Skip to main content

Immunodeficient Mouse Models to Study Human Stem Cell-Mediated Tissue Repair

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 430))

Summary

Hematopoietic stem cell transplantation has traditionally been used to reconstitute blood cell lineages that had formed abnormally because of genetic mutations, or that had been eradicated to treat a disease such as leukemia. However, in recent years, much attention has been paid to the new concept of “stem cell plasticity,” and the hope that stem cells could be used to repair damaged tissues generated immense excitement. The field is now in a more realistic and critical period of intense investigation and the concept of cell fusion to explain some of the observed effects has been shown after specific types of damage in liver and muscle, both organs that contain a high number of multinucleate cells. The field is still an extremely exciting one, and many questions remain to be answered before stem cell therapy for tissue repair can be used effectively in the clinic. Immune deficient mouse models of tissue damage provide a system in which human stem cell migration to sites of damage and subsequent contribution to repair can be carefully evaluated. This chapter gives detailed instructions for methods to study human stem cell contribution to damaged liver and to promote repair of damaged vasculature in immune deficient mouse models.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Caplan, A. I. &; Dennis, J. E. (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98, 1076–1084.

    Article  CAS  PubMed  Google Scholar 

  2. Schatteman, G. C. (2004) Non-classical mechanisms of heart repair. Mol Cell Biochem 264, 103–117.

    Article  CAS  PubMed  Google Scholar 

  3. Yoshioka, T., Ageyama, N., Shibata, H., Yasu, T., Misawa, Y., Takeuchi, K., Matsui, K., Yamamoto, K., Terao, K., Shimada, K., Ikeda, U., Ozawa, K. & Hanazono, Y. (2005) Repair of infarcted myocardium mediated by transplanted bone marrow-derived CD34+ stem cells in a nonhuman primate model. Stem Cells 23, 355–364.

    Article  CAS  PubMed  Google Scholar 

  4. Goodell, M. A., Brose, K., Paradis, G., Conner, A. S. &; Mulligan, R. C. (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183, 1797–1806.

    Article  CAS  PubMed  Google Scholar 

  5. Goodell, M. A., Rosenzweig, M., Kim, H., Marks, D. F., DeMaria, M., Paradis, G., Grupp, S. A., Sieff, C. A., Mulligan, R. C. & Johnson, R. P. (1997) Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med 3, 1337–1345.

    Article  CAS  PubMed  Google Scholar 

  6. Bhatia, M., Bonnet, D., Murdoch, B., Gan, O. I. & Dick, J. E. (1998) A newly discovered class of human hematopoietic cells with SCID- repopulating activity [see comments]. Nat Med 4, 1038–1045.

    Article  CAS  PubMed  Google Scholar 

  7. Dao, M. A., Arevalo, J. & Nolta, J. A. (2003) Reversibility of CD34 expression on human hematopoietic stem cells that retain the capacity for secondary reconstitution. Blood 101, 112–118.

    Article  CAS  PubMed  Google Scholar 

  8. Dao, M. A. & Nolta, J. A. (2000) CD34: to select or not to select? That is the question. Leukemia 14, 773–776.

    Article  CAS  PubMed  Google Scholar 

  9. Hess, D. A., Karanu, F. N., Levac, K., Gallacher, L. & Bhatia, M. (2003) Coculture and transplant of purified CD34(+)Lin(-) and CD34(-)Lin(-) cells reveals functional interaction between repopulating hematopoietic stem cells. Leukemia 17, 1613–1625.

    Article  CAS  PubMed  Google Scholar 

  10. Sato, T., Laver, J. H. & Ogawa, M. (1999) Reversible expression of CD34 by murine hematopoietic stem cells. Blood 94, 2548–2554.

    CAS  PubMed  Google Scholar 

  11. Zanjani, E. D., Almeida-Porada, G., Livingston, A. G., Porada, C. D. & Ogawa, M. (1999) Engraftment and multilineage expression of human bone marrow CD34- cells in vivo. Ann N Y Acad Sci 872, 220–231; discussion 231–232.

    Article  CAS  PubMed  Google Scholar 

  12. Storms, R. W., Goodell, M. A., Fisher, A., Mulligan, R. C. & Smith, C. (2000) Hoechst dye efflux reveals a novel CD7(+)CD34(-) lymphoid progenitor in human umbilical cord blood. Blood 96, 2125–2133.

    CAS  PubMed  Google Scholar 

  13. Cai, J., Weiss, M. L. & Rao, M. S. (2004) In search of “stemness”. Exp Hematol 32, 585–598.

    Article  PubMed  Google Scholar 

  14. Fallon, P., Gentry, T., Balber, A. E., Boulware, D., Janssen, W. E., Smilee, R., Storms, R. W. & Smith, C. (2003) Mobilized peripheral blood SSCloALDHbr cells have the phenotypic and functional properties of primitive haematopoietic cells and their number correlates with engraftment following autologous transplantation. Br J Haematol 122, 99–108.

    Article  PubMed  Google Scholar 

  15. Hess, D. A., Meyerrose, T. E., Wirthlin, L., Craft, T. P., Herrbrich, P. E., Creer, M. H. & Nolta, J. A. (2004) Functional characterization of highly purified human hematopoietic repopulating cells isolated according to aldehyde dehydrogenase activity. Blood 104, 1648–1655.

    Article  CAS  PubMed  Google Scholar 

  16. Takebe, N., Zhao, S. C., Adhikari, D., Mineishi, S., Sadelain, M., Hilton, J., Colvin, M., Banerjee, D. & Bertino, J. R. (2001) Generation of dual resistance to 4-hydroperoxycyclophosphamide and methotrexate by retroviral transfer of the human aldehyde dehydrogenase class 1 gene and a mutated dihydrofolate reductase gene. Mol Ther 3, 88–96.

    Article  CAS  PubMed  Google Scholar 

  17. Jones, R. J., Barber, J. P., Vala, M. S., Collector, M. I., Kaufmann, S. H., Ludeman, S. M., Colvin, O. M. & Hilton, J. (1995) Assessment of aldehyde dehydrogenase in viable cells. Blood 85, 2742–2746.

    CAS  PubMed  Google Scholar 

  18. Jones, R. J., Collector, M. I., Barber, J. P., Vala, M. S., Fackler, M. J., May, W. S., Griffin, C. A., Hawkins, A. L., Zehnbauer, B. A., Hilton, J., Colvin, O. M. & Sharkis, S. J. (1996) Characterization of mouse lymphohematopoietic stem cells lacking spleen colony-forming activity. Blood 88, 487–491.

    CAS  PubMed  Google Scholar 

  19. Meyerrose, T. E., Herrbrich, P., Hess, D. A. & Nolta, J. A. (2003) Immune-deficient mouse models for analysis of human stem cells. Biotechniques 35, 1262–1272.

    CAS  PubMed  Google Scholar 

  20. Glimm, H., Eisterer, W., Lee, K., Cashman, J., Holyoake, T. L., Nicolini, F., Shultz, L. D., von Kalle, C. & Eaves, C. J. (2001) Previously undetected human hematopoietic cell populations with short-term repopulating activity selectively engraft NOD/SCID-beta2 microglobulin-null mice. J Clin Invest 107, 199–206.

    Article  CAS  PubMed  Google Scholar 

  21. Christianson, S. W., Greiner, D. L., Hesselton, R. A., Leif, J. H., Wagar, E. J., Schweitzer, I. B., Rajan, T. V., Gott, B., Roopenian, D. C. & Shultz, L. D. (1997) Enhanced human CD4+ T cell engraftment in beta2-microglobulin-deficient NOD-scid mice. J Immunol 158, 3578–3586.

    CAS  PubMed  Google Scholar 

  22. Hofling, A. A., Vogler, C., Creer, M. H. & Sands, M. S. (2003) Engraftment of human CD34+ cells leads to widespread distribution of donor-derived cells and correction of tissue pathology in a novel murine xenotransplantation model of lysosomal storage disease. Blood 101, 2054–2063.

    Article  CAS  PubMed  Google Scholar 

  23. Meyerrose, T. E., De Ugarte, D. A., Hofling, A. A., Herrbrich, P. E., Cordonnier, T. D., Shultz, L. D., Eagon, J. C., Wirthlin, L., Sands, M. S., Hedrick, M. A. & Nolta, J. A. (2006) In vivo distribution of human adipose-derived MSC. Stem Cells 25, 220–227.

    Article  PubMed  Google Scholar 

  24. Wang, X., Ge, S., McNamara, G., Hao, Q. L., Crooks, G. M. & Nolta, J. A. (2003) Albumin expressing hepatocyte-like cells develop in the livers of immune-deficient mice transmitted with highly purified human hematopoietic stem cells. Blood, 101, 4201–4208.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zhou, P. et al. (2008). Immunodeficient Mouse Models to Study Human Stem Cell-Mediated Tissue Repair. In: Bunting, K.D. (eds) Hematopoietic Stem Cell Protocols. Methods in Molecular Biology™, vol 430. Humana Press. https://doi.org/10.1007/978-1-59745-182-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-182-6_15

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-868-3

  • Online ISBN: 978-1-59745-182-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics