Skip to main content

Measuring the Integrity of the Human Blood–Brain Barrier Using Magnetic Resonance Imaging

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 686))

Abstract

The evaluation of blood–brain barrier (BBB) integrity with contrast-enhanced magnetic resonance imaging (MRI) may prove valuable in the setting of certain brain pathologies, such as brain tumors and acute ischemic stroke. Various MRI protocols have been developed to explore the integrity of the BBB by monitoring the leakage of intravenously administered contrast medium into the brain parenchyma. In its simplest form, BBB integrity is assessed qualitatively, by determining the presence or absence of contrast-enhancement on a structural MR image. When a dynamic contrast-enhanced (DCE) MRI protocol is combined with a suitable pharmacokinetic model, DCE-MRI can map the spatial distribution of BBB integrity throughout the brain and assist with evaluating the effects of therapy. Several model-free surrogate measures of BBB permeability have been recently proposed, all of which can be readily computed from standard dynamic susceptibility contrast MRI perfusion scans. Contrast-enhanced MRI offers multiple strategies for evaluating BBB integrity.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. de Lange EC, Danhof M, de Boer AG, Breimer DD (1997) Methodological considerations of intracerebral microdialysis in pharmacokinetic studies on drug transport across the blood-brain barrier. Brain Res 25:27–49

    Article  Google Scholar 

  2. Blezer E (2005) Techniques for measuring the blood–brain barrier integrity, in The blood-brain barrier and its microenvironment: basic physiology to neurological disease (de Vries, E., Prat, A Ed.), pp 441–456, Taylor and Francis, New York

    Google Scholar 

  3. Weinmann HJ, Laniado M, Mutzel W (1984) Pharmacokinetics of GdDTPA/dimeglumine after intravenous injection into healthy volunteers, Physiological chemistry and physics and medical. NMR 16:167–172

    CAS  Google Scholar 

  4. Leach MO, Brindle KM, Evelhoch JL, Griffiths JR, Horsman MR, Jackson A, Jayson G, Judson IR, Knopp MV, Maxwell RJ, McIntyre D, Padhani AR, Price P, Rathbone R, Rustin G, Tofts PS, Tozer GM, Vennart W, Waterton JC, Williams SR, Workman P (2003) Assessment of antiangiogenic and antivascular therapeutics using MRI: recommendations for appropriate methodology for clinical trials. Brit J Radiol 76 Spec No 1:S87–S91

    Google Scholar 

  5. Brasch R, Pham C, Shames D, Roberts T, van Dijke K, van Bruggen N, Mann J, Ostrowitzki S, Melnyk O (1997) Assessing tumor angiogenesis using macromolecular MR imaging contrast media. J Magn Reson Imaging 7:68–74

    Article  CAS  PubMed  Google Scholar 

  6. Brasch RC, Li KC, Husband JE, Keogan MT, Neeman M, Padhani AR, Shames D, Turetschek K (2000) In vivo monitoring of tumor angiogenesis with MR imaging. Academic Radiol 7:812–823

    Article  CAS  Google Scholar 

  7. Earnest Ft, Kelly PJ, Scheithauer BW, Kall BA, Cascino TL, Ehman RL, Forbes GS, Axley PL (1988) Cerebral astrocytomas: histopathologic correlation of MR and CT contrast enhancement with stereotactic biopsy. Radiology 166:823–827

    Google Scholar 

  8. Vo KD, Santiago F, Lin W, Hsu CY, Lee Y, Lee JM (2003) MR imaging enhancement patterns as predictors of hemorrhagic transformation in acute ischemic stroke. AJNR Am J Neuroradiol 24:674–679

    PubMed  Google Scholar 

  9. Kim EY, Na DG, Kim SS, Lee KH, Ryoo JW, Kim HK (2005) Prediction of hemorrhagic transformation in acute ischemic stroke: role of diffusion-weighted imaging and early parenchymal enhancement. AJNR Am J Neuroradiol 26:1050–1055

    PubMed  Google Scholar 

  10. Kastrup A, Groschel K, Ringer TM, Redecker C, Cordesmeyer R, Witte OW, Terborg C (2008) Early disruption of the blood-brain barrier after thrombolytic therapy predicts hemorrhage in patients with acute stroke. Stroke 39:2385–2387

    Article  CAS  PubMed  Google Scholar 

  11. Merten CL, Knitelius HO, Assheuer J, Bergmann-Kurz B, Hedde JP, Bewermeyer H (1999) MRI of acute cerebral infarcts, increased contrast enhancement with continuous infusion of gadolinium. Neuroradiology 41:242–248

    Article  CAS  PubMed  Google Scholar 

  12. Virapongse C, Mancuso A, Quisling R (1986) Human brain infarcts: Gd-DTPA-enhanced MR imaging. Radiology 161:785–794

    CAS  PubMed  Google Scholar 

  13. Latour LL, Kang DW, Ezzeddine MA, Chalela JA, Warach S (2004) Early blood-brain barrier disruption in human focal brain ischemia. Ann Neurol 56:468–477

    Article  PubMed  Google Scholar 

  14. Roberts HC, Roberts TP, Brasch RC, Dillon WP (2000) Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MR imaging: correlation with histologic grade. AJNR Am J Neuroradiol 21:891–899

    CAS  PubMed  Google Scholar 

  15. Knight RA, Barker PB, Fagan SC, Li Y, Jacobs MA, Welch KM (1998) Prediction of impending hemorrhagic transformation in ischemic stroke using magnetic resonance imaging in rats. Stroke 29:144–151

    CAS  PubMed  Google Scholar 

  16. Kassner A, Roberts T, Taylor K, Silver F, Mikulis D (2005) Prediction of hemorrhage in acute ischemic stroke using permeability MR imaging. AJNR Am J Neuroradiol 26:2213–2217

    PubMed  Google Scholar 

  17. Kassner A, Roberts TPL, Moran B, Silver F, Mikulis DJ (2009) rtPA increases blood-brain barrier disruption in acute ischemic stroke: an MRI permeability study. Am J Neuroradiol 30(10):1864–1869

    Article  CAS  PubMed  Google Scholar 

  18. Rosen BR, Belliveau JW, Vevea JM, Brady TJ (1990) Perfusion imaging with NMR contrast agents. Magn Reson Med 14:249–265

    Article  CAS  PubMed  Google Scholar 

  19. Kassner A, Annesley DJ, Zhu XP, Li KL, Kamaly-Asl ID, Watson Y, Jackson A (2000) Abnormalities of the contrast re-circulation phase in cerebral tumors demonstrated using dynamic susceptibility contrast-enhanced imaging: a possible marker of vascular tortuosity. J Magn Reson Imaging 11:103–113

    Article  CAS  PubMed  Google Scholar 

  20. Lupo JM, Cha S, Chang SM, Nelson SJ (2005) Dynamic susceptibility-weighted perfusion imaging of high-grade gliomas: characterization of spatial heterogeneity. AJNR Am J Neuroradiol 26:1446–1454

    PubMed  Google Scholar 

  21. Wu S-P, Thornhill RE, Chen S, Rammo W, Mikulis DJ, Kassner A (2009) Relative recirculation: a fast, model-free surrogate for the measurement of blood-brain barrier permeability and the prediction of hemorrhagic transformation in acute ischemic stroke. Invest Radiol 44(10):662–668

    Article  PubMed  Google Scholar 

  22. Mikulis DJ, Roberts TP (2007) Neuro MR: protocols. J Magn Reson Imaging 26:838–847

    Article  PubMed  Google Scholar 

  23. Knopp EA, Cha S, Johnson G, Mazumdar A, Golfinos JG, Zagzag D, Miller DC, Kelly PJ, Kricheff, II (1999) Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging. Radiology 211:791–798

    CAS  PubMed  Google Scholar 

  24. Wang X, Tsuji K, Lee SR, Ning M, Furie KL, Buchan AM, Lo EH (2004) Mechanisms of hemorrhagic transformation after tissue plasminogen activator reperfusion therapy for ischemic stroke. Stroke 35:2726–2730

    Article  CAS  PubMed  Google Scholar 

  25. Kassner A, Roberts TP (2004) Beyond perfusion: cerebral vascular reactivity and assessment of microvascular permeability. Top Magn Reson Imaging 15:58–65

    Article  PubMed  Google Scholar 

  26. Cheng HL (2008) Investigation and optimization of parameter accuracy in dynamic contrast-enhanced MRI. J Magn Reson Imaging 28:736–743

    Article  PubMed  Google Scholar 

  27. Haacke EM, Tkach JA (1990) Fast MR imaging: techniques and clinical applications. AJNR Am J Neuroradiol 155:951–964

    CAS  Google Scholar 

  28. Haase A, Frahm J, Matthaei D, Hannicke W, Merboldt KD (1986) FLASH imaging. Rapid NMR imaging using low flip-angle pulses. J Magn Reson 67:9

    Google Scholar 

  29. Armitage PA, Schwindack C, Bastin ME, Whittle IR (2007) Quantitative assessment of intracranial tumor response to dexamethasone using diffusion, perfusion and permeability magnetic resonance imaging. Mag Reson Imaging 25:303–310

    Article  CAS  Google Scholar 

  30. Haris M, Gupta RK, Husain M, Srivastava C, Singh A, Singh Rathore RK, Saksena S, Behari S, Husain N, Mohan Pandey C, Nath Prasad K (2008) Assessment of therapeutic response in brain tuberculomas using serial dynamic contrast-enhanced MRI. Clin Radiol 63:562–574

    Article  CAS  PubMed  Google Scholar 

  31. Li KL, Zhu XP, Checkley DR, Tessier JJ, Hillier VF, Waterton JC, Jackson A (2003) Simultaneous mapping of blood volume and endothelial permeability surface area product in gliomas using iterative analysis of first-pass dynamic contrast enhanced MRI data. Br J of Radiol 76:39–50

    Article  CAS  Google Scholar 

  32. Roberts TP (1997) Physiologic measurements by contrast-enhanced MR imaging: expectations and limitations. J Magn Reson Imaging 7:82–90

    Article  CAS  PubMed  Google Scholar 

  33. Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17:825–841

    Article  PubMed  Google Scholar 

  34. Donahue KM, Weisskoff RM, Burstein D (1997) Water diffusion and exchange as they influence contrast enhancement. J Magn Reson Imaging 7:102–110

    Article  CAS  PubMed  Google Scholar 

  35. Kay I, Henkelman RM (1991) Practical implementation and optimization of one-shot T1 imaging. Magn Reson Med 22:414–424

    Article  CAS  PubMed  Google Scholar 

  36. Gowland PA, Leach MO (1992) Fast and accurate measurements of T1 using a multi-readout single inversion-recovery sequence. Magn Reson Med 26:79–88

    Article  CAS  PubMed  Google Scholar 

  37. Tong CY, Prato FS (1994) A novel fast T1-mapping method. J Magn Reson Imaging 4:701–708

    Article  CAS  PubMed  Google Scholar 

  38. Brix G, Schad LR, Deimling M, Lorenz WJ (1990) Fast and precise T1 imaging using a TOMROP sequence. Magn Reson Imaging 8:351–356

    Article  CAS  PubMed  Google Scholar 

  39. Scheffler K, Hennig J (2001) T(1) quantification with inversion recovery TrueFISP. Magn Reson Med 45:720–723

    Article  CAS  PubMed  Google Scholar 

  40. Deoni SC, Rutt BK, Peters TM (2003) Rapid combined T1 and T2 mapping using gradient recalled acquisition in the steady state. Magn Reson Med 49:515–526

    Article  PubMed  Google Scholar 

  41. Larsson HB, Stubgaard M, Frederiksen JL, Jensen M, Henriksen O, Paulson OB (1990) Quantitation of blood-brain barrier defect by magnetic resonance imaging and gadolinium-DTPA in patients with multiple sclerosis and brain tumors. Magn Reson Med 16:117–131

    Article  CAS  PubMed  Google Scholar 

  42. Brix G, Semmler W, Port R, Schad LR, Layer G, Lorenz WJ (1991) Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. J Comput Assist Tomogr 15:621–628

    Article  CAS  PubMed  Google Scholar 

  43. Tofts PS, Kermode AG (1991) Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 17: 357–367

    Article  CAS  PubMed  Google Scholar 

  44. Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3:1–7

    CAS  PubMed  Google Scholar 

  45. Patlak CS, Blasberg RG (1985) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab 5:584–590

    CAS  PubMed  Google Scholar 

  46. Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, Larsson HB, Lee TY, Mayr NA, Parker GJ, Port RE, Taylor J, Weisskoff RM (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232

    Article  CAS  PubMed  Google Scholar 

  47. Ewing JR, Knight RA, Nagaraja TN, Yee JS, Nagesh V, Whitton PA, Li L, Fenstermacher JD (2003) Patlak plots of Gd-DTPA MRI data yield blood-brain transfer constants concordant with those of 14C-sucrose in areas of blood-brain opening. Magn Reson Med 50: 283–292

    Article  PubMed  Google Scholar 

  48. Endrich B, Reinhold HS, Gross JF, Intaglietta M (1979) Tissue perfusion inhomogeneity during early tumor growth in rats. J Natl Cancer Inst 62:387–395

    CAS  PubMed  Google Scholar 

  49. Tozer GM, Lewis S, Michalowski A, Aber V (1990) The relationship between regional variations in blood flow and histology in a transplanted rat fibrosarcoma. Br J Cancer 61:250–257

    CAS  PubMed  Google Scholar 

  50. Simpson NE, He Z, Evelhoch JL (1999) Deuterium NMR tissue perfusion measurements using the tracer uptake approach: I. Optimization of methods. Magn Reson Med 42:42–52

    Article  CAS  PubMed  Google Scholar 

  51. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962

    Article  CAS  PubMed  Google Scholar 

  52. Kassner A, Roberts TPL, Moran B, Silver FL, Mikulis DJ. rtPA increases blood-brain barrier disruption in acute ischemic stroke: an MRI permeability study. AJNR Am J Neuroradiol 2009; 30:1864–1869.

    Google Scholar 

  53. Jackson A, Kassner A, Annesley-Williams D, Reid H, Zhu XP, Li KL (2002) Abnormalities in the recirculation phase of contrast agent bolus passage in cerebral gliomas: comparison with relative blood volume and tumor grade. AJNR Am J Neuroradiol 23:7–14

    PubMed  Google Scholar 

  54. Bang OY, Buck BH, Saver JL, Alger JR, Yoon SR, Starkman S, Ovbiagele B, Kim D, Ali LK, Sanossian N, Jahan R, Duckwiler GR, Vinuela F, Salamon N, Villablanca JP, Liebeskind DS (2007) Prediction of hemorrhagic transformation after recanalization therapy using T2*-permeability magnetic resonance imaging. Ann Neurol 62:170–176

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Kassner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kassner, A., Thornhill, R. (2011). Measuring the Integrity of the Human Blood–Brain Barrier Using Magnetic Resonance Imaging. In: Nag, S. (eds) The Blood-Brain and Other Neural Barriers. Methods in Molecular Biology, vol 686. Humana Press. https://doi.org/10.1007/978-1-60761-938-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-938-3_10

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-937-6

  • Online ISBN: 978-1-60761-938-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics