Skip to main content

Methodological Aspects of Multicenter Studies with Quantitative PET

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 727))

Abstract

Quantification of whole-body FDG PET studies is affected by many physiological and physical factors. Much of the variability in reported standardized uptake value (SUV) data seen in the literature results from the variability in methodology applied among these studies, i.e., due to the use of different scanners, acquisition and reconstruction settings, region of interest strategies, SUV normalization, and/or corrections methods. To date, the variability in applied methodology prohibits a proper comparison and exchange of quantitative FDG PET data. Consequently, the promising role of quantitative PET has been demonstrated in several monocentric studies, but these published results cannot be used directly as a guideline for clinical (multicenter) trials performed elsewhere. In this chapter, the main causes affecting whole-body FDG PET quantification and strategies to minimize its inter-institute variability are addressed.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Fletcher, J.W., Djulbegovic, B., Soares, H.P., Siegel, B.A., Lowe, V.J., Lyman, G.H. et al. (2008) Recommendations on the use of F-18-FDG PET in oncology. J Nucl Med 49(3), 480–508.

    Article  PubMed  Google Scholar 

  2. Hoekstra, C.J., Stroobants, S.G., Hoekstra, O.S., Vansteenkiste, J., Biesma, B., Schramel, F.J., et al. (2003) The value of [18F]fluoro-2-deoxy-D-glucose positron emission tomography in the selection of patients with stage IIIA-N2 non-small cell lung cancer for combined modality treatment. Lung Cancer 39(2), 151–7.

    Article  PubMed  CAS  Google Scholar 

  3. Mijnhout, G.S., Borgstein, P.J., Hoekstra, O.S., van Diest, P.J., Pijpers, R., Meijer, S., et al. (1999) Potential value of FDG-PET for initial regional staging in melanoma. J Invest Dermatol 113(3), 514.

    Google Scholar 

  4. van Tinteren, H., Hoekstra, O.S., Smit, E.F., van den Bergh, J.H., Schreurs, A.J., Stallaert, R.A., et al. (2002) Effectiveness of positron emission tomography in the preoperative assessment of patients with suspected non-small-cell lung cancer: the PLUS multicentre randomised trial Lancet 359(9315), 1388–92.

    Article  PubMed  Google Scholar 

  5. Vansteenkiste, J.F., Stroobants, S.G. (2001) The role of positron emission tomography with 18F-fluoro-2-deoxy-D-glucose in respiratory oncology. Eur Respir J 17(4), 802–20.

    Article  PubMed  CAS  Google Scholar 

  6. Weber, W.A. (2006) Positron emission tomography as an imaging biomarker J Clin Oncol 24(20), 3282–92.

    Article  PubMed  CAS  Google Scholar 

  7. Zijlstra-Baalbergen, J.M., Hoekstra, O.S., Raaymakers, P.R., Comans, E.F., Huijgens, P.C., Hoeven, J.J., et al. (2000) FDG PET vs Ga-67 scintigraphy as a prognostic tool early during chemotherapy for non-Hodgkin’s lymphoma (NHL). J Nucl Med 41(5), 278P

    Google Scholar 

  8. Avril, N.E., Weber, W.A. (2005) Monitoring response to treatment in patients utilizing PET Radiol Clin North Am 43(1), 189–204.

    Article  PubMed  Google Scholar 

  9. Borst, G., Belderbos, J., Boellaard, R., Comans, E., de Jaeger, K., Lammertsma, A., et al. (2005) Prognostic significance of the 18FDG-PET standardized uptake value for inoperable non-small cell lung cancer patients after high-dose radiotherapy. Lung Cancer 49, S50.

    Article  Google Scholar 

  10. Hoekstra, C.J., Paglianiti, I., Hoekstra, O.S., Smit, E.F., Postmus, P.E., Teule, G.J., et al. (2000) Monitoring response to therapy in cancer using [F-18]-2-fluouo-2-deoxy-D-glucose and positron emission tomography: an overview of different analytical methods. Eur J Nucl Med 27(6), 731–43.

    Article  PubMed  CAS  Google Scholar 

  11. Larson, S.M., Schwartz, L.H. (2006) 18F-FDG PET as a candidate for “qualified biomarker”: functional assessment of treatment response in oncology. J Nucl Med 47(6), 901–3.

    PubMed  CAS  Google Scholar 

  12. Weber, W.A.(2005) PET for response assessment in oncology: radiotherapy and chemotherapy Br J Radiol 78, 42–9.

    Google Scholar 

  13. Graham, M.M., Peterson, L.M., Hayward, R.M. (2000) Comparison of simplified quantitative analyses of FDG uptake Nucl Med Biol 27(7), 647–55.

    Article  PubMed  CAS  Google Scholar 

  14. Hoekstra, C.J., Hoekstra, O.S., Stroobants, S.G., Vansteenkiste, J., Nuyts, J., Smit, E.F., et al. (2002) Methods to monitor response to chemotherapy in non-small cell lung cancer with F-18-FDG PET. J Nucl Med 43(10), 1304–9.

    PubMed  CAS  Google Scholar 

  15. Hoekstra, C.J., Hoekstra, O.S., Lammertsma, A.A. (1999) On the use of image-derived input functions in oncological fluorine-18 fluorodeoxyglucose positron emission tomography studies. Eur J Nucl Med 26(11), 1489–92.

    Article  PubMed  CAS  Google Scholar 

  16. Boellaard, R., Krak, N.C., Hoekstra, O.S., Lammertsma, A.A. (2004) Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: A simulation study. J Nucl Med 45(9), 1519–27.

    PubMed  Google Scholar 

  17. Krak, N.C., Boellaard, R., Hoekstra, O.S., Twisk, J.W.R., Hoekstra, C.J., Lammertsma, A.A. (2005) Effects of ROI definition and reconstruction method on quantitative outcome and applicability in a response monitoring trial Eur J Nucl Med Mol Imaging 32(3), 294–301.

    Article  PubMed  Google Scholar 

  18. Shankar, L.K., Hoffman, J.M., Bacharach, S., Graham, M.M., Karp, J., Lammertsma, A.A., et al. (2006) Consensus recommendations for the use of F-18-FDG PET as an indicator of therapeutic response in patients in national cancer institute trials. J Nucl Med 47(6), 1059–66.

    PubMed  CAS  Google Scholar 

  19. Stahl, A., Ott, K., Schwaiger, M., Weber, W.A. (2004) Comparison of different SUV-based methods for monitoring cytotoxic therapy with FDG PET Eur J Nucl Med Mol Imaging 31(11), 1471–9.

    Article  PubMed  CAS  Google Scholar 

  20. Weber, W.A. (2005) Use of PET for monitoring cancer therapy and for predicting outcome J Nucl Med 46(6), 983–95.

    PubMed  CAS  Google Scholar 

  21. Boellaard, R., Oyen, W.J., Hoekstra, C.J., Hoekstra, O.S., Visser, E.P., Willemsen, A.T., et al. (2008) The Netherlands protocol for standardisation and quantification of FDG whole body PET studies in multi-centre trials Eur J Nucl Med Mol Imaging 35(12), 2320–33

    Article  PubMed  Google Scholar 

  22. Visvikis, D., Cheze-LeRest, C., Costa, D.C., Bomanji, J., Gacinovic, S., Ell, P.J. (2001) Influence of OSEM and segmented attenuation correction in the calculation of standardised uptake values for [18F]FDG PET. Eur J Nucl Med 28(9), 1326–35.

    Article  PubMed  CAS  Google Scholar 

  23. Aerts, H.J., Bosmans, G., van Baardwijk, A.A., Dekker, A.L., Oellers, M.C., Lambin, P., et al. (2008) Stability of (18)F-Deoxyglucose uptake locations within tumor during radiotherapy for NSCLC: a prospective study. Int J Radiat Oncol Biol Phys 71(5), 1402–7.

    Article  PubMed  CAS  Google Scholar 

  24. Westerterp, M., Pruim, J., Oyen, W., Hoekstra, O., Paans, A., Visser, E., et al. (2007) Quantification of FDG PET studies using standardised uptake values in multi-centre trials: effects of image reconstruction, resolution and ROI definition parameters. Eur J Nucl Med Mol Imaging 34(3), 392–404.

    Article  PubMed  Google Scholar 

  25. Delbeke, D. (2006) Procedure guideline for tumor imaging with F-18-FDG PET/CT 1.0 J Nucl Med 47(5), 885–95. Erratum in J Nucl Med 47(6), 903.

    Google Scholar 

  26. Juweid, M.E., Stroobants, S., Hoekstra, O.S., Mottaghy, F.M., Dietlein, M., Guermazi, A., et al. (2007) Use of positron emission tomography for response assessment of lymphoma: Consensus of the Imaging Subcommittee of International Harmonization Project in lymphoma J Clin Oncol 25(5), 571–8.

    Article  PubMed  Google Scholar 

  27. Shankar, L.K. (2006) PET standardization, NIH findings: The importance of standardization of imaging in clinical trials J Nucl Med 47(12), 57N–58N.

    Google Scholar 

  28. Young, H., Baum, R., Cremerius, U., Herholz, K., Hoekstra, O., Lammertsma, A.A., et al. (1999) Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group Eur J Cancer 35(13), 1773–82.

    Article  PubMed  CAS  Google Scholar 

  29. Schelbert, H.R., Hoh, C.K., Royal, H.D., Brown, M., Dahlbom, M.N., Dehdashti, F., et al. (1998) Procedure guideline for tumor imaging using fluorine-18-FDG. Society of Nuclear Medicine J Nucl Med 39(7), 1302–5.

    PubMed  CAS  Google Scholar 

  30. Geworski, L., Knoop, B.O., de Wit, M., Ivancevic, V., Bares, R., Munz, D.L. (2002) Multicenter comparison of calibration and cross calibration of PET scanners J Nucl Med 43(5), 635–9.

    PubMed  Google Scholar 

  31. Thie, J.A. (2004) Understanding the standardized uptake value, its methods, and implications for usage. J Nucl Med 45(9), 1431–4.

    PubMed  Google Scholar 

  32. Takahashi, Y., Oriuchi, N., Otake, H., Endo, K., Murase, K. (2008) Variability of lesion detectability and standardized uptake value according to the acquisition procedure and reconstruction among five PET scanners Ann Nucl Med 22(6), 543–8.

    Article  PubMed  Google Scholar 

  33. Jaskowiak, C.J., Bianco, J.A., Perlman, S.B., Fine, J.P. (2005) Influence of reconstruction iterations on F-18-FDG PET/CT standardized uptake values. J Nucl Med 46(3), 424–8.

    PubMed  Google Scholar 

  34. Lodge, M., Leal, J., Wahl, R. (2008) Quantifying metabolic tumor response to therapy: The influence of image noise on maximum and mean SUV J Nucl Med 49, 108P.

    Article  Google Scholar 

  35. Leal, J., Lodge, M., Wahl, R. (2008) Reproducibility of SUV max for oncologic PET: Significant differences in quantification of the SAME study between PET-only and PET-CT analysis modes J Nucl Med 49, 107P.

    Google Scholar 

  36. Boellaard, R., Hoekstra, O.S., Lammertsma, A.A. (2008) Software tools for standardized analysis of FDG whole body studies in multi-center trials J Nucl Med 49, 159P.

    Google Scholar 

  37. Hoekstra, C.J., Stroobants, S.G., Smit, E.F., Vansteenkiste, J., van Tinteren, H., Postmus, P.E., et al. (2005) Prognostic relevance of response evaluation using [F-18]-2-fluoro-2-deoxy-D-glucose positron emission tomography in patients with locally advanced non-small-cell lung cancer J Clin Oncol 23(33), 8362–70.

    Article  PubMed  Google Scholar 

  38. Lammertsma, A.A., Hoekstra, C.J., Giaccone, G., Hoekstra, O.S. (2006) How should we analyse FDG PET studies for monitoring tumour response Eur J Nucl Med Mol Imaging 33, S16–S21.

    Article  Google Scholar 

  39. Hunter, G.J., Hamberg, L.M., Alpert, N.M., Choi, N.C., Fischman, A.J. (1996) Simplified measurement of deoxyglucose utilization rate J Nucl Med 37(6), 950–5.

    PubMed  CAS  Google Scholar 

  40. Sadato, N., Tsuchida, T., Nakaumra, S., Waki, A., Uematsu, H., Takahashi, N., et al. (1998) Non-invasive estimation of the net influx constant using the standardized uptake value for quantification of FDG uptake of tumours Eur J Nucl Med 25(6), 559–64.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Paul Kinahan, Osama Malawi, and Janet Saffer for their fruitful discussions. Adriaan Lammertsma and Otto Hoekstra are thanked for reviewing this paper and for the many helpful discussions on PET quantification. The members of the HOVON imaging workgroup are thanked for their contribution in setting up a Dutch FDG PET standardization protocol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald Boellaard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Humana Press

About this protocol

Cite this protocol

Boellaard, R. (2011). Methodological Aspects of Multicenter Studies with Quantitative PET. In: Juweid, M., Hoekstra, O. (eds) Positron Emission Tomography. Methods in Molecular Biology, vol 727. Humana Press. https://doi.org/10.1007/978-1-61779-062-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-062-1_18

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-061-4

  • Online ISBN: 978-1-61779-062-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics