Skip to main content

Angiogenic Signalling Pathways

  • Protocol
  • First Online:
Angiogenesis Protocols

Abstract

There is a need for direct imaging of effects on tumour vasculature in assessment of response to anti-angiogenic drugs and vascular disrupting agents. Imaging tumour vasculature depends on differences in permeability of vasculature of tumour and normal tissue, which cause changes in penetration of contrast agents. Angiogenesis imaging may be defined in terms of measurement of tumour perfusion and direct imaging of the molecules involved in angiogenesis. In addition, assessment of tumour hypoxia will give an indication of tumour vasculature. The range of imaging techniques available for these processes includes positron emission tomography (PET), dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), perfusion computed tomography (CT), and ultrasound (US).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Folkman, J. (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285, 1182–1186.

    PubMed  CAS  Google Scholar 

  2. Mankoff, D. A., Dunnwald, L. K., Gralow, J. R., (2003) Changes in blood flow and metabolism in locally advanced breast cancer treated with neoadjuvant chemotherapy. J Nucl Med 44, 1806–1814.

    PubMed  Google Scholar 

  3. Laking, G. R., West, C., Buckley, D. L., (2006) Imaging vascular physiology to monitor cancer treatment. Crit Rev Oncol Hematol 58, 95–113.

    PubMed  Google Scholar 

  4. Miles, K. A. (2003) Perfusion CT for the assessment of tumour vascularity: which protocol? Br J Radiol 76 (Spec No 1), S36–S42.

    PubMed  Google Scholar 

  5. Leggett, D. A., Miles, K. A., Kelley, B.B. (1998) Blood–brain barrier and blood volume imaging of cerebral glioma using functional CT: a pictorial review. Australas Radiol 42, 335–340.

    PubMed  CAS  Google Scholar 

  6. Dugdale, P. E., Miles, K. A., Bunce, I., (1999) CT measurement of perfusion and permeability within lymphoma masses and its ability to assess grade, activity, and chemotherapeutic response. J Comput Assist Tomogr 23, 540–547.

    PubMed  CAS  Google Scholar 

  7. Hermans, R., Meijerink, M., Van den Bogaert, W., (2003) Tumor perfusion rate determined noninvasively by dynamic computed tomography predicts outcome in head-and-neck cancer after radiotherapy. Int J Radiat Oncol Biol Phys 57, 1351–1356.

    PubMed  Google Scholar 

  8. Lehtio, K., Eskola, O., Viljanen, T., (2004) Imaging perfusion and hypoxia with PET to predict radiotherapy response in head-and-neck cancer. Int J Radiat Oncol Biol Phys 59, 971–982.

    PubMed  Google Scholar 

  9. Carmeliet, P., Jain, R. K. (2000) Angiogenesis in cancer and other diseases. Nature 407, 249–257.

    PubMed  CAS  Google Scholar 

  10. Shemirani, B., Crowe, D. L. (2000) Head and neck squamous cell carcinoma lines produce biologically active angiogenic factors. Oral Oncol 36, 61–66.

    PubMed  CAS  Google Scholar 

  11. Laking, G. R., Price, P. M. (2003) Positron emission tomographic imaging of angiogenesis and vascular function. Br J Radiol 76 (Spec No 1), S50–S59.

    PubMed  Google Scholar 

  12. Acierno, L. J. (2000) Adolph Fick, mathematician, physicist, physiologist. Clin Cardiol 23, 390–391.

    PubMed  CAS  Google Scholar 

  13. Frackowiak, R. S., Jones, T., Lenzi, G. L., (1980) Regional cerebral oxygen utilization and blood flow in normal man using oxygen-15 and positron emission tomography. Acta Neurol Scand 62, 336–344.

    PubMed  CAS  Google Scholar 

  14. Lammertsma, A. A., Jones, T. (1992). Low oxygen extraction fraction in tumours measured with the oxygen-15 steady state technique: effect of tissue heterogeneity. Br J Radiol 65, 697–700.

    PubMed  CAS  Google Scholar 

  15. Kety, S. S. (1951) The theory and applications of the exchange of inert gas at the lungs and tissues. Pharm Rev 3, 1–41.

    PubMed  CAS  Google Scholar 

  16. Ito, H., Kanno, I., Kato, C., (2004) Database of normal human cerebral blood flow, cerebral blood volume, cerebral oxygen extraction fraction and cerebral metabolic rate of oxygen measured by positron emission tomography with 15O-labelled carbon dioxide or water, carbon monoxide and oxygen: a multicentre study in Japan. Eur J Nucl Med Mol Imaging 31, 635–643.

    PubMed  Google Scholar 

  17. Bacharach, S. L., Libutti, S. K., Carrasquillo, J. A. (2000) Measuring tumor blood flow with H(2)(15)O: practical considerations. Nucl Med Biol 27, 671–676.

    PubMed  CAS  Google Scholar 

  18. Kuhl, C. K., Mielcareck, P., Klaschik, S., (1999) Dynamic breast MR imaging: are signal intensity time course data useful for differential diagnosis of enhancing lesions? Radiology 211, 101–110.

    PubMed  CAS  Google Scholar 

  19. Leach, M. O., Brindle, K. M., Evelhoch, J. L., (2003) Assessment of antiangiogenic and antivascular therapeutics using MRI: recommendations for appropriate methodology for clinical trials. Br J Radiol 76 (Spec No 1), S87–S91.

    PubMed  Google Scholar 

  20. Runge, V. M. (2000) Safety of approved MR contrast media for intravenous injection. J Magn Reson Imaging 12, 205–213.

    PubMed  CAS  Google Scholar 

  21. Preda, A., van Vliet, M., Krestin, G. P., (2006) Magnetic resonance macromolecular agents for monitoring tumor microvessels and angiogenesis inhibition. Invest Radiol 41, 325–331.

    PubMed  Google Scholar 

  22. Choyke, P. L. (2005) Contrast agents for imaging tumor angiogenesis: is bigger better? Radiology 235, 1–2.

    PubMed  Google Scholar 

  23. Pruessmann, K. P., Weiger, M., Scheidegger, M. B., (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42, 952–962.

    PubMed  CAS  Google Scholar 

  24. Sodickson, D. K., Manning, W. J. (1997) Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 38, 591–603.

    PubMed  CAS  Google Scholar 

  25. Armitage, P., Behrenbruch, C., Brady, M., (2005) Extracting and visualizing physiological parameters using dynamic contrast-enhanced magnetic resonance imaging of the breast. Med Image Anal 9, 315–329.

    PubMed  Google Scholar 

  26. Bluml, S., Schad, L. R., Stepanow, B. (1993) Spin-lattice relaxation time measurement by means of a TurboFLASH technique. Magn Reson Med 30, 289–295.

    PubMed  CAS  Google Scholar 

  27. Parker, G. J., Baustert, I., Tanner, S. F., (2000) Improving image quality and T(1) measurements using saturation recovery turboFLASH with an approximate K-space normalisation filter. Magn Reson Imaging 18, 157–167.

    PubMed  CAS  Google Scholar 

  28. Brookes, J. A., Redpath, T. W., Gilbert, F. J., (1999) Accuracy of T1 measurement in dynamic contrast-enhanced breast MRI using two- and three-dimensional variable flip angle fast low-angle shot. J Magn Reson Imaging 9, 163–171.

    PubMed  CAS  Google Scholar 

  29. Press, W. H. (1992) Modelling of data, in Numerical Recipes in C: The Art of Scientific Computing, pp. 656–706 .

    Google Scholar 

  30. Tofts, P. S., Kermode, A. G. (1991) Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 17, 357–367.

    PubMed  CAS  Google Scholar 

  31. Weinmann, H. J. (1984). Pharmacokinetics of Gd-DTPA/dimeglumine after intravenous injection into healthy volunteers. Physiol Chem Phys Med NMR 16, 167–172.

    PubMed  CAS  Google Scholar 

  32. Parker, G. J. (2005) Tracer kinetic modelling for T1-weighted DCE-MRI, in Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Oncology. Springer, New York .

    Google Scholar 

  33. Port, R. E., Knopp, M. V., Brix, G. (2001) Dynamic contrast-enhanced MRI using Gd-DTPA: interindividual variability of the arterial input function and consequences for the assessment of kinetics in tumors. Magn Reson Med 45, 1030–1038.

    PubMed  CAS  Google Scholar 

  34. St. Lawrence, K. S., Lee, T. Y. (1998)An adiabatic approximation to the tissue homogeneity model for water exchange in the brain: II. Experimental validation. J Cereb Blood Flow Metab 18, 1378–1385.

    PubMed  CAS  Google Scholar 

  35. Buckley, D. L. (2002) Uncertainty in the analysis of tracer kinetics using dynamic contrast-enhanced T1-weighted MRI. Magn Reson Med 47, 601–606.

    PubMed  Google Scholar 

  36. Tofts, P. S., Brix, G., Buckley, D. L., (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10, 223–232.

    PubMed  CAS  Google Scholar 

  37. Crone, C. (1963) The permeability of capillaries in various organs as determined by use of the “indicator diffusion” method. Acta Physiol Scand 58, 292–305.

    PubMed  CAS  Google Scholar 

  38. Johnson, J. A., Wilson, T. A. (1966). A model for capillary exchange. Am J Physiol 210, 1299–1303.

    PubMed  CAS  Google Scholar 

  39. Evelhoch, J. L. (1999) Key factors in the acquisition of contrast kinetic data for oncology. J Magn Reson Imaging 10, 254–259.

    PubMed  CAS  Google Scholar 

  40. Simons, M. (2005) Angiogenesis: where do we stand now? Circulation 111, 1556–1566.

    PubMed  Google Scholar 

  41. Leach, M. O., Brindle, K. M., Evelhoch, J. L., (2005) The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations. Br J Cancer 92, 1599–1610.

    PubMed  CAS  Google Scholar 

  42. Parker, G. J. (2003) Automated arterial input function extraction for T1-weighted DCE-MRI. Proc. ISMRM .

    Google Scholar 

  43. Ripjkema, M. (2001) Method for quantitative mapping of dynamic MRI contrast agent uptake in human tumors. J Magn Reson Imaging 14, 457–463.

    Google Scholar 

  44. Weinmann, H. J., Laniado, M., Mutzel, W. (1984) Pharmacokinetics of GdDTPA/dimeglumine after intravenous injection into healthy volunteers. Physiol Chem Phys Med NMR 16, 167–172.

    PubMed  CAS  Google Scholar 

  45. Calamante, F., Thomas, D. L., Pell, G. S., (1999) Measuring cerebral blood flow using magnetic resonance imaging techniques. J Cereb Blood Flow Metab 19, 701–735.

    PubMed  CAS  Google Scholar 

  46. Pathak, A. P., Schmainda, K. M., Ward, B. D., (2001) MR-derived cerebral blood volume maps: issues regarding histological validation and assessment of tumor angiogenesis. Magn Reson Med 46, 735–747.

    PubMed  CAS  Google Scholar 

  47. Fuss, M., Wenz, F., Essig, M., (2001) Tumor angiogenesis of low-grade astrocytomas measured by dynamic susceptibility contrast-enhanced MRI (DSC-MRI) is predictive of local tumor control after radiation therapy. Int J Radiat Oncol Biol Phys 51, 478–482.

    PubMed  CAS  Google Scholar 

  48. Jackson, A., Kassner, A., Annesley-Williams, D., et al (2002). Abnormalities in the recirculation phase of contrast agent bolus passage in cerebral gliomas: comparison with relative blood volume and tumor grade. AJNR Am J Neuroradiol 23, 7–14.

    PubMed  Google Scholar 

  49. Miles, K. A., Griffiths, M. R. (2003) Perfusion CT: a worthwhile enhancement? Br J Radiol 76, 220–231.

    PubMed  CAS  Google Scholar 

  50. Miles, K. A., Griffiths, M. R., Fuentes, M. A. (2001) Standardized perfusion value: universal CT contrast enhancement scale that correlates with FDG PET in lung nodules. Radiology 220, 548–553.

    PubMed  CAS  Google Scholar 

  51. Mullani, N. A., Gould, K. L. (1983). First-pass measurements of regional blood flow with external detectors. J Nucl Med 24, 577–581.

    PubMed  CAS  Google Scholar 

  52. Yeung, W. T., Lee, T. Y., Del Maestro, R. F., (1992) An absorptiometry method for the determination of arterial blood concentration of injected iodinated contrast agent. Phys Med Biol 37, 1741–1758.

    PubMed  CAS  Google Scholar 

  53. Cenic, A., Nabavi, D. G., Craen, R. A., (2000) A CT method to measure hemodynamics in brain tumors: validation and application of cerebral blood flow maps. AJNR Am J Neuroradiol 21, 462–470.

    PubMed  CAS  Google Scholar 

  54. Goh, V., Padhani, A. R. (2006) Imaging tumor angiogenesis: functional assessment using MDCT or MRI? Abdom Imaging 31, 194–199.

    PubMed  CAS  Google Scholar 

  55. Ferrara, K. W., Merritt, C. R., Burns, P. N., (2000) Evaluation of tumor angiogenesis with US: imaging, Doppler, and contrast agents. Acad Radiol 7, 824–839.

    PubMed  CAS  Google Scholar 

  56. Cheng, W.F., Lee, C. N., Chu, J. S., (1999) Vascularity index as a novel parameter for the in vivo assessment of angiogenesis in patients with cervical carcinoma. Cancer 85, 651–657.

    PubMed  CAS  Google Scholar 

  57. Cornud, F., Hamida, K., Flam, T., (2000) Endorectal color Doppler sonography and endorectal MR imaging features of nonpalpable prostate cancer: correlation with radical prostatectomy findings. AJR Am J Roentgenol 175, 1161–1168.

    PubMed  CAS  Google Scholar 

  58. Padhani, A. R., Harvey, C. J., Cosgrove, D. O. (2005) Angiogenesis imaging in the management of prostate cancer. Nat Clin Pract Urol 2, 596–607.

    PubMed  Google Scholar 

  59. Harvey, C. J., Pilcher, J. M., Eckersley, R. J., (2002) Advances in ultrasound. Clin Radiol 57, 157–177.

    PubMed  Google Scholar 

  60. Dowlati, A., Robertson, K., Cooney, M., (2002) A phase I pharmacokinetic and translational study of the novel vascular targeting agent combretastatin a-4 phosphate on a single-dose intravenous schedule in patients with advanced cancer. Cancer Res 62, 3408–3416.

    PubMed  CAS  Google Scholar 

  61. Galbraith, S. M., Maxwell, R. J., Lodge, M. A., (2003) Combretastatin A4 phosphate has tumor antivascular activity in rat and man as demonstrated by dynamic magnetic resonance imaging. J Clin Oncol 21, 2831–2842.

    PubMed  CAS  Google Scholar 

  62. Stevenson, J. P., Rosen, M., Sun, W., (2003) Phase I trial of the antivascular agent combretastatin A4 phosphate on a 5-day schedule to patients with cancer: magnetic resonance imaging evidence for altered tumor blood flow. J Clin Oncol 21, 4428–4438.

    PubMed  CAS  Google Scholar 

  63. Thomas, A. L., Morgan, B., Horsfield, M. A., (2005) Phase I study of the safety, tolerability, pharmacokinetics, and pharmacodynamics of PTK787/ZK 222584 administered twice daily in patients with advanced cancer. J Clin Oncol 23, 4162–4171.

    PubMed  CAS  Google Scholar 

  64. Morgan, B., Thomas, A. L., Drevs, J., (2003) Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK787/ZK 222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: results from two phase I studies. J Clin Oncol 21, 3955–3964.

    PubMed  CAS  Google Scholar 

  65. O’Donnell, A., Padhani, A., Hayes, C., (2005) A Phase I study of the angiogenesis inhibitor SU5416 (semaxanib) in solid tumours, incorporating dynamic contrast MR pharmacodynamic end points. Br J Cancer 93, 876–883.

    PubMed  Google Scholar 

  66. Jayson, G. C., Parker, G. J., Mullamitha, S., (2005) Blockade of platelet-derived growth factor receptor-beta by CDP860, a humanized, PEGylated di-Fab′, leads to fluid accumulation and is associated with increased tumor vascularized volume. J Clin Oncol 23, 973–981.

    PubMed  CAS  Google Scholar 

  67. Eder, J. P., Jr., Supko, J. G., Clark, J. W., (2002) Phase I clinical trial of recombinant human endostatin administered as a short intravenous infusion repeated daily. J Clin Oncol 20, 3772–3784.

    PubMed  CAS  Google Scholar 

  68. Wang, J. H., Min, P. Q., Wang, P. J., (2006) Dynamic CT evaluation of tumor vascularity in renal cell carcinoma. AJR Am J Roentgenol 186, 1423–1430.

    PubMed  Google Scholar 

  69. Brasch, R. C., Li, K. C., Husband, J. E., (2000) In vivo monitoring of tumor angiogenesis with MR imaging. Acad Radiol 7, 812–823.

    PubMed  CAS  Google Scholar 

  70. Ikeda, O., Yamashita, Y., Takahashi, M. (1999) Gd-enhanced dynamic magnetic resonance imaging of breast masses. Top Magn Reson Imaging 10, 143–151.

    PubMed  CAS  Google Scholar 

  71. Buckley, D. L., Drew, P. J., Mussurakis, S., (1997) Microvessel density of invasive breast cancer assessed by dynamic Gd-DTPA enhanced MRI. J Magn Reson Imaging 7, 461–464.

    PubMed  CAS  Google Scholar 

  72. Buadu, L. D., Murakami, J., Murayama, S., (1996) Breast lesions: correlation of contrast medium enhancement patterns on MR images with histopathologic findings and tumor angiogenesis. Radiology 200, 639–649.

    PubMed  CAS  Google Scholar 

  73. Hawighorst, H., Knapstein, P. G., Weikel, W., (1997) Angiogenesis of uterine cervical carcinoma: characterization by pharmacokinetic magnetic resonance parameters and histological microvessel density with correlation to lymphatic involvement. Cancer Res 57, 4777–4786.

    PubMed  CAS  Google Scholar 

  74. Hawighorst, H., Knapstein, P. G., Knopp, M. V., (1998) Uterine cervical carcinoma: comparison of standard and pharmacokinetic analysis of time-intensity curves for assessment of tumor angiogenesis and patient survival. Cancer Res 58, 3598–3602.

    PubMed  CAS  Google Scholar 

  75. Hawighorst, H., Weikel, W., Knapstein, P. G., (1998) Angiogenic activity of cervical carcinoma: assessment by functional magnetic resonance imaging-based parameters and a histomorphological approach in correlation with disease outcome. Clin Cancer Res 4, 2305–2312.

    PubMed  CAS  Google Scholar 

  76. Knopp, M. V., Weiss, E., Sinn, H. P., (1999) Pathophysiologic basis of contrast enhancement in breast tumors. J Magn Reson Imaging 10, 260–266.

    PubMed  CAS  Google Scholar 

  77. Dzik-Jurasz, A. (2000) Is there an association between systemic VEGF and permeability in locally advanced rectal adenocarcinoma? Initial observations. Eighth scientific meeting of the International Society of Magnetic Resonance in Medicine (ISMRM) , Denver, CO.

    Google Scholar 

  78. Wang, Z. Q., Li, J. S., Lu, G. M., (2003) Correlation of CT enhancement, tumor angiogenesis and pathologic grading of pancreatic carcinoma. World J Gastroenterol 9, 2100–2104.

    PubMed  Google Scholar 

  79. Jinzaki, M., Tanimoto, A., Mukai, M., (2000) Double-phase helical CT of small renal parenchymal neoplasms: correlation with pathologic findings and tumor angiogenesis. J Comput Assist Tomogr 24, 835–842.

    PubMed  CAS  Google Scholar 

  80. Hayashi, K., Tozaki, M., Sugisaki, M., (2002) Dynamic multislice helical CT of ameloblastoma and odontogenic keratocyst: correlation between contrast enhancement and angiogenesis. J Comput Assist Tomogr 26, 922–926.

    PubMed  Google Scholar 

  81. Tateishi, U., Kusumoto, M., Nishihara, H., (2002) Contrast-enhanced dynamic computed tomography for the evaluation of tumor angiogenesis in patients with lung carcinoma. Cancer 95, 835–842.

    PubMed  Google Scholar 

  82. Swensen, S. J., Brown, L. R., Colby, T. V., (1996) Lung nodule enhancement at CT: prospective findings. Radiology 201, 447–455.

    PubMed  CAS  Google Scholar 

  83. Strohmeyer, D., Frauscher, F., Klauser, A., (2001) Contrast-enhanced transrectal color Doppler ultrasonography (TRCDUS) for assessment of angiogenesis in prostate cancer. AntiCancer Res 21, 2907–2913.

    PubMed  CAS  Google Scholar 

  84. Posey, J. A., Khazaeli, M. B., DelGrosso, A., (2001) A pilot trial of Vitaxin, a humanized anti-vitronectin receptor (anti alpha v beta 3) antibody in patients with metastatic cancer. Cancer Biother Radiopharm 16, 125–132.

    PubMed  CAS  Google Scholar 

  85. Bredow, S., Lewin, M., Hofmann, B., (2000) Imaging of tumour neovasculature by targeting the TGF-beta binding receptor endoglin. Eur J Cancer 36, 675–681.

    PubMed  CAS  Google Scholar 

  86. Li, S., Peck-Radosavljevic, M., Kienast, O., (2004) Iodine-123-vascular endothelial growth factor-165 (123I-VEGF165). Biodistribution, safety and radiation dosimetry in patients with pancreatic carcinoma. Q J Nucl Med Mol Imaging 48, 198–206.

    PubMed  CAS  Google Scholar 

  87. Jayson, G. C., Zweit, J., Jackson, A., (2002) Molecular imaging and biological evaluation of HuMV833 anti-VEGF antibody: implications for trial design of antiangiogenic antibodies. J Natl Cancer Inst 94, 1484–1493.

    PubMed  CAS  Google Scholar 

  88. Kulasegaram, R., Giersing, B., Page, C. J., (2001) In vivo evaluation of 111In-DTPA-N-TIMP-2 in Kaposi sarcoma associated with HIV infection. Eur J Nucl Med 28, 756–761.

    PubMed  CAS  Google Scholar 

  89. Kobayashi, H., Sakahara, H., Hosono, M., (1993) Scintigraphic detection of xenografted tumors producing human basic fibroblast growth factor. Cancer Immunol Immunother 37, 281–285.

    PubMed  CAS  Google Scholar 

  90. Mulder, W. J., Strijkers, G. J., Habets, J. W., (2005) MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle. FASEB J 19, 2008–2010.

    PubMed  CAS  Google Scholar 

  91. Kang, H. W., Josephson, L., Petrovsky, A., (2002) Magnetic resonance imaging of inducible E-selectin expression in human endothelial cell culture. Bioconjug Chem 13, 122–127.

    PubMed  CAS  Google Scholar 

  92. Korpanty, G., Grayburn, P. A., Shohet, R. V., (2005) Targeting vascular endothelium with avidin microbubbles. Ultrasound Med Biol 31, 1279–1283.

    PubMed  Google Scholar 

  93. Weller, G. E., Wong, M. K., Modzelewski, R. A., (2005) Ultrasonic imaging of tumor angiogenesis using contrast microbubbles targeted via the tumor-binding peptide arginine-arginine-leucine. Cancer Res 65, 533–539.

    PubMed  CAS  Google Scholar 

  94. Nordsmark, M., Overgaard, M., Overgaard, J. (1996) Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma of the head and neck. Radiother Oncol 41, 31–39.

    PubMed  CAS  Google Scholar 

  95. Hockel, M., Schlenger, K., Mitze, M., (1996) Hypoxia and radiation response in human tumors. Semin Radiat Oncol 6, 3–9.

    PubMed  Google Scholar 

  96. Overgaard, J., Hansen, H. S., Overgaard, M., (1998) A randomized double-blind phase III study of nimorazole as a hypoxic radiosensitizer of primary radiotherapy in supraglottic larynx and pharynx carcinoma. Results of the Danish Head and Neck Cancer Study (DAHANCA) Protocol 5-85. Radiother Oncol 46, 135–146.

    PubMed  CAS  Google Scholar 

  97. Rajendran, J. G., Mankoff, D. A., O’Sullivan, F., (2004) Hypoxia and glucose metabolism in malignant tumors: evaluation by [18F]fluoromisonidazole and [18F]fluorodeoxyglucose positron emission tomography imaging. Clin Cancer Res 10, 2245–2252.

    PubMed  CAS  Google Scholar 

  98. Bruehlmeier, M., Roelcke, U., Schubiger, P. A., (2004) Assessment of hypoxia and perfusion in human brain tumors using PET with 18F-fluoromisonidazole and 15O-H2O. J Nucl Med 45, 1851–1859.

    PubMed  Google Scholar 

  99. Gagel, B., Reinartz, P., Dimartino, E., (2004) pO(2) Polarography versus positron emission tomography ([(18)F] fluoromisonidazole, [(18)F]-2-fluoro-2′-deoxyglucose). An appraisal of radiotherapeutically relevant hypoxia. Strahlenther Onkol 180, 616–622.

    PubMed  Google Scholar 

  100. Thorwarth, D., Eschmann, S. M., Scheiderbauer, J., (2005) Kinetic analysis of dynamic 18F-fluoromisonidazole PET correlates with radiation treatment outcome in head-and-neck cancer. BMC Cancer 5, 152.

    PubMed  Google Scholar 

  101. Griffiths, J. R., Taylor, N. J., Howe, F. A., (1997) The response of human tumors to carbogen breathing, monitored by gradient-recalled echo magnetic resonance imaging. Int J Radiat Oncol Biol Phys 39, 697–701.

    PubMed  CAS  Google Scholar 

  102. Taylor, N. J., Baddeley, H., Goodchild, K. A., (2001) BOLD MRI of human tumor oxygenation during carbogen breathing. J Magn Reson Imaging 14, 156–163.

    PubMed  CAS  Google Scholar 

  103. Herbst, R. S., Mullani, N. A., Davis, D. W., (2002) Development of biologic markers of response and assessment of antiangiogenic activity in a clinical trial of human recombinant endostatin. J Clin Oncol 20, 3804–3814.

    PubMed  CAS  Google Scholar 

  104. Thomas, J. P., Arzoomanian, R. Z., Alberti, D., (2003) Phase I pharmacokinetic and pharmacodynamic study of recombinant human endostatin in patients with advanced solid tumors. J Clin Oncol 21, 223–231.

    PubMed  CAS  Google Scholar 

  105. Anderson, H., Yap, J. T., Wells, P., (2003) Measurement of renal tumour and normal tissue perfusion using positron emission tomography in a phase II clinical trial of razoxane. Br J Cancer 89, 262–267.

    PubMed  CAS  Google Scholar 

  106. Kurdziel, K. A., Figg, W. D., Carrasquillo, J. A., (2003) Using positron emission tomography 2-deoxy-2-[18F]fluoro-D-glucose, 11CO, and 15O-water for monitoring androgen independent prostate cancer. Mol Imaging Biol 5, 86–93.

    PubMed  Google Scholar 

  107. Lassau, N., Chawi, I., Rouffiac, V., (2004) [Interest of color Doppler ultrasonography to evaluate a new anti-angiogenic treatment with thalidomide in metastatic renal cell carcinoma]. Bull Cancer 91, 629–635.

    PubMed  Google Scholar 

  108. Willett, C. G., Boucher, Y., di Tomaso, E., (2004) Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 10, 145–147.

    PubMed  CAS  Google Scholar 

  109. Liu, G., Rugo, H. S., Wilding, G., (2005) Dynamic contrast-enhanced magnetic resonance imaging as a pharmacodynamic measure of response after acute dosing of AG-013736, an oral angiogenesis inhibitor, in patients with advanced solid tumors: results from a phase I study. J Clin Oncol 23, 5464–5473.

    PubMed  CAS  Google Scholar 

  110. McNeel, D. G., Eickhoff, J., Lee, F. T., (2005) Phase I trial of a monoclonal antibody specific for alphavbeta3 integrin (MEDI-522) in patients with advanced malignancies, including an assessment of effect on tumor perfusion. Clin Cancer Res 11, 7851–7860.

    PubMed  CAS  Google Scholar 

  111. Xiong, H. Q., Herbst, R., Faria, S. C., (2004) A phase I surrogate endpoint study of SU6668 in patients with solid tumors. Invest New Drugs 22, 459–466.

    PubMed  CAS  Google Scholar 

  112. Falk, S. J., Ramsay, J. R., Ward, R., (1994) BW12C perturbs normal and tumour tissue oxygenation and blood flow in man. Radiother Oncol 32, 210–217.

    PubMed  CAS  Google Scholar 

  113. Logan, T. F., Jadali, F., Egorin, M. J., (2002) Decreased tumor blood flow as measured by positron emission tomography in cancer patients treated with interleukin-1 and carboplatin on a phase I trial. Cancer Chemother Pharmacol 50, 433–444.

    PubMed  CAS  Google Scholar 

  114. Galbraith, S. M., Rustin, G. J., Lodge, M. A., (2002) Effects of 5,6-dimethylxanthenone-4-acetic acid on human tumor microcirculation assessed by dynamic contrast-enhanced magnetic resonance imaging. J Clin Oncol 20, 3826–3840.

    PubMed  CAS  Google Scholar 

  115. Anderson, H. L., Yap, J. T., Miller, M. P., (2003) Assessment of pharmacodynamic vascular response in a phase I trial of combretastatin A4 phosphate. J Clin Oncol 21, 2823–2830.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Professor K. Miles, Dr. D. Buckley and Dr. J. Matthews for their advice.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Charnley, N., Donaldson, S., Price, P. (2009). Angiogenic Signalling Pathways. In: Murray, C., Martin, S. (eds) Angiogenesis Protocols. Methods in Molecular Biology, vol 467. Humana Press. https://doi.org/10.1007/978-1-59745-241-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-241-0_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-907-9

  • Online ISBN: 978-1-59745-241-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics