Skip to main content

Macrophage Fusion

Molecular Mechanisms

  • Protocol
Book cover Cell Fusion

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 475))

Summary

Macrophages are the most versatile, plastic, and mobile cells in the animal kingdom. They are present in all tissues and might even define a true “ body-wide” network that maintains health and ensures the repair of tissues and organs. In specific and rare instances, macrophages fuse to form multinucleate osteoclasts and giant cells in bone and in chronic inflammatory reactions, respectively. While macrophages lose most of their plasticity and mobility after they become multinucleate, at the same time they acquire the capacity to resorb calcified tissues, such as bone, and foreign bodies, such as pathogens and implants, and they mediate the replacement of the resorbed tissue by new tissue. There is evidence to suggest that macrophages might also fuse with somatic cells to repair tissues and with tumor cells to trigger the metastatic process. The molecular machinery of macrophage fusion remains poorly characterized, but it is likely to be shared by all fusing macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Greaves, D. R. and Gordon, S. (2002) Macrophage-specific gene expression: current paradigms and future challenges. Int. J. Hematol. 76, 6–15.

    Article  CAS  PubMed  Google Scholar 

  2. Taylor, P. R., Martinez-Pomares, L., Stacey, M., Lin, H. H., Brown, G. D., Gordon, S. (2005) Macrophage receptors and immune recognition. Annu. Rev. Immunol. 23, 901–944.

    Article  CAS  PubMed  Google Scholar 

  3. Hume, D. A. (2006) The mononuclear phagocyte system. Curr. Opin. Immunol. 18, 49–53.

    Article  CAS  PubMed  Google Scholar 

  4. Medzhitov, R. and Janeway, C. A. Jr. (2002) Decoding the patterns of self and nonself by the innate immune system. Science 296, 298–300.

    Article  CAS  PubMed  Google Scholar 

  5. Vignery, A. (2005) Macrophage fusion: are somatic and cancer cells possible partners? Trends Cell Biol. 15, 188–193.

    Article  CAS  PubMed  Google Scholar 

  6. Vignery, A. (2005) Osteoclasts and giant cells: macrophage–macrophage fusion mechanism. Int. J. Exp. Pathol. 81, 291–304.

    Article  Google Scholar 

  7. Vignery, A. (2000) Macrophage fusion: the making of osteoclasts and giant cells. J. Exp. Med. 202, 337–340.

    Article  Google Scholar 

  8. Bruzzaniti, A. and Baron, R. (2006) Molecular regulation of osteoclast activity. Rev. Endocr. Metab. Disord. 7, 123–139.

    Article  CAS  PubMed  Google Scholar 

  9. Boyle, W. J., Simonet, W. S., and Lacey, D. L. (2003) Osteoclast differentiation and activation. Nature 423, 337–342.

    Article  CAS  PubMed  Google Scholar 

  10. Teitelbaum, S. L. and Ross, F. P. (2003) Genetic regulation of osteoclast development and function. Nat. Rev. Genet. 8, 638–649.

    Article  Google Scholar 

  11. Sharma, S. M., Hu, R., Bronisz, A., Meadows, N., Lusby, T., Fletcher, B., Hume, D. A., Cassady, A. I., and Ostrowski, M. C. (2006) Genetics and genomics of osteoclast differentiation: integrating cell signaling pathways and gene networks. Crit. Rev. Eukaryot. Gene Expr. 16, 253–277.

    CAS  PubMed  Google Scholar 

  12. Asagiri M. and Takayanagi, H. (2007) The molecular understanding of osteoclast differentiation. Bone 40, 251–264.

    Article  CAS  PubMed  Google Scholar 

  13. McNally, A. K. and Anderson, J. M. (1995) Interleukin-4 induces foreign body giant cells from human monocytes/macrophages. Differential lymphokine regulation of macrophage fusion leads to morphological variants of multinucleated giant cells. Am. J. Pathol. 147, 1487–1499.

    CAS  PubMed  Google Scholar 

  14. DeFife, K. M., Jenney, C. R., McNally, A. K., Colton, E., and Anderson, J. M. (1997) Interleukin-13 induces human monocyte/macrophage fusion and macro- phage mannose receptor expression. J. Immunol. 158, 3385–3390.

    CAS  PubMed  Google Scholar 

  15. Helming, L. and Gordon, S. (2007) Macrophage fusion induced by IL-4 alternative activation is a multistage process involving multiple target molecules. Eur. J. Immunol. 37, 33–42.

    Article  CAS  PubMed  Google Scholar 

  16. Saginario, C., Qian, H.-Y., and Vignery, A. (1995) Identification of an inducible surface molecule specific to fusing macrophages. Proc. Natl. Acad. Sci. U.S.A. 92, 12210–12214.

    Article  CAS  PubMed  Google Scholar 

  17. Saginario, C., Sterling, H., Beckers, C., Kobayashi, R.-J., Solimena, M., Ullu, E., and Vignery, A. (1998) MFR, a putative receptor mediating the fusion of macro- phages. Mol. Cell. Biol. 18, 6213–6223.

    CAS  PubMed  Google Scholar 

  18. Shioi, A., Teitelbaum, S. L., Ross, F. P., Welgus, H. G., Suzuki, H., Ohara, J., and Lacey, D. L. (1991) Interleukin 4 inhibits murine osteoclast formation in vitro. J. Cell Biochem. 47, 272–277.

    Article  CAS  PubMed  Google Scholar 

  19. Kyriakides, T. R., Foster, M, J., Keeney, G. E., Tsai, A., Giachelli, C. M., Clark- Lewis, I., Rollins, B. J., and Bornstein, P. (2004) The CC chemokine ligand, CCL2/MCP1, participates in macrophage fusion and foreign body giant cell for- mation. Am. J. Pathol. 165, 2157–2166.

    Article  CAS  PubMed  Google Scholar 

  20. Kim, M. S., Day, C. J., Selinger, C. I., Magno, C. L., Stephens, S. R., and Morrison, N. A. (2006) MCP-1–induced human osteoclast-like cells are tartrate-resistant acid phosphatase, NFATc1, and calcitonin receptor–positive but require receptor activator of NFkappaB ligand for bone resorption. J. Biol. Chem. 281, 1274–1285.

    Article  CAS  PubMed  Google Scholar 

  21. Chen, E., Grote, E., Mohler, W., and Vignery, A. (2007) Membrane exchange special issue: cell–cell fusion. FEBS Lett. 581(11), 2181–2193, 2007.

    Article  CAS  PubMed  Google Scholar 

  22. Willenbring, H., Bailey, A. S., Foster, M., Akkari, Y., Dorrell, C., Olson, S., Finegold, M., Fleming, W. H., and Grompe, M. (2004) Myelomonocytic cells are sufficient for therapeutic cell fusion in liver. Nat. Med. 10, 744–748.

    Article  CAS  PubMed  Google Scholar 

  23. Duelli, D. and Lazebnik, Y. (2003) Cell fusion: a hidden enemy? Cancer Cell 3, 445–448.

    Article  CAS  PubMed  Google Scholar 

  24. Parkinson, J. E., Sanderson, C. M., and Smith, G. L. (1995) The Vaccinia virus A38L gene product is a 33-kDa integral membrane glycoprotein. Virology 214, 177–188.

    Article  CAS  PubMed  Google Scholar 

  25. Sanderson, C. M., Parkinson, J. E., Hollinshead, M., and Smith, G. L. (1996) Overexpression of the Vaccinia virus A38L integral membrane protein promotes Ca2+ influx into infected cells. J. Virol. 70, 905–914.

    CAS  PubMed  Google Scholar 

  26. Nolan, S., Cowan, A. E., Koppel, D. E., Jin, H., and Grote, E. (2006) FUS1 Regulates the Opening and Expansion of Fusion Pores between Mating Yeast. Mol. Biol. Cell 17, 2439–2450.

    Article  CAS  PubMed  Google Scholar 

  27. Mohler, W. A., Simske, J. S., Williams-Masson, E. M., Hardin, J. D., and White, J. G. (1998) Dynamics and ultrastructure of developmental cell fusions in the Caenorhabditis elegans hypodermis. Curr. Biol. 8, 1087–1090.

    Article  CAS  PubMed  Google Scholar 

  28. Nishiyama, Y., Tanaka, T., Naitoh, H., Mori, C., Fukumoto, M., Hiai, H., and Toyokuni, S. (1997) Overexpression of integrin-associated protein (CD47) in rat kidney treated with a renal carcinogen, ferric nitrilotriacetate. Jpn. J. Cancer Res. 88, 120–128.

    CAS  PubMed  Google Scholar 

  29. Sterling, H., Saginario, C., and Vignery, A. (1998) CD44 occupancy prevents macrophage multinucleation. J. Cell Biol. 843, 837–847.

    Article  Google Scholar 

  30. Cui, W., Ke, J. Z., Zhang, Q., Ke, H. Z., Chalouni, C., and Vignery, A. (2006) The intracellular domain of CD44 promotes the fusion of macrophages. Blood 107, 796–805.

    Article  CAS  PubMed  Google Scholar 

  31. Franzoso, G., Carlson, L., Xing, L., Poljak, L., Shores, E. W., Brown, K. D., Leonardi, A., Tran, T., Boyce, B. F., and Siebenlist, U. (1997) Requirement for NF-kappaB in osteoclast and B-cell development. Genes Dev. 11, 3482–3496.

    Article  CAS  PubMed  Google Scholar 

  32. Iotsova, V., Caamano, J., Loy, J., Yang, Y., Lewin, A., Bravo, R. (1997) Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Nat. Med. 3, 1285–1289.

    Article  CAS  PubMed  Google Scholar 

  33. Cui, W., Cuartas, E., Ke, J., Zhang, Q., Einarsson, H. B., Sedgwick, J. D., Li, J., and Vignery, A. CD200 and its receptor, CD200R, modulate bone mass via the differentiation of osteoclasts. Proc. Natl. Acad. Sci. U.S.A. Epub 2007 August 28.

    Google Scholar 

  34. Takeda, Y., Tachibana, I., Miyado, K., Kobayashi, M., Miyazaki, T., Funakoshi, T., Kimura, H., Yamane, H., Saito, Y., Goto, H., Yoneda, T., Yoshida, M., Kumagai, T., Osaki, T., Hayashi, S., Kawase, I., and Mekada, E. (2003) Tetraspanins CD9 and CD81 function to prevent the fusion of mononuclear phagocytes. J. Cell Biol. 161, 945–956.

    Article  CAS  PubMed  Google Scholar 

  35. Chatterjee, I., Richmond, A., Putiri, E., Shakes, D. C., and Singson, A. (2005) The Caenorhabditis elegans spe-38 gene encodes a novel four-pass integral membrane protein required for sperm function at fertilization. Development 132, 2795–2808.

    Article  CAS  PubMed  Google Scholar 

  36. Mbalaviele, G., Chen, H., Boyce, B. F., Mundy, G. R., and Yoneda T. (1995) The role of cadherin in the generation of multinucleated osteoclasts from mononuclear precursors in murine marrow. J. Clin. Invest. 95, 2757–2765.

    Article  CAS  PubMed  Google Scholar 

  37. Lemaire, I., Falzoni, S., Leduc, N., Zhang, B., Pellegatti, P., Adinolfi, E., Chiozzi, P., and Di Virgilio, F. (2006) Involvement of the purinergic P2X7 receptor in the formation of multinucleated giant cells. J. Immunol. 177, 7257–7265.

    CAS  PubMed  Google Scholar 

  38. Ke, H. Z., Qi, H., Weidema, A. F., Zhang, Q., Panupinthu, N., Crawford, D. T., Grasser, W. A., Paralkar, V. M., Li, M., Audoly, L. P., Gabel, C. A., Jee, W. S., Dixon, S. J., Sims, S. M., and Thompson, D. D. (2003) Deletion of the P2X7 nucleotide receptor reveals its regulatory roles in bone formation and resorption. Mol. Endocrinol. 17, 1356–1367.

    Article  CAS  PubMed  Google Scholar 

  39. McNally, A. K., DeFife, K. M., and Anderson, J. M. (1996) Interleukin-4–induced macrophage fusion is prevented by inhibitors of mannose receptor activity. Am. J. Pathol. 149, 975–985.

    CAS  PubMed  Google Scholar 

  40. McNally, A. K. and Anderson, J. M. (2002) Beta1 and beta2 integrins mediate adhesion during macrophage fusion and multinucleated foreign body giant cell formation. Am. J. Pathol. 160, 621–630.

    Article  CAS  PubMed  Google Scholar 

  41. Lee, S. H., Rho, J., Jeong, D., Sul, J. Y., Kim, T., Kim, N., Kang, J. S., Miyamoto, T., Suda, T., Lee, S. K., Pignolo, R. J., Koczon-Jaremko, B., Lorenzo, J., and Choi,Y. (2006) v-ATPase V0 subunit d2–deficient mice exhibit impaired osteoclast fusion and increased bone formation. Nat. Med. 12, 1403–1409.

    Article  CAS  PubMed  Google Scholar 

  42. Yagi, M., Miyamoto, T., Sawatani, Y., Iwamoto, K., Hosogane, N., Fujita, N., Morita, K., Ninomiya, K., Suzuki, T., Miyamoto, K., Oike, Y., Takeya, M., Toyama, Y., and Suda, T. (2005) DC-STAMP is essential for cell–cell fusion in osteoclasts and foreign body giant cells. J. Exp. Med. 202, 345–351.

    Article  CAS  PubMed  Google Scholar 

  43. Bardwell, L. A. (2005) Walk-through of the yeast mating pheromone response pathway. Peptides 26, 339–350.

    Article  PubMed  Google Scholar 

  44. Elion, E. A. (2000) Pheromone response, mating and cell biology. Curr. Opin. Microbiol. 3, 573–581.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this protocol

Cite this protocol

Vignery, A. (2008). Macrophage Fusion. In: Chen, E.H. (eds) Cell Fusion. Methods in Molecular Biology™, vol 475. Humana Press. https://doi.org/10.1007/978-1-59745-250-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-250-2_9

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-911-6

  • Online ISBN: 978-1-59745-250-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics