Skip to main content

Polymorphisms and Male Infertility

  • Chapter

Abstract

The analysis of polymorphisms in genes involved in spermatogenesis represents one of the most exciting areas of research in the genetics of male infertility. These studies are not only important for identifying genetic risk factors for male infertility, but they may also represent an important starting point for searching for genes involved in spermatogenesis through linkage analysis. Despite many efforts, we often face frustrating situations in which initial promising data are not confirmed in later studies. Discrepancies between association studies are rather frequent and can be related to different factors, such as inadequate sample size, the pathogenetic heterogeneity of infertility, inappropriate control subjects, positive publication bias, and ethnic and geographic differences.

It is likely that some polymorphisms only lead to testicular dysfunction when associated with a specific genetic background or with environmental factors. The role of genetic background seems to be especially relevant for one of the most promising genetic risk factors, the gr-gr deletions of the Y chromosome. Certain gene variants may cause specific phenotypes and consequently only the analysis of a specific subgroup of patients is able to identify their clinical significance. To obtain reliable and clinically useful data, much more attention should be focused on the correct study design, which is still the major weakness of association studies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Forti G, Krausz C. Clinical review 100: evaluation and treatment of the infertile couple. J Clin Endocrinol Metab 1998;83:4177–4188.

    Article  PubMed  CAS  Google Scholar 

  2. van der Ven K, Fimmers R, Engels G, van der Ven H, Krebs D. Evidence for major histocompatibility complex-mediated effects on spermatogenesis in humans. Hum Reprod 2000;15:189–196.

    Article  PubMed  Google Scholar 

  3. Matsuzaka Y, Makino S, Okamoto K, et al. Susceptibility locus for non-obstructive azoospermia is localized within the HLA-DR/DQ subregion: primary role of DQB1*0604. Tissue Antigens 2002;60:53–63.

    Article  PubMed  CAS  Google Scholar 

  4. Ruiz-Pesini E, Lapena AC, Diez-Sanchez C, et al. Human mtDNA haplogroups associated with high or reduced spermatozoa motility. Am J Hum Genet 2000;67:682–696.

    Article  PubMed  CAS  Google Scholar 

  5. St John JC, Jokhi RP, Barratt CL. The impact of mitochondrial genetics on male infertility. Int J Androl 2005;28:65–73.

    Article  PubMed  CAS  Google Scholar 

  6. Krausz C, Quintana-Murci L, Rajpert-De Meyts E, et al. Identification of a Y chromosome haplogroup associated with reduced sperm counts. Hum Mol Genet 2001;10:1873–1877.

    Article  PubMed  CAS  Google Scholar 

  7. Krausz C, Quintana-Murci L, Forti G. Y chromosome polymorphisms in medicine. Ann Med 2004;36:573–583.

    Article  PubMed  CAS  Google Scholar 

  8. Yong EL, Loy CJ, Sim KS. Androgen receptor gene and male infertility. Hum Reprod Update 2003;9:1–7.

    Article  PubMed  CAS  Google Scholar 

  9. Tut TG, Ghadessy FJ, Trifiro MA, Pinsky L, Yong EL. Long polyglutamine tracts in the androgen receptor are associated with reduced trans-activation, impaired sperm production, and male infertility. J Clin Endocrinol Metab 1997;82:3777–3782.

    Article  PubMed  CAS  Google Scholar 

  10. Asatiani K, von Eckardstein S, Simoni M, Gromoll J, Nieschlag E. CAG repeat length in the androgen receptor gene affects the risk of male infertility. Int J Androl 2003;26:255–261.

    Article  PubMed  CAS  Google Scholar 

  11. Ferlin A, Bartoloni L, Rizzo G, Roverato A, Garolla A, Foresta C. Androgen receptor gene CAG and GGC repeat lengths in idiopathic male infertility. Mol Hum Reprod 2004;10:417–421.

    Article  PubMed  CAS  Google Scholar 

  12. Ruhayel Y, Lundin K, Giwercman Y, Hallden C, Willen M, Giwercman A. Androgen receptor gene GGN and CAG polymorphisms among severely oligo-zoospermic and azoospermic Swedish men. Hum Reprod 2004;19:2076–2083.

    Article  PubMed  CAS  Google Scholar 

  13. Lanfranco F, Kamischke A, Zitzmann M, Nieschlag E. Klinefelter’s syndrome. Lancet 2004;364:273–283.

    Article  PubMed  CAS  Google Scholar 

  14. Zitzmann M, Depenbusch M, Gromoll J, Nieschlag E. X-chromosome inactivation patterns and androgen receptor functionality influence phenotype and social characteristics as well as pharmacogenetics of testosterone therapy in Klinefelter patients. J Clin Endocrinol Metab 2004;89:6208–6217.

    Article  PubMed  CAS  Google Scholar 

  15. Canale D, Caglieresi C, Moschini C, et al. Androgen receptor polymorphism (CAG repeats) and androgenicity. Clin Endocrinol 2005;63:356–361.

    Article  CAS  Google Scholar 

  16. Gromoll J, Simoni M. Genetic complexity of FSH receptor function. Trends Endocrinol Metab 2005;16:368–373.

    Article  PubMed  CAS  Google Scholar 

  17. Simoni M, Weinbauer GF, Gromoll J, Nieschlag E. Role of FSH in male gonadal function. Ann Endocrinol 1999;60:102–106.

    CAS  Google Scholar 

  18. Ahda Y, Gromoll J, Wunsch A, et al. Follicle-stimulating hormone receptor gene haplotype distribution in normozoospermic and azoospermic men. J Androl 2005;26:494–499.

    Article  PubMed  CAS  Google Scholar 

  19. Pentikainen V, Erkkila K, Suomalainen L, Parvinen M, Dunkel L. Estradiol acts as a germ cell survival factor in the human testis in vitro. J Clin Endocrinol Metab 2000;85:2057–2067.

    Article  PubMed  CAS  Google Scholar 

  20. Atanassova N, McKinnell C, Turner KJ, et al. Comparative effects of neonatal exposure of male rats to potent and weak (environmental) estrogens on spermatogenesis at puberty and the relationship to adult testis size and fertility: evidence for stimulatory effects of low estrogen levels. Endocrinology 2000;141:3898–3907.

    Article  PubMed  CAS  Google Scholar 

  21. Sharpe RM, Skakkebaek NE. Are oestrogens involved in falling sperm counts and disorders of the male reproductive tract? Lancet 1993;341:1392–1395.

    Article  PubMed  CAS  Google Scholar 

  22. Kukuvitis A, Georgiou I, Bouba I, et al. Association of oestrogen receptor alpha polymorphisms and androgen receptor CAG trinucleotide repeats with male infertility: a study in 109 Greek infertile men. Int J Androl 2002;25:149–152.

    Article  PubMed  CAS  Google Scholar 

  23. Suzuki Y, Sasagawa I, Itoh K, Ashida J, Muroya K, Ogata T. Estrogen receptor alpha gene polymorphism is associated with idiopathic azoospermia. Fertil Steril 2002;78:1341–1343.

    Article  PubMed  Google Scholar 

  24. Galan JJ, Buch B, Cruz N, et al. Multilocus analyses of estrogen-related genes reveal involvement of the ESR1 gene in male infertility and the polygenic nature of the pathology. Fertil Steril 2005;84:910–918.

    Article  PubMed  CAS  Google Scholar 

  25. Guarducci E, Nuti F, Becherini L, Rotondi M, Balercia G, Forti G, Krausz C. Estrogen receptor-α promoter polymorphism: stronger estrogen action is coupled with lower sperm count. Hum Reprod 2006;21:994–1001.

    Article  PubMed  CAS  Google Scholar 

  26. Becherini L, Gennari L, Masi L, et al. Evidence of a linkage disequilibrium between polymorphisms in the human estrogen receptor alpha gene and their relationship to bone mass variation in postmenopausal Italian women. Hum Mol Genet 2000;9:2043–2050.

    Article  PubMed  CAS  Google Scholar 

  27. Aschim EL, Giwercman A, Stahl O, et al. The RsaI polymorphism in the estrogen receptor-beta gene is associated with male infertility. J Clin Endocrinol Metab 2005;90:5343–5348.

    Article  PubMed  CAS  Google Scholar 

  28. Lee K, Haugen HS, Clegg CH, Braun RE. Premature translation of protamine 1 mRNA causes precocious nuclear condensation and arrests spermatid differentiation in mice. Proc Natl Acad Sci USA 1995;92:12,451–12,455.

    Article  PubMed  CAS  Google Scholar 

  29. Tanaka H, Miyagawa Y, Tsujimura A, Matsumiya K, Okuyama A, Nishimune Y. Single nucleotide polymorphisms in the protamine-1 and-2 genes of fertile and infertile human male populations. Mol Hum Reprod 2003;9:69–73.

    Article  PubMed  CAS  Google Scholar 

  30. Iguchi N, Yang S, Lamb DJ, Hecht NB. An SNP in protamine 1: a possible genetic cause of male infertility? J Med Genet 2006;43:382–384.

    Article  PubMed  CAS  Google Scholar 

  31. Yen PH, Chai NN, Salido EC. The human autosomal gene DAZLA: testis specificity and a candidate for male infertility. Hum Mol Genet 1996;5:2013–2017.

    Article  PubMed  CAS  Google Scholar 

  32. Yen PH. Putative biological functions of the DAZ family. Int J Androl 2004;27:125–129.

    Article  PubMed  CAS  Google Scholar 

  33. Lepretre AC, Patrat C, Jouannet P, Bienvenu T. Mutation analysis of the BOULE gene in men with non-obstructive azoospermia: identification of a novel polymorphic variant in the black population. Int J Androl 2004;27:301–303.

    Article  PubMed  CAS  Google Scholar 

  34. Westerveld GH, Repping S, Leschot NJ, van der Veen F, Lombardi MP. Mutations in the human BOULE gene are not a major cause of impaired spermatogenesis. Fertil Steril 2005;83:513–515.

    Article  PubMed  CAS  Google Scholar 

  35. Teng YN, Lin YM, Lin YH, et al. Association of a single-nucleotide polymorphism of the deleted-in-azoospermia-like gene with susceptibility to spermatogenic failure. J Clin Endocrinol Metab 2002;87:5258–5264.

    Article  PubMed  CAS  Google Scholar 

  36. Becherini L, Guarducci E, Degl’Innocenti S, Rotondi M, Forti G, Krausz C. DAZL polymorphisms and susceptibility to spermatogenic failure: an example of remarkable ethnic differences. Int J Androl 2004;27:375–381.

    Article  PubMed  CAS  Google Scholar 

  37. Tschanter P, Kostova E, Luetjens CM, Cooper TG, Nieschlag E, Gromoll J. No association of the A260G and A386G DAZL single nucleotide polymorphisms with male infertility in a Caucasian population. Hum Reprod 2004;19:2771–2776.

    Article  PubMed  CAS  Google Scholar 

  38. Bartoloni L, Cazzadore C, Ferlin A, Garolla A, Foresta C. Lack of the T54A polymorphism of the DAZL gene in infertile Italian patients. Mol Hum Reprod 2004;10:613–615.

    Article  PubMed  CAS  Google Scholar 

  39. Yang XJ, Shinka T, Nozawa S, et al. Survey of the two polymorphisms in DAZL, an autosomal candidate for the azoospermic factor, in Japanese infertile men and implications for male infertility. Mol Hum Reprod 2005;11:513–515.

    Article  PubMed  CAS  Google Scholar 

  40. Ropp PA, Copeland WC. Cloning and characterization of the human mitochondrial 0 DNA polymerase, DNA polymerase gamma. Genomics 1996;36:449–458.

    Article  PubMed  CAS  Google Scholar 

  41. Rovio AT, Marchington DR, Donat S, et al. Mutations at the mitochondrial DNA polymerase (POLG) locus associated with male infertility. Nat Genet 2001;29:261–262.

    Article  PubMed  CAS  Google Scholar 

  42. Jensen M, Leffers H, Petersen JH, et al. Frequent polymorphism of the mitochondrial DNA polymerase gamma gene (POLG) in patients with normal spermiograms and unexplained subfertility. Hum Reprod 2004;19:65–70.

    Article  PubMed  Google Scholar 

  43. Krausz C, Guarducci E, Becherini L, et al. The clinical significance of the POLG gene polymorphism in male infertility. J Clin Endocrinol Metab 2004;89:4292–4297.

    Article  PubMed  CAS  Google Scholar 

  44. Aknin-Seifer IE, Touraine RL, Lejeune H, et al. Is the CAG repeat of mitochondrial DNA polymerase gamma (POLG) associated with male infertility? A multicentre French study. Hum Reprod 2005;20:736–740.

    Article  PubMed  CAS  Google Scholar 

  45. Longley MJ, Graziewicz MA, Bienstock RJ, Copeland WC. Consequences of mutations in human DNA polymerase gamma. Gene 2005;354:125–131.

    Article  PubMed  CAS  Google Scholar 

  46. Repping S, Skaletsky H, Brown L, et al. Polymorphism for a 1.6-Mb deletion of the human Y chromosome persists through balance between recurrent mutation and haploid selection. Nat Genet 2003;35:247–251.

    Article  PubMed  CAS  Google Scholar 

  47. Reijo R, Lee TY, Salo P, et al. Diverse spermatogenic defects in humans caused by Y chromosome deletions encompassing a novel RNA-binding protein gene. Nat Genet 1995;10:383–393.

    Article  PubMed  CAS  Google Scholar 

  48. Machev N, Saut N, Longepied G, et al. Sequence family variant loss from the AZFc interval of the human Y chromosome, but not gene copy loss, is strongly associated with male infertility. J Med Genet 2004;41:814–825.

    Article  PubMed  CAS  Google Scholar 

  49. Ferlin A, Tessari A, Ganz F, et al. Association of partial AZFc region deletions with spermatogenic impairment and male infertility. J Med Genet 2005;42:209–213.

    Article  PubMed  CAS  Google Scholar 

  50. Llanos M, Ballesca JL, Gazquez C, Margarit E, Oliva R. High frequency of gr/gr chromosome Y deletions in consecutive oligospermic ICS candidates. Hum Reprod 2005;20:216–220.

    Article  PubMed  CAS  Google Scholar 

  51. Hucklenbroich K, Gromoll J, Heinrich M, Hohoff C, Nieschlag E, Simoni M. Partial deletions in the AZFc region of the Y chromosome occur in men with impaired as well as normal spermatogenesis. Hum Reprod 2005;20:191–197.

    Article  PubMed  CAS  Google Scholar 

  52. Giachini C, Guarducci E, Longepied G, et al. The gr/gr deletion(s): a new genetic test in male infertility? J Med Genet 2005;42:497–502.

    Article  PubMed  CAS  Google Scholar 

  53. Lynch M, Cram DS, Reilly A, et al. The Y chromosome gr/gr subdeletion is associated with male infertility. Mol Hum Reprod 2005;11:507–512.

    Article  PubMed  CAS  Google Scholar 

  54. Fernandes S, Huellen K, Goncalves J, et al. High frequency of DAZ1/DAZ2 gene deletions in patients with severe oligozoospermia. Mol Hum Reprod 2002;8:286–298.

    Article  PubMed  CAS  Google Scholar 

  55. Yen P. The fragility of fertility. Nat Genet 2001;29:243–244.

    Article  PubMed  CAS  Google Scholar 

  56. Vogt PH. Genomic heterogeneity and instability of the AZF locus on the human Y chromosome. Mol Cell Endocrinol 2004;224:1–9.

    Article  PubMed  CAS  Google Scholar 

  57. Repping S, Van Daalen SK, Korver CM, et al. A family of human Y chromosomes has dispersed throughout northern Eurasia despite a 1.8-Mb deletion in the azoospermia factor c region. Genomics 2004;83:1046–1052.

    Article  PubMed  CAS  Google Scholar 

  58. Fernandes S, Paracchini S, Meyer LH, Floridia G, Tyler-Smith C, Vogt PH. A large AZFc deletion removes DAZ3/DAZ4 and nearby genes from men in Y haplogroup N. Am J Hum Genet 2004;74:180–187.

    Article  PubMed  CAS  Google Scholar 

  59. Maiorino M, Bosello V, Ursini F, et al. Genetic variations of gpx-4 and male infertility in humans. Biol Reprod 2003;68:1134–1141.

    Article  PubMed  CAS  Google Scholar 

  60. Chen SS, Chang LS, Chen HW, Wei YH. Polymorphisms of glutathione S-transferase M1 and male infertility in Taiwanese patients with varicocele. Hum Reprod 2002;17:718–725.

    Article  PubMed  CAS  Google Scholar 

  61. Bezold G, Lange M, Peter RU. Homozygous methylenetetrahydrofolate reductase C677T mutation and male infertility. N Engl J Med 2001;344:1172–1173.

    Article  PubMed  CAS  Google Scholar 

  62. Stuppia L, Gatta V, Scarciolla O, et al. The methylenetethrahydrofolate reductase (MTHFR) C677T polymorphism and male infertility in Italy. J Endocrinol Invest 2003;26:620–622.

    PubMed  CAS  Google Scholar 

  63. Singh K, Singh SK, Sah R, Singh I, Raman R. Mutation C677T in the methylenetetrahydrofolate reductase gene is associated with male infertility in an Indian population. Int J Androl 2005;28:115–119.

    Article  PubMed  CAS  Google Scholar 

  64. Ebisch IM, van Heerde WL, Thomas CM, van der Put N, Wong WY, Steegers-Theunissen RP. C677T methylenetetrahydrofolate reductase polymorphism interferes with the effects of folic acid and zinc sulfate on sperm concentration. Fertil Steril 2003;80:1190–1194.

    Article  PubMed  Google Scholar 

  65. Zhoucun A, Zhang S, Yang Y, Ma Y, Zhang W, Lin L. The common variant N372H in BRCA2 gene may be associated with idiopathic male infertility with azoospermia or severe oligozoospermia. Eur J Obstet Gynecol Reprod Biol 2006;124:61–64.

    Article  PubMed  CAS  Google Scholar 

  66. Stouffs K, Lissens W, Tournaye H, Van Steirteghem A, Liebaers I. Possible role of USP26 in patients with severely impaired spermatogenesis. Eur J Hum Genet 2005;13:336–340.

    Article  PubMed  CAS  Google Scholar 

  67. Zhoucun A, Zhang S, Yang Y, Ma Y, Lin L, Zhang W. Single nucleotide polymorphisms of the gonadotrophin-regulated testicular helicase (GRTH) gene may be associated with the human spermatogenesis impairment. Hum Reprod 2006;21:755–759.

    Google Scholar 

  68. Krausz C, Sassone-Corsi P. Genetic control of spermiogenesis: insights from the CREM gene and implications for human infertility. Reprod Biomed Online 2005;10:64–71.

    Article  PubMed  CAS  Google Scholar 

  69. Vouk K, Hudler P, Strmsnik L, et al. Combinations of genetic changes in the human cAMP-responsive element modulator gene: a clue towards understanding some forms of male infertility? Mol Hum Reprod 2005;11:567–574.

    Article  PubMed  CAS  Google Scholar 

  70. Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG. Replication validity of genetic association studies. Nat Genet 2001;29:306–309.

    Article  PubMed  CAS  Google Scholar 

  71. Almagor M, Dan-Goor M, Hovav Y Yaffe H. Spontaneous pregnancies in severe oligoasthenozoospermia. Hum Reprod 2001;6:780–781.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this chapter

Cite this chapter

Krausz, C. (2007). Polymorphisms and Male Infertility. In: Carrell, D.T. (eds) The Genetics of Male Infertility. Humana Press. https://doi.org/10.1007/978-1-59745-176-5_18

Download citation

Publish with us

Policies and ethics