Skip to main content

Evolving Relevance of Neuroproteomics in Alzheimer’s Disease

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1598))

Abstract

Substantial progress in the understanding of the biology of Alzheimer’s disease (AD) has been achieved over the past decades. The early detection and diagnosis of AD and other age-related neurodegenerative diseases, however, remain a challenging scientific frontier. Therefore, the comprehensive discovery (relating to all individual, converging or diverging biochemical disease mechanisms), development, validation, and qualification of standardized biological markers with diagnostic and prognostic functions with a precise performance profile regarding specificity, sensitivity, and positive and negative predictive value are warranted.

Methodological innovations in the area of exploratory high-throughput technologies, such as sequencing, microarrays, and mass spectrometry-based analyses of proteins/peptides, have led to the generation of large global molecular datasets from a multiplicity of biological systems, such as biological fluids, cells, tissues, and organs. Such methodological progress has shifted the attention to the execution of hypothesis-independent comprehensive exploratory analyses (opposed to the classical hypothesis-driven candidate approach), with the aim of fully understanding the biological systems in physiology and disease as a whole. The systems biology paradigm integrates experimental biology with accurate and rigorous computational modelling to describe and foresee the dynamic features of biological systems. The use of dynamically evolving technological platforms, including mass spectrometry, in the area of proteomics has enabled to rush the process of biomarker discovery and validation for refining significantly the diagnosis of AD. Currently, proteomics—which is part of the systems biology paradigm—is designated as one of the dominant matured sciences needed for the effective exploratory discovery of prospective biomarker candidates expected to play an effective role in aiding the early detection, diagnosis, prognosis, and therapy development in AD.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Blennow K, de Leon MJ, Zetterberg H (2006) Alzheimer’s disease. Lancet 368:387–403

    Article  CAS  PubMed  Google Scholar 

  2. Hardy J (2006) Alzheimer’s disease: the amyloid cascade hypothesis: an update and reappraisal. J Alzheimers Dis 9:151–153

    Article  CAS  PubMed  Google Scholar 

  3. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  CAS  PubMed  Google Scholar 

  4. O’Brien RJ, Wong PC (2011) Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci 34:185–204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Gendron TF, Petrucelli L (2009) The role of tau in neurodegeneration. Mol Neurodegener 4:13. doi:10.1186/1750-1326-4-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Giannopoulos PF, Joshi YB, Praticò D (2014) Novel lipid signaling pathways in Alzheimer’s disease pathogenesis. Biochem Pharmacol 88:560–564

    Article  CAS  PubMed  Google Scholar 

  7. Di Paolo G, Kim TW (2011) Linking lipids to Alzheimer’s disease: cholesterol and beyond. Nat Rev Neurosci 12:284–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Verri M, Pastoris O, Dossena M et al (2012) Int J Immunopathol Pharmacol 25:345–353

    Article  CAS  PubMed  Google Scholar 

  9. Francis PT (2005) The interplay of neurotransmitters in Alzheimer’s disease. CNS Spectr 10:6–9

    Article  PubMed  Google Scholar 

  10. Kaddurah-Daouk R, Zhu H, Sharma S et al (2013) Alterations in metabolic pathways and networks in Alzheimer’s disease. Transl Psychiatry 3:e244. doi:10.1038/tp.2013.18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Noorbakhsh F, Overall CM, Power C (2009) Deciphering complex mechanisms in neurodegenerative diseases: the advent of systems biology. Trends Neurosci 32:88–100

    Article  CAS  PubMed  Google Scholar 

  12. Lausted C, Lee I, Zhou Y et al (2014) Systems approach to neurodegenerative disease biomarker discovery. Annu Rev Pharmacol Toxicol 54:457–481

    Article  CAS  PubMed  Google Scholar 

  13. Morris JK, Honea RA, Vidoni ED et al (2014) Is Alzheimer’s disease a systemic disease? Biochim Biophys Acta 1842:1340–1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Riviere S, Gillette-Guyonnet S, Andrieu S et al (2002) Cognitive function and caregiver burden: predictive factors for eating behaviour disorders in Alzheimer’s disease. Int J Geriatr Psychiatry 17:950–955

    Article  PubMed  Google Scholar 

  15. Hampel H, Lista S, Khachaturian ZS (2012) Development of biomarkers to chart all Alzheimer’s disease stages: the royal road to cutting the therapeutic Gordian Knot. Alzheimers Dement 8:312–336

    Article  CAS  PubMed  Google Scholar 

  16. Bensimon A, Heck AJ, Aebersold R (2012) Mass spectrometry based proteomics and network biology. Annu Rev Biochem 81:379–405

    Article  CAS  PubMed  Google Scholar 

  17. Sabido’ E, Selevsek N, Aebersold R (2012) Mass spectrometry based proteomics for systems biology. Curr Opin Biotechnol 23:591–597

    Article  CAS  Google Scholar 

  18. Tyers M, Mann M (2003) From genomics to proteomics. Nature 422:193–197

    Article  CAS  PubMed  Google Scholar 

  19. Shevchenko G, Konzer A, Musunuri S et al (2015) Neuroproteomics tools in clinical practice. Biochim Biophys Acta 1854:705–717

    Article  CAS  PubMed  Google Scholar 

  20. Marko-Varga G, Fehniger TE (2004) Proteomics and disease—the challenges for technology and discovery. J Proteome Res 3:167–178

    Article  CAS  PubMed  Google Scholar 

  21. Kim SI, Voshol H, van Oostrum J et al (2004) Neuroproteomics: expression profiling of the brain’s proteomes in health and disease. Neurochem Res 29:1317–1331

    Article  CAS  PubMed  Google Scholar 

  22. Hamacher M, Meyer HE (2005) HUPO Brain Proteome Project: aims and needs in proteomics. Expert Rev Proteomics 2:1–3

    Article  PubMed  Google Scholar 

  23. Lista S, O’Bryant SE, Blennow K et al (2015) Biomarkers in sporadic and familial Alzheimer’s disease. J Alzheimers Dis 47(2):291–317. doi:10.3233/JAD-143006

    Article  PubMed  Google Scholar 

  24. Hampel H, Lista S, Teipel SJ et al (2014) Perspective on future role of biological markers in clinical therapy trials of Alzheimer’s disease: a long-range point of view beyond 2020. Biochem Pharmacol 88:426–449

    Article  CAS  PubMed  Google Scholar 

  25. Dubois B, Epelbaum S, Santos A et al (2013) Alzheimer disease: from biomarkers to diagnosis. Rev Neurol (Paris) 169:744–751

    Article  CAS  Google Scholar 

  26. Hampel H, Lista S (2013) Use of biomarkers and imaging to assess pathophysiology, mechanisms of action and target engagement. J Nutr Health Aging 17:54–63

    Article  CAS  PubMed  Google Scholar 

  27. Hampel H, Lista S (2012) Alzheimer disease: from inherited to sporadic AD-crossing the biomarker bridge. Nat Rev Neurol 8:598–600

    Article  PubMed  Google Scholar 

  28. Bertram L, Hampel H (2011) The role of genetics for biomarker development in neurodegeneration. Prog Neurobiol 95:501–514

    Article  CAS  PubMed  Google Scholar 

  29. Zetzsche T, Rujescu D, Hardy J et al (2010) Advances and perspectives from genetic research: development of biological markers in Alzheimer’s disease. Expert Rev Mol Diagn 10:667–690

    Article  CAS  PubMed  Google Scholar 

  30. Teipel SJ, Grothe M, Lista S et al (2013) Relevance of magnetic resonance imaging for early detection and diagnosis of Alzheimer disease. Med Clin North Am 97:399–424

    Article  PubMed  Google Scholar 

  31. Ewers M, Sperling RA, Klunk WE et al (2012) Neuroimaging markers for the prediction and early diagnosis of Alzheimer’s disease dementia. Trends Neurosci 34:430–442

    Article  CAS  Google Scholar 

  32. Rosén C, Hansson O, Blennow K et al (2013) Fluid biomarkers in Alzheimer’s disease—current concepts. Mol Neurodegener 8:20. doi:10.1186/1750-1326-8-20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Blennow K, Zetterberg H, Fagan AM (2012) Fluid biomarkers in Alzheimer disease. Cold Spring Harb Perspect Med 2:a006221. doi:10.1101/cshperspect.a006221

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Blennow K, Dubois B, Fagan AM et al (2015) Clinical utility of cerebrospinal fluid biomarkers in the diagnosis of early Alzheimer’s disease. Alzheimers Dement 11:58–69

    Article  PubMed  Google Scholar 

  35. Blennow K, Hampel H, Weiner M et al (2010) Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol 6:131–144

    Article  CAS  PubMed  Google Scholar 

  36. Hampel H, Shen Y, Walsh DM et al (2010) Biological markers of amyloid beta-related mechanisms in Alzheimer’s disease. Exp Neurol 223:334–346

    Article  CAS  PubMed  Google Scholar 

  37. Hampel H, Blennow K, Shaw LM et al (2010) Total and phosphorylated tau protein as biological markers of Alzheimer’s disease. Exp Gerontol 45:30–40

    Article  CAS  PubMed  Google Scholar 

  38. Henriksen K, O’Bryant SE, Hampel H et al (2014) The future of blood-based biomarkers for Alzheimer’s disease. Alzheimers Dement 10:115–131

    Article  PubMed  Google Scholar 

  39. O’Bryant SE, Gupta V, Henriksen K et al (2015) Guidelines for the standardization of preanalytic variables for blood-based biomarker studies in Alzheimer’s disease research. Alzheimers Dement 11:549–560

    Article  PubMed  Google Scholar 

  40. Snyder HM, Carrillo MC, Grodstein F et al (2014) Developing novel blood-based biomarkers for Alzheimer’s disease. Alzheimers Dement 10:109–114

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gupta VB, Sundaram R, Martins RN (2013) Multiplex biomarkers in blood. Alzheimers Res Ther 5:31. doi:10.1186/alzrt185

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lista S, Faltraco F, Prvulovic D et al (2013) Blood and plasma-based proteomic biomarker research in Alzheimer’s disease. Prog Neurobiol 101–102:1–17

    Article  PubMed  CAS  Google Scholar 

  43. Edwards M, Balldin VH, Hall J et al (2014) Combining select neuropsychological assessment with blood-based biomarkers to detect mild Alzheimer’s disease: a molecular neuropsychology approach. J Alzheimers Dis 42:635–640

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lista S, Garaci FG, Ewers M et al (2014) CSF Aβ1-42 combined with neuroimaging biomarkers in the early detection, diagnosis and prediction of Alzheimer’s disease. Alzheimers Dement 10:381–392

    Article  PubMed  Google Scholar 

  45. Teipel SJ, Sabri O, Grothe M et al (2013) Perspectives for multimodal neurochemical and imaging biomarkers in Alzheimer’s disease. J Alzheimers Dis 33:S329–S347

    PubMed  Google Scholar 

  46. Lista S, Emanuele E (2011) Role of amyloid β1-42 and neuroimaging biomarkers in Alzheimer’s disease. Biomark Med 5:411–413

    Article  CAS  PubMed  Google Scholar 

  47. Broich K, Weiergräber M, Hampel H (2011) Biomarkers in clinical trials for neurodegenerative diseases: regulatory perspectives and requirements. Prog Neurobiol 95:498–500

    Article  CAS  PubMed  Google Scholar 

  48. Hampel H, Frank R, Broich K et al (2010) Biomarkers for Alzheimer’s disease: academic, industry and regulatory perspectives. Nat Rev Drug Discov 9:560–574

    Article  CAS  PubMed  Google Scholar 

  49. Doody RS, Raman R, Farlow M et al (2013) A phase 3 trial of semagacestat for treatment of Alzheimer’s disease. N Engl J Med 369:341–350

    Article  CAS  PubMed  Google Scholar 

  50. Salloway S, Sperling R, Fox NC et al (2014) Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med 37:322–333

    Article  CAS  Google Scholar 

  51. Doody RS, Thomas RG, Farlow M et al (2014) Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med 370:311–321

    Article  CAS  PubMed  Google Scholar 

  52. Karran E, Hardy J (2014) Antiamyloid therapy for Alzheimer’s disease—are we on the right road? N Engl J Med 370:377–378

    Article  CAS  PubMed  Google Scholar 

  53. Brinkmalm A, Portelius E, Öhrfelt A et al (2015) Explorative and targeted neuroproteomics in Alzheimer’s disease. Biochim Biophys Acta 1854:769–778

    Article  CAS  PubMed  Google Scholar 

  54. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    Article  CAS  PubMed  Google Scholar 

  55. Evans C, Noirel J, Ow SY et al (2012) An insight into iTRAQ: where do we stand now? Anal Bioanal Chem 404:1011–1027

    Article  CAS  PubMed  Google Scholar 

  56. Ong SE, Blagoev B, Kratchmarova I et al (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386

    Article  CAS  PubMed  Google Scholar 

  57. Hölttä M, Minthon L, Hansson O et al (2015) An integrated workflow for multiplex CSF proteomics and peptidomics-identification of candidate cerebrospinal fluid biomarkers of Alzheimer’s disease. J Proteome Res 14:654–663

    Article  PubMed  CAS  Google Scholar 

  58. Mattsson N, Zegers I, Andreasson U et al (2012) Reference measurement procedures for Alzheimer’s disease cerebrospinal fluid biomarkers: definitions and approaches with focus on amyloid β42. Biomark Med 6:409–417

    Article  CAS  PubMed  Google Scholar 

  59. Mann M, Kulak NA, Nagaraj N et al (2013) The coming age of complete, accurate, and ubiquitous proteomes. Mol Cell 49:583–590

    Article  CAS  PubMed  Google Scholar 

  60. Portelius E, Gustavsson MK, Zetterberg H et al (2012) Evaluation of the performance of novel Aβ isoforms as theragnostic markers in Alzheimer’s disease: from the cell to the patient. Neurodegener Dis 10:138–140

    Article  CAS  PubMed  Google Scholar 

  61. Portelius E, Price E, Brinkmalm G et al (2011) A novel pathway for amyloid precursor protein processing. Neurobiol Aging 32:1090–1098

    Article  CAS  PubMed  Google Scholar 

  62. Perrin RJ, Craig-Schapiro R, Malone JP et al (2011) Identification and validation of novel cerebrospinal fluid biomarkers for staging early Alzheimer’s disease. PLoS One 6:e16032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Craig-Schapiro R, Kuhn M, Xiong C et al (2011) Multiplexed immunoassay panel identifies novel CSF biomarkers for Alzheimer’s disease diagnosis and prognosis. PLoS One 6:e18850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Craig-Schapiro R, Perrin RJ, Roe CM et al (2010) YKL-40: a novel prognostic fluid biomarker for preclinical Alzheimer’s disease. Biol Psychiatry 68:903–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Portelius E, Dean RA, Gustavsson MK et al (2010) A novel Abeta isoform pattern in CSF reflects gamma-secretase inhibition in Alzheimer disease. Alzheimers Res Ther 2:7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Albertini V, Bruno A, Paterlini A et al (2010) Optimization protocol for amyloid-β peptides detection in human cerebrospinal fluid using SELDI TOF MS. Proteomics Clin Appl 4:352–357

    Article  CAS  PubMed  Google Scholar 

  67. Portelius E, Brinkmalm G, Tran AJ et al (2009) Identification of novel APP/Abeta isoforms in human cerebrospinal fluid. Neurodegener Dis 6:87–94

    Article  CAS  PubMed  Google Scholar 

  68. Simonsen AH, McGuire J, Podust VN et al (2008) Identification of a novel panel of cerebrospinal fluid biomarkers for Alzheimer’s disease. Neurobiol Aging 29:961–968

    Article  CAS  PubMed  Google Scholar 

  69. Simonsen AH, McGuire J, Hansson O et al (2007) Novel panel of cerebrospinal fluid biomarkers for the prediction of progression to Alzheimer dementia in patients with mild cognitive impairment. Arch Neurol 64:366–370

    Article  PubMed  Google Scholar 

  70. Simonsen AH, McGuire J, Podust VN et al (2007) A novel panel of cerebrospinal fluid biomarkers for the differential diagnosis of Alzheimer’s disease versus normal aging and frontotemporal dementia. Dement Geriatr Cogn Disord 24:434–440

    Article  CAS  PubMed  Google Scholar 

  71. Finehout EJ, Franck Z, Choe LH et al (2007) Cerebrospinal fluid proteomic biomarkers for Alzheimer’s disease. Ann Neurol 61:120–129

    Article  CAS  PubMed  Google Scholar 

  72. Portelius E, Tran AJ, Andreasson U et al (2007) Characterization of amyloid beta peptides in cerebrospinal fluid by an automated immunoprecipitation procedure followed by mass spectrometry. J Proteome Res 6:4433–4439

    Article  CAS  PubMed  Google Scholar 

  73. Hu Y, Hosseini A, Kauwe JS et al (2007) Identification and validation of novel CSF biomarkers for early stages of Alzheimer’s disease. Proteomics Clin Appl 1:1373–1384

    Article  CAS  PubMed  Google Scholar 

  74. Portelius E, Zetterberg H, Andreasson U et al (2006) An Alzheimer’s disease-specific beta amyloid fragment signature in cerebrospinal fluid. Neurosci Lett 409:215–219

    Article  CAS  PubMed  Google Scholar 

  75. Portelius E, Westman-Brinkmalm A, Zetterberg H et al (2006) Determination of beta-amyloid peptide signatures in cerebrospinal fluid using immunoprecipitation–mass spectrometry. J Proteome Res 5:1010–1016

    Article  CAS  PubMed  Google Scholar 

  76. Abdi F, Quinn JF, Jankovic J et al (2006) Detection of biomarkers with a multiplex quantitative proteomic platform in cerebrospinal fluid of patients with neurodegenerative disorders. J Alzheimers Dis 9:293–348

    Article  CAS  PubMed  Google Scholar 

  77. Selle H, Lamerz J, Buerger K et al (2005) Identification of novel biomarker candidates by differential peptidomics analysis of cerebrospinal fluid in Alzheimer’s disease. Comb Chem High Throughput Screen 8:801–806

    Article  CAS  PubMed  Google Scholar 

  78. Zhang J, Goodlett DR, Quinn JF et al (2005) Quantitative proteomics of cerebrospinal fluid from patients with Alzheimer disease. J Alzheimers Dis 7:125–133

    Article  CAS  PubMed  Google Scholar 

  79. Carrette O, Demalte I, Scherl A et al (2003) A panel of cerebrospinal fluid potential biomarkers for the diagnosis of Alzheimer’s disease. Proteomics 3:1486–1494

    Article  CAS  PubMed  Google Scholar 

  80. Puchades M, Hansson SF, Nilsson CL et al (2003) Proteomic studies of potential cerebrospinal fluid protein markers for Alzheimer’s disease. Brain Res Mol Brain Res 118:140–146

    Article  CAS  PubMed  Google Scholar 

  81. Davidsson P, Westman-Brinkmalm A, Nilsson CL et al (2002) Proteome analysis of cerebrospinal fluid proteins in Alzheimer patients. Neuroreport 13:611–615

    Article  CAS  PubMed  Google Scholar 

  82. Kiddle SJ, Steves CJ, Mehta M et al (2015) Plasma protein biomarkers of Alzheimer’s disease endophenotypes in asymptomatic older twins: early cognitive decline and regional brain volumes. Transl Psychiatry 5:e584. doi:10.1038/tp.2015.78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Muenchhoff J, Poljak A, Song F et al (2015) Plasma protein profiling of mild cognitive impairment and Alzheimer’s disease across two independent cohorts. J Alzheimers Dis 43:1355–1373

    CAS  PubMed  Google Scholar 

  84. Zhao X, Lejnine S, Spond J et al (2015) A candidate plasma protein classifier to identify Alzheimer’s disease. J Alzheimers Dis 43:549–563

    CAS  PubMed  Google Scholar 

  85. Yang H, Lyutvinskiy Y, Herukka SK et al (2014) Prognostic polypeptide blood plasma biomarkers of Alzheimer’s disease progression. J Alzheimers Dis 40:659–666

    CAS  PubMed  Google Scholar 

  86. Song F, Poljak A, Kochan NA et al (2014) Plasma protein profiling of Mild Cognitive Impairment and Alzheimer’s disease using iTRAQ quantitative proteomics. Proteome Sci 12:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Llano DA, Devanarayan V, Simon AJ (2013) Evaluation of plasma proteomic data for Alzheimer disease state classification and for the prediction of progression from mild cognitive impairment to Alzheimer disease. Alzheimer Dis Assoc Disord 27:233–243

    Article  CAS  PubMed  Google Scholar 

  88. Guo LH, Alexopoulos P, Wagenpfeil S (2013) Plasma proteomics for the identification of Alzheimer disease. Alzheimer Dis Assoc Disord 27:337–342

    Article  CAS  PubMed  Google Scholar 

  89. Doecke JD, Laws SM, Faux NG et al (2012) Blood-based protein biomarkers for diagnosis of Alzheimer disease. Arch Neurol 69:1318–1325

    Article  PubMed  Google Scholar 

  90. Hu WT, Holtzman DM, Fagan AM et al (2012) Plasma multianalyte profiling in mild cognitive impairment and Alzheimer disease. Neurology 79:897–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Soares HD, Potter WZ, Pickering E et al (2012) Plasma biomarkers associated with the apolipoprotein E genotype and Alzheimer disease. Arch Neurol 69:1310–1317

    Article  PubMed  PubMed Central  Google Scholar 

  92. Johnstone D, Milward EA, Berretta R et al (2012) Multivariate protein signatures of pre-clinical Alzheimer’s disease in the Alzheimer’s disease neuroimaging initiative (ADNI) plasma proteome dataset. PLoS One 7:e34341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. O’Bryant SE, Xiao G, Barber R et al (2011) A blood-based algorithm for the detection of Alzheimer’s disease. Dement Geriatr Cogn Disord 32:55–62

    Article  PubMed  PubMed Central  Google Scholar 

  94. O’Bryant SE, Xiao G, Barber R et al (2011) A blood-based screening tool for Alzheimer’s disease that spans serum and plasma: findings from TARC and ADNI. PLoS One 6:e28092

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. O’Bryant SE, Xiao G, Barber R et al (2010) A serum protein-based algorithm for the detection of Alzheimer disease. Arch Neurol 67:1077–1081

    Article  PubMed  PubMed Central  Google Scholar 

  96. Ray S, Britschgi M, Herbert C et al (2007) Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nat Med 13:1359–1362

    Article  CAS  PubMed  Google Scholar 

  97. Hye A, Lynham S, Thambisetty M et al (2006) Proteome-based plasma biomarkers for Alzheimer’s disease. Brain 129:3042–3050

    Article  CAS  PubMed  Google Scholar 

  98. Zhang J, Goodlett DR, Montine TJ (2005) Proteomic biomarker discovery in cerebrospinal fluid for neurodegenerative diseases. J Alzheimers Dis 8:377–386

    Article  CAS  PubMed  Google Scholar 

  99. Johanson CE, Duncan JA III, Klinge PM et al (2008) Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res 5:10. doi:10.1186/1743-8454-5-10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Hokfelt T, Broberger C, Xu ZQ et al (2000) Neuropeptides—an overview. Neuropharmacology 39:1337–1356

    Article  CAS  PubMed  Google Scholar 

  101. Reiber H (2001) Dynamics of brain-derived proteins in cerebrospinal fluid. Clin Chim Acta 310:173–186

    Article  CAS  PubMed  Google Scholar 

  102. Holtta M, Zetterberg H, Mirgorodskaya E et al (2012) Peptidome analysis of cerebrospinal fluid by LC–MALDI MS. PLoS One 7:e42555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. De Almeida SM, Shumaker SD, Leblanc SK et al (2011) Incidence of post-dural puncture headache in research volunteers. Headache 51:1503–1510

    Article  PubMed  PubMed Central  Google Scholar 

  104. Zetterberg H, Tullhög K, Hansson O et al (2010) Low incidence of post-lumbar puncture headache in 1,089 consecutive memory clinic patients. Eur Neurol 63:326–330

    Article  PubMed  Google Scholar 

  105. Schneider P, Hampel H, Buerger K (2009) Biological marker candidates of Alzheimer’s disease in blood, plasma, and serum. CNS Neurosci Ther 15:358–374

    Article  CAS  PubMed  Google Scholar 

  106. Thambisetty M, Lovestone S (2010) Blood-based biomarkers of Alzheimer’s disease: challenging but feasible. Biomark Med 4:65–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lista S, Faltraco F, Hampel H (2013) Biological and methodical challenges of blood-based proteomics in the field of neurological research. Prog Neurobiol 101-102:18–34

    Article  CAS  PubMed  Google Scholar 

  108. Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1:845–867

    Article  CAS  PubMed  Google Scholar 

  109. Gillette MA, Mani DR, Carr SA (2005) Place of pattern in proteomic biomarker discovery. J Proteome Res 4:1143–1154

    Article  CAS  PubMed  Google Scholar 

  110. Boschetti E, Lomas L, Citterio A et al (2007) Romancing the hidden proteome, Anno Domini two zero zero seven. J Chromatogr A 1153:277–290

    Article  CAS  PubMed  Google Scholar 

  111. Burtis CA, Ashwood E (eds) (2001) Tietz fundamentals of clinical chemistry. W.B. Saunders, Philadelphia, PA, USA

    Google Scholar 

  112. Apweiler R, Aslanidis C, Deufel T et al (2009) Approaching clinical proteomics: current state and future fields of application in fluid proteomics. Clin Chem Lab Med 47:724–744

    Article  CAS  PubMed  Google Scholar 

  113. Omenn GS, States DJ, Adamski M et al (2005) Overview of the HUPO Plasma Proteome Project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics 5:3226–3245

    Article  CAS  PubMed  Google Scholar 

  114. Omenn GS (2011) Data management and data integration in the HUPO plasma proteome project. Methods Mol Biol 696:247–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

H.H. and S.L. are supported by the AXA Research Fund, the Fondation Université Pierre et Marie Curie and the “Fondation pour la Recherche sur Alzheimer, Paris, France. The research leading to these results has received funding from the program “Investissements d’avenir” ANR-10-IAIHU-06. H.Z. and K.B. are supported by the Swedish Research Council and Alzheimer’s Association and cochair the Alzheimer’s Association Global Biomarker Standardization Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Lista Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Lista, S., Zetterberg, H., O’Bryant, S.E., Blennow, K., Hampel, H. (2017). Evolving Relevance of Neuroproteomics in Alzheimer’s Disease. In: Kobeissy, F., Stevens, Jr., S. (eds) Neuroproteomics. Methods in Molecular Biology, vol 1598. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6952-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6952-4_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6950-0

  • Online ISBN: 978-1-4939-6952-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics