Skip to main content

Inflammatory and Immune System Markers

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1710))

Abstract

Since preeclampsia was first described by Hippocrates in 400 BC, the theory of its causation has shifted from toxins to a current theory that incorporates both vascular and immunological causation. Poor placentation whether it is genetically predisposed or due to low expression of defective HLA-G on fetal trophoblasts is believed to be the initial insult. Oxidative stress from placental ischemia/hypoxia leads to an overload of trophoblast debris by stimulating apoptosis or necrosis. Partial failure of the maternal immune system to tolerate the paternal alloantigens activates maternal immune cells to secrete cytokines whose pleiotropic functions lead to dysfunction of the maternal vascular and placental endothelium, blood coagulation, and fibrinolytic system. This chapter describes some of the key methodologies (flow cytometry, ELISAs, and multiplex immunoassays) for the identification and quantification of inflammation and immune system markers in the study of preeclampsia pathogenesis, as well as diagnostic and therapeutic development. The methodologies may be utilized for a variety of tissue sources in the study of preeclampsia: maternal peripheral blood, umbilical cord blood, intervillous blood, decidua, chorionic villous, amnion and chorion membranes, and cell culture supernatant.

This is a preview of subscription content, log in via an institution.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Picot J et al (2012) Flow cytometry: retrospective, fundamentals and recent instrumentation. Cytotechnology 64(2):109–130

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hsu P, Nanan RK (2014) Innate and adaptive immune interactions at the fetal-maternal interface in healthy human pregnancy and pre-eclampsia. Front Immunol 5:125

    Article  PubMed  PubMed Central  Google Scholar 

  3. Luppi P et al (2006) Preeclampsia activates circulating immune cells with engagement of the NF-kappaB pathway. Am J Reprod Immunol 56(2):135–144

    Article  CAS  PubMed  Google Scholar 

  4. Prins JR et al (2009) Preeclampsia is associated with lower percentages of regulatory T cells in maternal blood. Hypertens Pregnancy 28(3):300–311

    Article  PubMed  Google Scholar 

  5. Wilczynski JR et al (2002) Cytokine secretion by decidual lymphocytes in transient hypertension of pregnancy and pre-eclampsia. Mediat Inflamm 11(2):105–111

    Article  CAS  Google Scholar 

  6. Saito S et al (1999) Quantitative analysis of peripheral blood Th0, Th1, Th2 and the Th1:Th2 cell ratio during normal human pregnancy and preeclampsia. Clin Exp Immunol 117(3):550–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sasaki Y et al (2007) Proportion of peripheral blood and decidual CD4(+) CD25(bright) regulatory T cells in pre-eclampsia. Clin Exp Immunol 149(1):139–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sacks GP et al (1998) Normal pregnancy and preeclampsia both produce inflammatory changes in peripheral blood leukocytes akin to those of sepsis. Am J Obstet Gynecol 179(1):80–86

    Article  CAS  PubMed  Google Scholar 

  9. Rieger L et al (2009) Specific subsets of immune cells in human decidua differ between normal pregnancy and preeclampsia-a prospective observational study. Reprod Biol Endocrinol 7:132

    Article  PubMed  PubMed Central  Google Scholar 

  10. Stallmach T et al (1999) Aberrant positioning of trophoblast and lymphocytes in the feto-maternal interface with pre-eclampsia. Virchows Arch 434(3):207–211

    Article  CAS  PubMed  Google Scholar 

  11. de Groot CJ et al (2010) Preeclampsia is associated with increased cytotoxic T-cell capacity to paternal antigens. Am J Obstet Gynecol 203(5):496.e1–496.e6

    Article  Google Scholar 

  12. Huang SJ et al (2008) Pre-eclampsia is associated with dendritic cell recruitment into the uterine decidua. J Pathol 214(3):328–336

    Article  CAS  PubMed  Google Scholar 

  13. Darmochwal-Kolarz D et al (2003) Myeloid and lymphoid dendritic cells in normal pregnancy and pre-eclampsia. Clin Exp Immunol 132(2):339–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Estensen ME et al (2015) Elevated inflammatory markers in preeclamptic pregnancies, but no relation to systemic arterial stiffness. Pregnancy Hypertens 5(4):325–329

    Article  PubMed  Google Scholar 

  15. Austgulen R et al (1997) Increased maternal plasma levels of soluble adhesion molecules (ICAM-1, VCAM-1, E-selectin) in preeclampsia. Eur J Obstet Gynecol Reprod Biol 71(1):53–58

    Article  CAS  PubMed  Google Scholar 

  16. Kim S-Y et al (2004) Maternal serum levels of VCAM-1, ICAM-1 and E-selectin in preeclampsia. J Korean Med Sci 19(5):688–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Saito S et al (1999) Increased T-helper-1-type immunity and decreased T-helper-2-type immunity in patients with preeclampsia. Am J Reprod Immunol 41(5):297–306

    Article  CAS  PubMed  Google Scholar 

  18. Darmochwal-Kolarz D et al (1999) T helper 1- and T helper 2-type cytokine imbalance in pregnant women with pre-eclampsia. Eur J Obstet Gynecol Reprod Biol 86(2):165–170

    Article  CAS  PubMed  Google Scholar 

  19. Kocyigit Y et al (2004) Changes in serum levels of leptin, cytokines and lipoprotein in pre-eclamptic and normotensive pregnant women. Gynecol Endocrinol 19(5):267–273

    Article  CAS  PubMed  Google Scholar 

  20. Luppi P, Deloia JA (2006) Monocytes of preeclamptic women spontaneously synthesize pro-inflammatory cytokines. Clin Immunol 118(2–3):268–275

    Article  CAS  PubMed  Google Scholar 

  21. Sunder-Plassmann G et al (1989) Increased serum activity of interleukin-2 in patients with pre-eclampsia. J Autoimmun 2(2):203–205

    Article  CAS  PubMed  Google Scholar 

  22. Jonsson Y et al (2006) Cytokine mapping of sera from women with preeclampsia and normal pregnancies. J Reprod Immunol 70(1–2):83–91

    Article  CAS  PubMed  Google Scholar 

  23. Vince GS et al (1995) Interleukin-6, tumour necrosis factor and soluble tumour necrosis factor receptors in women with pre-eclampsia. Br J Obstet Gynaecol 102(1):20–25

    Article  CAS  PubMed  Google Scholar 

  24. Conrad KP, Miles TM, Benyo DF (1998) Circulating levels of immunoreactive cytokines in women with preeclampsia. Am J Reprod Immunol 40(2):102–111

    Article  CAS  PubMed  Google Scholar 

  25. Madazli R et al (2003) Maternal plasma levels of cytokines in normal and preeclamptic pregnancies and their relationship with diastolic blood pressure and fibronectin levels. Acta Obstet Gynecol Scand 82(9):797–802

    Article  PubMed  Google Scholar 

  26. Velzing-Aarts FV et al (2002) High serum interleukin-8 levels in afro-caribbean women with pre-eclampsia. Relations with tumor necrosis factor-alpha, duffy negative phenotype and von Willebrand factor. Am J Reprod Immunol 48(5):319–322

    Article  PubMed  Google Scholar 

  27. Kupferminc MJ et al (1994) Tumor necrosis factor-α is elevated in plasma and amniotic fluid of patients with severe preeclampsia. Am J Obstet Gynecol 170(5):1752–1759

    Article  CAS  PubMed  Google Scholar 

  28. Heyl W et al (2005) Increased soluble VCAM-1 serum levels in preeclampsia are not correlated to urinary excretion or circadian blood pressure rhythm. J Perinat Med 33(2):144–148

    Article  CAS  PubMed  Google Scholar 

  29. Budak E et al (1998) Vascular cell adhesion molecule-1 (VCAM-1) and leukocyte activation in pre-eclampsia and eclampsia. Int J Gynaecol Obstet 63(2):115–121

    Article  CAS  PubMed  Google Scholar 

  30. Daniel Y et al (1999) A selective increase in plasma soluble vascular cell adhesion molecule-1 levels in preeclampsia. Am J Reprod Immunol 41(6):407–412

    Article  CAS  PubMed  Google Scholar 

  31. Siddiqui AH et al (2010) Angiotensin receptor agonistic autoantibody is highly prevalent in preeclampsia. Hypertension 55(2):386

    Article  CAS  PubMed  Google Scholar 

  32. Hubel CA et al (2007) Agonistic angiotensin II type 1 receptor autoantibodies in postpartum women with a history of preeclampsia. Hypertension 49(3):612

    Article  CAS  PubMed  Google Scholar 

  33. LaMarca B et al (2008) Autoantibodies to the angiotensin type I receptor in response to placental ischemia and tumor necrosis factor α in pregnant rats. Hypertension 52(6):1168–1172

    Article  CAS  PubMed  Google Scholar 

  34. LaMarca B et al (2009) Hypertension in response to autoantibodies to the angiotensin II type I receptor (AT1-AA) in pregnant rats. Hypertension 54(4):905

    Article  CAS  PubMed  Google Scholar 

  35. Branch DW et al (1994) Pre-eclampsia and serum antibodies to oxidised low-density lipoprotein. Lancet 343(8898):645–646

    Article  CAS  PubMed  Google Scholar 

  36. Kestlerová A et al (2012) Immunological and biochemical markers in preeclampsia. J Reprod Immunol 96(1–2):90–94

    Article  PubMed  Google Scholar 

  37. do Prado AD et al (2010) Association of anticardiolipin antibodies with preeclampsia: a systematic review and meta-analysis. Obstet Gynecol 116(6):1433–1443

    Article  PubMed  Google Scholar 

  38. Yamamoto T et al (1996) Anti-phospholipid antibodies in preeclampsia and their binding ability for placental villous lipid fractions. J Obstet Gynaecol Res 22(3):275–283

    Article  CAS  PubMed  Google Scholar 

  39. Saghafi N et al (2014) Evaluation of selected thrombotic factors among pregnant women with preeclampsia and normal pregnant women. Iran J Reprod Med 12(12):793–798

    PubMed  PubMed Central  Google Scholar 

  40. Crowther JR, Angarita L, Anderson J (1990) Evaluation of the use of chromogenic and fluorogenic substrates in solid-phase enzyme linked immunosorbent assays (ELISA). Biologicals 18(4):331–336

    Article  CAS  PubMed  Google Scholar 

  41. Blais BW et al (2004) Comparison of fluorogenic and chromogenic assay systems in the detection of Escherichia coli O157 by a novel polymyxin-based ELISA. Lett Appl Microbiol 39(6):516–522

    Article  CAS  PubMed  Google Scholar 

  42. duPont NC et al (2005) Validation and comparison of luminex multiplex cytokine analysis kits with ELISA: determinations of a panel of nine cytokines in clinical sample culture supernatants. J Reprod Immunol 66(2):175–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Leng SX et al (2008) ELISA and multiplex technologies for cytokine measurement in inflammation and aging research. J Gerontol A Biol Sci Med Sci 63(8):879–884

    Article  PubMed  Google Scholar 

  44. Salem M et al (2015) Flow cytometric assessment of endothelial and platelet microparticles in preeclampsia and their relation to disease severity and Doppler parameters. Hematology 20(3):154–159

    Article  PubMed  Google Scholar 

  45. Martinez-Fierro ML et al (2015) Plasma cancer biomarker multiplex screening and the risk of subsequent preeclampsia. Int J Cardiol 179:58–60

    Article  PubMed  Google Scholar 

  46. Dimeski G (2008) Interference testing. Clin Biochem Rev 29(Suppl 1):S43–S48

    PubMed  PubMed Central  Google Scholar 

  47. Chang S, Lamm SH (2003) Human health effects of sodium azide exposure: a literature review and analysis. Int J Toxicol 22(3):175–186

    Article  CAS  PubMed  Google Scholar 

  48. Russo I et al (2008) Sodium azide, a bacteriostatic preservative contained in commercially available laboratory reagents, influences the responses of human platelets via the cGMP/PKG/VASP pathway. Clin Biochem 41(4–5):343–349

    Article  CAS  PubMed  Google Scholar 

  49. Telford WG et al (2009) Green fiber lasers: an alternative to traditional DPSS green lasers for flow cytometry. Cytometry A 75A(12):1031–1039

    Article  Google Scholar 

  50. Maecker HT, Trotter J (2006) Flow cytometry controls, instrument setup, and the determination of positivity. Cytometry A 69A(9):1037–1042

    Article  Google Scholar 

  51. Hulspas R et al (2009) Considerations for the control of background fluorescence in clinical flow cytometry. Cytometry B Clin Cytom 76B(6):355–364

    Article  CAS  Google Scholar 

  52. Roederer M (2001) Spectral compensation for flow cytometry: visualization artifacts, limitations, and caveats. Cytometry 45(3):194–205

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Kelly J. McKelvey’s work is supported by the National Health and Medical Research Council (NHMRC), Australia (CIA Jonathan M. Morris, grant number GNT1066606, 2014); Gaayathri Ariyakumar by Albert S. McKern Research Scholarship; and Sharon A. McCracken’s by Ramsay Health Care, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly J. McKelvey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

McKelvey, K.J., Ariyakumar, G., McCracken, S.A. (2018). Inflammatory and Immune System Markers. In: Murthi, P., Vaillancourt, C. (eds) Preeclampsia . Methods in Molecular Biology, vol 1710. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7498-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7498-6_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7497-9

  • Online ISBN: 978-1-4939-7498-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics