Skip to main content

Microinjection of Follicle-Enclosed Mouse Oocytes

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 518))

Abstract

The mammalian oocyte develops within a complex of somatic cells known as a follicle, within which signals from the somatic cells regulate the oocyte, and signals from the oocyte regulate the somatic cells. Because isolation of the oocyte from the follicle disrupts these communication pathways, oocyte physiology is best studied within an intact follicle. Here we describe methods for quantitative microinjection of follicle-enclosed mouse oocytes, thus allowing the introduction of signaling molecules as well as optical probes into the oocyte within its physiological environment.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Mehlmann, L.M., Jones, T.L.Z., and Jaffe, L.A. (2002) Meiotic arrest in the mouse follicle maintained by a Gs protein in the oocyte. Science 297, 1343–1345.

    Article  CAS  Google Scholar 

  2. Mehlmann, L.M., Saeki, Y., Tanaka, S., Brennan, T.J., Evsikov, A.V., Pendola, F.L., Knowles, B.B., Eppig, J.J., and Jaffe, L.A. (2004) The Gs-linked receptor GPR3 maintains meiotic arrest in mammalian oocytes. Science 306, 1947–1950.

    Article  CAS  Google Scholar 

  3. Mehlmann, L.M., Kalinowski, R.R., Ross, L.F., Hewlett, E.L., and Jaffe, L.A (2006). Meiotic resumption in response to luteinizing hormone is independent of a Gi family G protein or calcium in the mouse oocyte. Dev. Biol. 299, 345–355.

    Article  CAS  Google Scholar 

  4. Kalinowski, R.R., Berlot, C.H., Jones, T.L.Z., Ross, L.F., Jaffe, L.A., and Mehlmann, L.M. (2004) Maintenance of meiotic prophase arrest in vertebrate oocytes by a Gs protein-mediated pathway. Dev. Biol. 267, 1–13.

    Article  CAS  Google Scholar 

  5. Simon, A.M., Goodenough, D.A., Li, E., and Paul, D.L. (1997) Female infertility in mice lacking connexin 37. Nature 385, 525–529.

    Article  CAS  Google Scholar 

  6. Freudzon, L., Norris, R.P., Hand, A.R., Tanaka, S., Saeki, Y., Jones, T.L.Z., Rasenick, M.M., Berlot, C.H., Mehlmann, L.M., and Jaffe, L.A. (2005) Regulation of meiotic prophase arrest in mouse oocytes by GPR3, a constitutive activator of the Gs G protein. J. Cell Biol. 171, 255–265.

    Article  CAS  Google Scholar 

  7. Norris, R.P., Freudzon, L., Freudzon, M., Hand, A.R., Mehlmann, L.M., and Jaffe, L.A. (2007) A Gs-linked receptor maintains meiotic arrest in mouse oocytes, but luteinizing hormone does not cause meiotic resumption by terminating receptor-Gs signaling. Dev. Biol. 310, 240–249.

    Google Scholar 

  8. Mehlmann, L.M. (2005) Oocyte-specific expression of Gpr3 is required for the maintenance of meiotic arrest in mouse oocytes. Dev. Biol. 288, 397–404.

    Article  CAS  Google Scholar 

  9. Eppig, J.J., Viveiros, M.M., Marin-Bivens, C., De La Fuente, R. (2004) Regulation of mammalian oocyte maturation, in The Ovary, 2nd edition (Leung, P.C.K. and Adashi, E.Y., ed.), Elsevier/Academic Press, San Diego, CA, pp. 113–129.

    Google Scholar 

  10. Mehlmann, L.M. (2005) Stops and starts in mammalian oocytes: recent advances in understanding the regulation of meiotic arrest and oocyte maturation. Reproduction 130, 791–799.

    Article  CAS  Google Scholar 

  11. Nikolaev, V.O., and Lohse, M.J. (2006) Monitoring of cAMP synthesis and degradation in living cells. Physiology 21, 86–92.

    Article  CAS  Google Scholar 

  12. Matzuk, M., Burns, K.H., Viveiros, M.M., and Eppig, J.J. (2002) Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science 296, 2178–2180.

    Article  CAS  Google Scholar 

  13. Park, J.Y., Su, Y.Q., Ariga, M., Law, E., Jin, S.L.C., and Conti, M. (2004) EGF-like growth factors as mediators of LH action in the ovulatory follicle. Science 303, 682–684.

    Article  CAS  Google Scholar 

  14. Hiramoto, Y. (1962) Microinjection of the live spermatozoa into sea urchin eggs. Exp. Cell Res. 27, 416–426.

    Article  CAS  Google Scholar 

  15. Kiehart, D.P. (1982) Microinjection of echinoderm eggs: apparatus and procedures. Meth. Cell Biol. 25, 13–31.

    Article  Google Scholar 

  16. Jaffe, L.A., and Terasaki, M. (2004) Quantitative microinjection of oocytes, eggs, and embryos. Meth. Cell Biol. 74, 219–242.

    Article  Google Scholar 

  17. Su, Y.-Q., Denegre, J.M., Wigglesworth, K., Pendola, F.L., O’Brien, M.J., and Eppig, J.J. (2003) Oocyte-dependent activation of mitogen-activated protein kinase (ERK1/2) in cumulus cells is required for the maturation of the mouse oocyte–cumulus cell complex. Dev. Biol. 263, 126–138.

    Article  CAS  Google Scholar 

  18. Schuh, M., and Ellenberg, J. (2007) Self-organization of MTOCs replaces centrosome function during acentrosomal spindle assembly in live mouse oocytes. Cell 130, 484–498.

    Article  CAS  Google Scholar 

  19. Kaila, K., and Voipio, J. (1985) A simple method for dry beveling of micropipettes used in the construction of ion-selective micro-electrodes. J. Physiol. 369, 8p.

    Google Scholar 

  20. Kline, D. (2009) Quantitative microinjection of mouse oocytes and eggs. Methods Mol. Biol. 518.

    Google Scholar 

Download references

Acknowledgments

We thank John Eppig, Marilyn O'Brien, and Karen Wigglesworth for showing us how to obtain and culture mouse follicles, and Melina Schuh for critical reading of the manuscript. This work was supported by grants from the NIH.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jaffe, L.A., Norris, R.P., Freudzon, M., Ratzan, W.J., Mehlmann, L.M. (2009). Microinjection of Follicle-Enclosed Mouse Oocytes. In: Carroll, D. (eds) Microinjection. Methods in Molecular Biology, vol 518. Humana Press. https://doi.org/10.1007/978-1-59745-202-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-202-1_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-884-3

  • Online ISBN: 978-1-59745-202-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics