the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Komander D, Rape M (2012) The ubiquitin code. Annu Rev Biochem 81:203–229

    Article  CAS  PubMed  Google Scholar 

  2. Lopitz-Otsoa F, Rodriguez-Suarez E, Aillet F, Casado-Vela J, Lang V, Matthiesen R et al (2012) Integrative analysis of the ubiquitin proteome isolated using tandem ubiquitin binding entities (TUBEs). J Proteomics 75:2998–3014

    Article  CAS  PubMed  Google Scholar 

  3. Vasilescu J, Smith JC, Ethier M, Figeys D (2005) Proteomic analysis of ubiquitinated proteins from human MCF-7 breast cancer cells by immunoaffinity purification and mass spectrometry. J Proteome Res 4:2192–2200

    Article  CAS  PubMed  Google Scholar 

  4. Xu G, Paige JS, Jaffrey SR (2010) Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling. Nat Biotechnol 28:868–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Peng J, Schwartz D, Elias JE, Thoreen CC, Cheng D, Marsischky G et al (2003) A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 21:921–926

    Article  CAS  PubMed  Google Scholar 

  6. Greer PL, Hanayama R, Bloodgood BL, Mardinly AR, Lipton DM, Flavell SW et al (2010) The Angelman syndrome protein Ube3A regulates synapse development by ubiquitinating arc. Cell 140:704–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Franco M, Seyfried NT, Brand AH, Peng J, Mayor U (2011) A novel strategy to isolate ubiquitin conjugates reveals wide role for ubiquitination during neural development. Mol Cell Proteomics 10, M110.002188

    Google Scholar 

  8. Lectez B, Migotti R, Lee SY, Ramirez J, Beraza N, Mansfield B et al (2014) Ubiquitin profiling in liver using a transgenic mouse with biotinylated ubiquitin. J Proteome Res 13:3016–3026

    Article  CAS  PubMed  Google Scholar 

  9. Min M, Mayor U, Dittmar G, Lindon C (2014) Using in vivo biotinylated ubiquitin to describe a mitotic exit ubiquitome from human cells. Mol Cell Proteomics 13:2411–2425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Min M, Mayor U, Lindon C (2013) Ubiquitination site preferences in anaphase promoting complex/cyclosome (APC/C) substrates. Open Biol 3:130097

    Article  PubMed  PubMed Central  Google Scholar 

  11. Min M, Mevissen T, Luca MD, Komander D, Lindon C (2015) Efficient APC/C substrate degradation in cells undergoing mitotic exit depends on K11 ubiquitin linkages. Mol Biol Cell. 26:4325–32

    Google Scholar 

  12. Lee SY, Ramirez J, Franco M, Lectez B, Gonzalez M, Barrio R et al (2014) Ube3a, the E3 ubiquitin ligase causing Angelman syndrome and linked to autism, regulates protein homeostasis through the proteasomal shuttle Rpn10. Cell Mol Life Sci 71:2747–2758

    Article  CAS  PubMed  Google Scholar 

  13. Tsirigotis M, Thurig S, Dubé M, Vanderhyden BC, Zhang M, Gray DA (2001) Analysis of ubiquitination in vivo using a transgenic mouse model. Biotechniques 31:120–126, 128, 130

    CAS  PubMed  Google Scholar 

  14. Tirard M, Hsiao H-H, Nikolov M, Urlaub H, Melchior F, Brose N (2012) In vivo localization and identification of SUMOylated proteins in the brain of His6-HA-SUMO1 knock-in mice. Proc Natl Acad Sci U S A 109:21122–21127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A et al (2011) Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell 44:325–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wagner SA, Beli P, Weinert BT, Nielsen ML, Cox J, Mann M et al (2011) A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol Cell Proteomics 10, M111.013284

    Google Scholar 

  17. Sarraf SA, Raman M, Guarani-Pereira V, Sowa ME, Huttlin EL, Gygi SP et al (2013) Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 496:372–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wagner SA, Beli P, Weinert BT, Schölz C, Kelstrup CD, Young C et al (2012) Proteomic analyses reveal divergent ubiquitylation site patterns in murine tissues. Mol Cell Proteomics 11:1578–1585

    Article  PubMed  PubMed Central  Google Scholar 

  19. Na CH, Jones DR, Yang Y, Wang X, Xu Y, Peng J (2012) Synaptic protein ubiquitination in rat brain revealed by antibody-based ubiquitome analysis. J Proteome Res 11:4722–4732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Leidecker O, Matic I, Mahata B, Pion E, Xirodimas DP (2012) The ubiquitin E1 enzyme Ube1 mediates NEDD8 activation under diverse stress conditions. Cell Cycle Georget Tex 11:1142–1150

    Article  CAS  Google Scholar 

  21. Shi Y, Xu P, Qin J (2010) Ubiquitinated proteome: ready for global? Mol Cell Proteomics 10, R110.006882

    Google Scholar 

  22. Williams C, van den Berg M, Sprenger RR, Distel B (2007) A conserved cysteine is essential for Pex4p-dependent ubiquitination of the peroxisomal import receptor Pex5p. J Biol Chem 282:22534–22543

    Article  CAS  PubMed  Google Scholar 

  23. Hensel A, Beck S, Magraoui FE, Platta HW, Girzalsky W, Erdmann R (2011) Cysteine-dependent ubiquitination of Pex18p Is linked to cargo translocation across the peroxisomal membrane. J Biol Chem 286:43495–43505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang X, Herr RA, Hansen TH (2012) Ubiquitination of substrates by esterification. Traffic Cph Den 13:19–24

    Article  CAS  Google Scholar 

  25. Talamillo A, Herboso L, Pirone L, Pérez C, González M, Sánchez J et al (2013) Scavenger receptors mediate the role of SUMO and Ftz-f1 in Drosophila steroidogenesis. PLoS Genet 9:e1003473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Beckett D, Kovaleva E, Schatz PJ (1999) A minimal peptide substrate in biotin holoenzyme synthetase-catalyzed biotinylation. Protein Sci 8:921–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

While this chapter was written by the authors listed above, we would like to acknowledge other lab members who contributed to optimization of these techniques as described: Our thanks therefore to Maribel Franco, James Sutherland, Aitor Martinez, Benoit Lectez, and So Young Lee. We would also like to thank Junmin Peng and Gunnar Dittmar, without whose excellent MS support we would never have confirmed how well our bioUb pulldown strategy was performing. The authors would like to acknowledge networking support by the Proteostasis COST Action (BM1307).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Catherine Lindon or Ugo Mayor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ramirez, J., Min, M., Barrio, R., Lindon, C., Mayor, U. (2016). Isolation of Ubiquitinated Proteins to High Purity from In Vivo Samples. In: Matthiesen, R. (eds) Proteostasis. Methods in Molecular Biology, vol 1449. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3756-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3756-1_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3754-7

  • Online ISBN: 978-1-4939-3756-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics