Skip to main content

Cardiotoxin Induced Injury and Skeletal Muscle Regeneration

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1460))

Abstract

Skeletal muscles have a tremendous capacity for repair and regeneration in response to injury. This capacity for regeneration is largely due to a myogenic stem cell population, termed satellite cells, which are resident in adult skeletal muscles. In order to decipher the mechanisms that govern myogenic stem cell quiescence, activation, differentiation, and self-renewal, a reproducible injury model is required. Therefore, we have utilized the delivery of the myonecrotic agent, cardiotoxin, to examine the molecular mechanisms of myogenic stem cells in response to injury. Here, we describe our experience using cardiotoxin as a potent myonecrotic agent to study skeletal muscle regeneration. We provide a detailed protocol to examine skeletal muscle injury and regeneration using morphological analyses.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hawke TJ, Garry DJ (2001) Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 91:534–551

    CAS  PubMed  Google Scholar 

  2. Shi X, Garry DJ (2006) Muscle stem cells in development, regeneration and disease. Genes Dev 20:1692–1708

    Article  CAS  PubMed  Google Scholar 

  3. Chamberlain JS, Metzger J, Reyes M, Townsend D, Faulkner JA (2007) Dystrophin-deficient mdx mice display a reduced life span and are susceptible to spontaneous rhabdomyosarcoma. FASEB J 21(9):2195–2204

    Article  CAS  PubMed  Google Scholar 

  4. Goetsch SC, Hawke TJ, Gallardo TD, Richardson JA, Garry DJ (2003) Transcriptional profiling and regulation of the extracellular matrix during muscle regeneration. Physiol Genomics 14:261–271

    Article  CAS  PubMed  Google Scholar 

  5. Hawke TJ, Jiang N, Garry DJ (2003) Absence of p21 rescues myogenic progenitor cell proliferative and regenerative capacity in Foxk1 null mice. J Biol Chem 278:4015–4020

    Article  CAS  PubMed  Google Scholar 

  6. Naseem RH, Meeson AP, DiMaio JM, White MD, Kallhoff J, Humphries C, Goetsch SC, DeWindt LJ, Williams MA, Garry MG, Garry DJ (2007) Reparative myocardial mechanisms in adult C57BL/6 and MRL mice following injury. Physiol Genomics 30:44–52

    Article  CAS  PubMed  Google Scholar 

  7. Yan Z, Choi S, Liu X, Zhang M, Schageman JJ, Lee SY, Hart R, Lin L, Thurmond FA, Williams RS (2003) Highly coordinated gene regulation in mouse skeletal muscle regeneration. J Biol Chem 278(10):8826–8836

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (U01 HL100407 and 1R01 HL122576) and the Department of Defense (11763537). GAG is a research fellow funded by the Sarnoff Cardiovascular Research Foundation. The authors acknowledge Cynthia Dekay and Stefan Kren for their assistance with the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Garry M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Garry, G.A., Antony, M.L., Garry, D.J. (2016). Cardiotoxin Induced Injury and Skeletal Muscle Regeneration. In: Kyba, M. (eds) Skeletal Muscle Regeneration in the Mouse. Methods in Molecular Biology, vol 1460. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3810-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3810-0_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3808-7

  • Online ISBN: 978-1-4939-3810-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics