Skip to main content

Prediction of Peptide-MHC Binding Using Profiles

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 409))

Summary

Prediction of peptide binding to major histocompatibility complex (MHC) molecules is a basis for anticipating T-cell epitopes. Peptides that bind to a given MHC molecule are related by sequence similarity. Therefore, a position-specific scoring matrix (PSSM)—also known as profile—derived from a set of aligned peptides known to bind to a given MHC molecule can be used as a predictor of both peptide–MHC binding and T-cell epitopes. In this approach, the binding potential of any peptide sequence (query) to the MHC molecule is determined by its similarity to a set of known peptide–MHC binders and can be obtained by comparing the query to the PSSM. Following structural considerations of the peptide–MHC interaction, we will describe here how to derive alignments and PSSMs that are suitable for the prediction of peptide–MHC binding.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Margulies, D.H. 1997. Interactions of TCRs with MHC-peptide complexes: aquantitative basis for mechanistic models. Curr Opin Immunol9:390–395.

    Article  CAS  PubMed  Google Scholar 

  2. Garcia, K.C., Teyton, L., and Wilson, I.A. 1999. Structural basis of T cell recognition. Annu Rev Immunol17:369–397.

    Article  CAS  PubMed  Google Scholar 

  3. Wang, J.-H., and Reinherz, E.L. 2001. Structural basis of T cell recognition of peptides bound to MHC molecules. Mol Immunol38:1039–1049.

    Article  Google Scholar 

  4. Yu, K., Petrovsky, N., Schonbach, C., Koh, J.Y., and Brusic, V. 2002. Methods for prediction of peptide binding to MHC molecules: a comparative study. Mol Med8:137–148.

    CAS  PubMed  Google Scholar 

  5. Flower, D. 2003. Towards in silico prediction of immunogenic epitopes. Trends Immunol24:667–674.

    Article  CAS  PubMed  Google Scholar 

  6. Flower, D., and Doytchinova, I.A. 2002. Immunoinformatics and the prediction of immunogenicity. Appl Bioinformatics1(4):167–176.

    Google Scholar 

  7. Stern, L.J., and Wiley, D.C. 1994. Antigen peptide binding by class I and class II histocompatibility proteins. Structure2:245–251.

    Article  CAS  PubMed  Google Scholar 

  8. Madden, D. 1995. The three-dimensional structure of peptide-MHC complexes. Annu Rev Immunol13:587–622.

    Article  CAS  PubMed  Google Scholar 

  9. Reche, P.A., and Reinherz, E.L. 2003. Sequence variability analysis of human class I and class II MHC molecules: functional and structural correlates of amino acid polymorphisms. J Mol Biol331:623–641.

    Article  CAS  PubMed  Google Scholar 

  10. D’Amaro, J., Houbiers, J.G., Drijfhout, J.W., Brandt, R.M., Schipper, R., Bavinck, J.N., Melief, C.J., and Kast, W.M. 1995. A computer program for predicting possible cytotoxic T lymphocyte epitopes based on HLA class I peptide binding motifs. Hum Immunol43:13–18.

    Article  PubMed  Google Scholar 

  11. Rammensee, H.G., Bachmann, J., Emmerich, N.P.N., Bacho, O.A., and Stevanovic, S. 1999. SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics50:213–219.

    Article  CAS  PubMed  Google Scholar 

  12. Bouvier, M., and Wiley, D.C. 1994. Importance of peptide amino acid and carboxyl termini to the stability of MHC class I molecules. Science265:398–402.

    Article  CAS  PubMed  Google Scholar 

  13. Ruppert, J., Sidney, J., Celis, E., Kubo, T., Grey, H.M., and Sette, A. 1993. Prominent role of secondary anchor residues in peptide binding to HLA-A2.1 molecules. Cell74:929–937.

    Article  CAS  PubMed  Google Scholar 

  14. Gribskov, M., McLachlan, A.D., and Eisenberg, D. 1987. Profile analysis: detection of distantly related proteins. Proc Natl Acad Sci USA84:4355–4358.

    Article  CAS  PubMed  Google Scholar 

  15. Gribskov, M., and Veretnik, S. 1996. Identification of sequence pattern with profile analysis. Methods Enzymol266:198–212.

    Article  CAS  PubMed  Google Scholar 

  16. Pearson, W. 1997. Identifying distantly related protein sequences. Comput Appl Biosci13:325–332.

    CAS  PubMed  Google Scholar 

  17. Henikoff, J.G., and Henikoff, S. 1996. Using substitution probabilities to improve position-specific scoring matrices. Comput Appl Biosci12:135–143.

    CAS  PubMed  Google Scholar 

  18. Thompson, J.D., Higgins, D.G., and Gibson, T.J. 1994. Improved sensitivity of profile searches through the use of sequence weights and gap excision. Comput Appl Biosci10:19–29.

    CAS  PubMed  Google Scholar 

  19. Reche, P.A., Zhang, H., Glutting, J.-P., and Reinherz, E.L. 2005. EPIMHC: a curated database of MHC-binding peptides for customized computational vaccinology. Bioinformatics21:2140–2141.

    Article  CAS  PubMed  Google Scholar 

  20. Henikoff, S., Henikoff, J.G., Alford, W.J., and Pietrokovski, S. 1995. Automated construction and graphical presentation of protein blocks from unaligned sequences. Gene163:17–26.

    Article  Google Scholar 

  21. Bailey, T.L., and Elkan, C. 1995. The value of prior knowledge in discovering motifs with MEME. Proc Int Conf Intell Syst Mol Biol3:21–29.

    CAS  PubMed  Google Scholar 

  22. Reche, P.A., Glutting, J.-P., and Reinherz, E.L. 2002. Prediction of MHC class I binding peptides using profile motifs. Hum Immunol63:701–709.

    Article  CAS  PubMed  Google Scholar 

  23. Barber, L.D., and Parham, P. 1993. Peptide binding to major histocompatibility complex molecules. Annu Rev Cell Biol9:163–206.

    Article  CAS  PubMed  Google Scholar 

  24. Thompson, J.D., Higgins, D.G., and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weigh matrix choice. Nucleic Acids Res2:4673–4680.

    Article  Google Scholar 

  25. Henikoff, S., Henikoff, J.G., and Pietrokovski, S. 1999. Blocks+: a non-redundant database of protein alignment blocks derived from multiple compilations. Bioinformatics15:471–479.

    Article  CAS  PubMed  Google Scholar 

  26. Henikoff, S., and Henikoff, J.G. 1992. Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci USA89:10915–10919.

    Article  CAS  PubMed  Google Scholar 

  27. Henikoff, J.G., and Henikoff, S. 1996. Substitution probabilities to improve position-specific scoring matrices. Comput Appl Biosci12:135–143.

    CAS  PubMed  Google Scholar 

  28. Henikoff, S., and Henikoff, J.G. 1994. Position-based sequence weights. J Mol Biol243:574–578.

    Article  CAS  PubMed  Google Scholar 

  29. Vingron, M., and Sibbald, P. 1993. Weighting in sequence space: a comparison of methods in terms of generalized sequences. Proc Natl Acad Sci USA90: 8777–8781.

    Article  CAS  PubMed  Google Scholar 

  30. Sibbald, P., and Argos, P. 1990. Weighting aligned protein or nucleic acid sequences to correct for unequal representation. J Mol Biol216:813–818.

    Article  CAS  PubMed  Google Scholar 

  31. Reche, P.A., Glutting, J.-P., and Reinherz, E.L. 2004. Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles. Immunogenetics56:405–419.

    Article  CAS  PubMed  Google Scholar 

  32. Parker, K.C., Bednarek, M.A., and Coligan, J.E. 1994. Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side chains. J Immunol152:163–175.

    CAS  PubMed  Google Scholar 

  33. Stryhn, A., Pederson, L.O., Romme, T., Holm, A., and Buus, S. 1996. Peptide binding specificity of major histocompatibility complex class I resolved into an array of apparently independent subspecificities: quantitation by peptide libraries and improved prediction of binding. Eur J Immunol26: 1911–1918.

    Article  CAS  PubMed  Google Scholar 

  34. Udaka, K., Wiesmuller, K.H., Kienle, S., Jung, G., Tamamura, H., Yamigishi,H., Okumura, K., Walden, P., Suto, T., and Kawasaki, T. 2000. An automated prediction of MHC class I-binding peptides based on positional scanning with peptide libraries. Immunogenetics51:816–828.

    Article  CAS  PubMed  Google Scholar 

  35. Adams, H.P., and Koziol, J.A. 1995. Prediction of binding to MHC class I molecules. J Immunol Methods185:181–190.

    Article  CAS  PubMed  Google Scholar 

  36. Gulukota, K., Sidney, J., Sette, A., and DeLisi, C. 1997. Two complementary methods for predicting peptides binding major histocompatibility complex molecules. J Mol Biol267:1258–1267.

    Article  CAS  PubMed  Google Scholar 

  37. Altuvia, Y., Sette, A., Sidney, J., Southwood, S., and Margalit, H. 1997. A structure based algorithm to predict potential binding peptides to MHC molecules with hydrophobic binding pockets. Hum Immunol58:1–11.

    Article  CAS  PubMed  Google Scholar 

  38. Schueler-Furman, O., Altuvia, Y., Sette, A., and Margalit, H. 2000. Structure-based prediction of binding peptides to MHC class I molecules: application to a broad range of MHC alleles. Protein Sci9:1838–1846.

    Article  CAS  PubMed  Google Scholar 

  39. Sturniolo, T., Bono, E., Ding, J., Raddrizzani, L., Tuereci, O., Sahin, U., Sinigaglia,F., and Hammer, J. 1999. Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nat Biotechnol17:555–561.

    Article  CAS  PubMed  Google Scholar 

  40. Peters, B., Tong, W., Sidney, J., Sette, A., and Weng, Z. 2003. Examining the independent binding assumption for binding of peptide epitopes to MHC-I molecules. Bioinformatics19:1765–1772.

    Article  CAS  PubMed  Google Scholar 

  41. Madden, D., Garboczi, D.N., and Wiley, D.C. 1993. The antigenic identity of peptide-MHC complexes: a comparison of the conformations of five viral peptides presented by HLA-A2. Cell75:693–708.

    Article  CAS  PubMed  Google Scholar 

  42. Hennecke, J., Carfi, A., and Wiley, D.C. 2000. Structure of a covalently stabilized complex of a human alpha beta T-cell receptor, influenza HA peptide and MHC class II molecule, HLA-DR1. EMBO J19:5611–5624.

    Article  CAS  PubMed  Google Scholar 

  43. Nicholls, A., Sharp, K., and Honig, B. 1991. Protein folding and association insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins11:281–296.

    Article  CAS  PubMed  Google Scholar 

  44. Brusic, V., Rudy, G., Kyne, A.P., and Harrison, L.C. 1998. MHCPEP, a database of MHC-binding peptides: update 1997. Nucleic Acids Res26:368–371.

    Article  CAS  PubMed  Google Scholar 

  45. Bhasin, M., Singh, H., and Raghava, G.P. 2003. MHCBN: a comprehensive database of MHC binding and non-binding peptides. Bioinformatics19:665–666.

    Article  CAS  PubMed  Google Scholar 

  46. Blythe, M.J., Doytchinova, I.A., and Flower, D. 2002. JenPep: a database of quantitative functional peptide data for immunology. Bioinformatics18:434–439.

    Article  CAS  PubMed  Google Scholar 

  47. Schonbach, C., Koh, J.L., Flower, D., Wong, L., and Brusic, V. 2002. FIMM, a database of functional molecular immunology: update 2002. Nucleic Acids Res30:226–229.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Reche, P.A., Reinherz, E.L. (2007). Prediction of Peptide-MHC Binding Using Profiles. In: Flower, D.R. (eds) Immunoinformatics. Methods in Molecular Biology™, vol 409. Humana Press. https://doi.org/10.1007/978-1-60327-118-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-118-9_13

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-699-3

  • Online ISBN: 978-1-60327-118-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics