Skip to main content

Use of Formalin-Fixed and Paraffin-Embedded Tissues for Diagnosis and Therapy in Routine Clinical Settings

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 785))

Abstract

Formalin-fixed and paraffin-embedded (FFPE) tissues are used routinely everyday in hospitals world-wide for histopathological diagnosis of diseases like cancer. Due to formalin-induced cross-linking of proteins, FFPE tissues present a particular challenge for proteomic analysis. Nevertheless, there has been recent progress for extraction-based protein analysis in these tissues. Novel tools developed in the last few years are urgently needed because precise protein biomarker quantification in clinical FFPE tissues will be crucial for treatment decisions and to assess success or failure of current and future personalized molecular therapies. Furthermore, they will help to conceive why only a subset of patients responds to individualized treatments. Reverse phase protein array (RPPA) is a very promising new technology for quick and simultaneous analysis of many patient samples allowing relative and absolute protein quantifications. In this chapter, we show how protein extraction from FFPE tissues might facilitate the implementation of RPPA for therapy decisions and discuss challenges for application of RPPA in clinical trials and routine settings.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Abbreviations

DTT:

Dithiothreitol

EGFR:

Epidermal growth factor receptor

ELISA:

Enzyme-linked immunosorbent assay

ERK:

Extracellular signal-regulated kinase

FFPE:

Formalin-fixed and paraffin-embedded

FISH:

Fluorescence in situ hybridisation

H&E:

Hematoxylin and Eosin

HER2/neu/ErbB2:

Human epidermal growth factor receptor 2

IHC:

Immunohistochemistry

MAPK:

Mitogen-activated protein kinase

PAI1:

Plasminogen activator inhibitor 1

RPPA:

Reverse phase protein array

SDS-PAGE:

sodium dodecyl sulfate polyacrylamide gel electrophoresis

uPA:

Urokinase-type plasminogen activator

References

  1. Becker, K. F., Schott, C., Hipp, S., Metzger, V., Porschewski, P., Beck, R., Nahrig, J., Becker, I., and Hofler, H. (2007) Quantitative protein analysis from formalin-fixed tissues: implications for translational clinical research and nanoscale molecular diagnosis, J Pathol 211, 370–378.

    Article  PubMed  CAS  Google Scholar 

  2. Nirmalan, N. J., Harnden, P., Selby, P. J., and Banks, R. E. (2008) Mining the archival formalin-fixed paraffin-embedded tissue proteome: opportunities and challenges, Mol Biosyst 4, 712–720.

    Google Scholar 

  3. Lim, M. S., and Elenitoba-Johnson, K. S. (2004) Proteomics in pathology research, Lab Invest 84, 1227–1244.

    Google Scholar 

  4. Liotta, L., and Petricoin, E. (2000) Molecular profiling of human cancer, Nat Rev Genet 1, 48–56.

    Google Scholar 

  5. Paweletz, C. P., Charboneau, L., Bichsel, V. E., Simone, N. L., Chen, T., Gillespie, J. W., Emmert-Buck, M. R., Roth, M. J., Petricoin, I. E., and Liotta, L. A. (2001) Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front, Oncogene 20, 1981–1989.

    Google Scholar 

  6. Addis, M. F., Tanca, A., Pagnozzi, D., Crobu, S., Fanciulli, G., Cossu-Rocca, P., and Uzzau, S. (2009) Generation of high-quality protein extracts from formalin-fixed, paraffin-embedded tissues, Proteomics 9 , 3815–3823.

    Google Scholar 

  7. Becker, K. F., Mack, H., Schott, C., Hipp, S., Rappl, A., Piontek, G., and Höfler, H. . (2008) Extraction of phosphorylated proteins from formalin-fixed cancer cells and tissues, TOPATJ 2, 44–52.

    Google Scholar 

  8. Becker, K. F., Schott, C., Becker, I., and Höfler, H. (2008) Guided protein extraction from formalin–fixed tissues for quantitative multiplex analysis avoids detrimental effects of histological stains, Proteomics Clin Appl 2, 737–743.

    Google Scholar 

  9. Chu, W. S., Liang, Q., Liu, J., Wei, M. Q., Winters, M., Liotta, L., Sandberg, G., and Gong, M. (2005) A nondestructive molecule extraction method allowing morphological and molecular analyses using a single tissue section, Lab Invest 85, 1416–1428.

    Google Scholar 

  10. Chung, J. Y., Lee, S. J., Kris, Y., Braunschweig, T., Traicoff, J. L., and Hewitt, S. M. (2008) A well-based reverse-phase protein array applicable to extracts from formalin-fixed paraffin-embedded tissue, Proteomics Clin. Appl 2, 1539–1547.

    Google Scholar 

  11. Ikeda, K., Monden, T., Kanoh, T., Tsujie, M., Izawa, H., Haba, A., Ohnishi, T., Sekimoto, M., Tomita, N., Shiozaki, H., and Monden, M. (1998) Extraction and analysis of diagnostically useful proteins from formalin-fixed, paraffin-embedded tissue sections, J Histochem Cytochem 46, 397–403.

    Google Scholar 

  12. Nirmalan, N. J., Harnden, P., Selby, P. J., and Banks, R. E. (2009) Development and validation of a novel protein extraction methodology for quantitation of protein expression in formalin-fixed paraffin-embedded tissues using western blotting, J Pathol 217, 497–506.

    Google Scholar 

  13. Shi, S. R., Liu, C., Balgley, B. M., Lee, C., and Taylor, C. R. (2006) Protein extraction from formalin-fixed, paraffin-embedded tissue sections: quality evaluation by mass spectrometry, J Histochem Cytochem 54, 739–743.

    Google Scholar 

  14. Espina, V., Mehta, A. I., Winters, M. E., Calvert, V., Wulfkuhle, J., Petricoin, E. F., 3rd, and Liotta, L. A. (2003) Protein microarrays: molecular profiling technologies for clinical specimens, Proteomics 3, 2091–2100.

    Google Scholar 

  15. Templin, M. F., Stoll, D., Schrenk, M., Traub, P. C., Vohringer, C. F., and Joos, T. O. (2002) Protein microarray technology, Trends Biotechnol 20, 160–166.

    Google Scholar 

  16. Wulfkuhle, J. D., Edmiston, K. H., Liotta, L. A., and Petricoin, E. F., 3rd. (2006) Technology insight: pharmacoproteomics for cancer–promises of patient-tailored medicine using protein microarrays, Nat Clin Pract Oncol 3, 256–268.

    Google Scholar 

  17. Liotta, L. A., Espina, V., Mehta, A. I., Calvert, V., Rosenblatt, K., Geho, D., Munson, P. J., Young, L., Wulfkuhle, J., and Petricoin, E. F., 3rd. (2003) Protein microarrays: meeting analytical challenges for clinical applications, Cancer Cell 3, 317–325.

    Google Scholar 

  18. Sheehan, K. M., Calvert, V. S., Kay, E. W., Lu, Y., Fishman, D., Espina, V., Aquino, J., Speer, R., Araujo, R., Mills, G. B., Liotta, L. A., Petricoin, E. F., 3rd, and Wulfkuhle, J. D. (2005) Use of reverse phase protein microarrays and reference standard development for molecular network analysis of metastatic ovarian carcinoma, Mol Cell Proteomics 4, 346–355.

    Google Scholar 

  19. Grubb, R. L., Calvert, V. S., Wulkuhle, J. D., Paweletz, C. P., Linehan, W. M., Phillips, J. L., Chuaqui, R., Valasco, A., Gillespie, J., Emmert-Buck, M., Liotta, L. A., and Petricoin, E. F. (2003) Signal pathway profiling of prostate cancer using reverse phase protein arrays, Proteomics 3, 2142–2146.

    Google Scholar 

  20. Emens, L. A. (2005) Trastuzumab: targeted therapy for the management of HER-2/neu-overexpressing metastatic breast cancer, Am J Ther 12, 243–253.

    Google Scholar 

  21. Piccart, M., Lohrisch, C., Di Leo, A., and Larsimont, D. (2001) The predictive value of HER2 in breast cancer, Oncology 61 Suppl 2 , 73–82.

    Google Scholar 

  22. Slamon, D. J., Clark, G. M., Wong, S. G., Levin, W. J., Ullrich, A., and McGuire, W. L. (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene, Science 235, 177–182.

    Google Scholar 

  23. Slamon, D. J., Godolphin, W., Jones, L. A., Holt, J. A., Wong, S. G., Keith, D. E., Levin, W. J., Stuart, S. G., Udove, J., Ullrich, A., and et al. (1989) Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer, Science 244, 707–712.

    Google Scholar 

  24. Strand, K., Murray, J., Aziz, S., Ishida, A., Rahman, S., Patel, Y., Cardona, C., Hammond, W. P., Savidge, G., and Wijelath, E. S. (2000) Induction of the urokinase plasminogen activator system by oncostatin M promotes endothelial migration, J Cell Biochem 79 , 239–248.

    Google Scholar 

  25. McMahon, B., and Kwaan, H. C. (2008) The plasminogen activator system and cancer, Pathophysiol Haemost Thromb 36, 184–194.

    Google Scholar 

  26. Cubellis, M. V., Wun, T. C., and Blasi, F. (1990) Receptor-mediated internalization and degradation of urokinase is caused by its specific inhibitor PAI-1, EMBO J 9 , 1079–1085.

    Google Scholar 

  27. Germer, M., Kanse, S. M., Kirkegaard, T., Kjoller, L., Felding-Habermann, B., Goodman, S., and Preissner, K. T. (1998) Kinetic analysis of integrin-dependent cell adhesion on vitronectin--the inhibitory potential of plasminogen activator inhibitor-1 and RGD peptides, Eur J Biochem 253 , 669–674.

    Google Scholar 

  28. Hewitt, S. M., Lewis, F. A., Cao, Y., Conrad, R. C., Cronin, M., Danenberg, K. D., Goralski, T. J., Langmore, J. P., Raja, R. G., Williams, P. M., Palma, J. F., and Warrington, J. A. (2008) Tissue handling and specimen preparation in surgical pathology: issues concerning the recovery of nucleic acids from formalin-fixed, paraffin-embedded tissue, Arch Pathol Lab Med 132, 1929–1935.

    Google Scholar 

  29. Leyland-Jones, B. R., Ambrosone, C. B., Bartlett, J., Ellis, M. J., Enos, R. A., Raji, A., Pins, M. R., Zujewski, J. A., Hewitt, S. M., Forbes, J. F., Abramovitz, M., Braga, S., Cardoso, F., Harbeck, N., Denkert, C., and Jewell, S. D. (2008) Recommendations for collection and handling of specimens from group breast cancer clinical trials, J Clin Oncol 26, 5638–5644.

    Google Scholar 

  30. Khoury, T., Sait, S., Hwang, H., Chandrasekhar, R., Wilding, G., Tan, D., and Kulkarni, S. (2009) Delay to formalin fixation effect on breast biomarkers, Mod Pathol.

    Google Scholar 

  31. Espina, V., Edmiston, K. H., Heiby, M., Pierobon, M., Sciro, M., Merritt, B., Banks, S., Deng, J., VanMeter, A. J., Geho, D. H., Pastore, L., Sennesh, J., Petricoin, E. F., 3rd, and Liotta, L. A. (2008) A portrait of tissue phosphoprotein stability in the clinical tissue procurement process, Mol Cell Proteomics 7, 1998–2018.

    Google Scholar 

  32. Spruessel, A., Steimann, G., Jung, M., Lee, S. A., Carr, T., Fentz, A. K., Spangenberg, J., Zornig, C., Juhl, H. H., and David, K. A. (2004) Tissue ischemia time affects gene and protein expression patterns within minutes following surgical tumor excision, Biotechniques 36, 1030–1037.

    Google Scholar 

  33. Goldstein, N. S., Hewitt, S. M., Taylor, C. R., Yaziji, H., and Hicks, D. G. (2007) Recommendations for improved standardization of immunohistochemistry, Appl Immunohistochem Mol Morphol 15, 124–133.

    Google Scholar 

  34. Fergenbaum, J. H., Garcia-Closas, M., Hewitt, S. M., Lissowska, J., Sakoda, L. C., and Sherman, M. E. (2004) Loss of antigenicity in stored sections of breast cancer tissue microarrays, Cancer Epidemiol Biomarkers Prev 13 , 667–672.

    Google Scholar 

Download references

Acknowledgments

This study is supported by the German Federal Ministry for Education and Research (BMBF), grant no 01GR0805 to Karl-Friedrich Becker. The authors wish to thank Kai Tran, Kerstin Schragner, and Christa Schott for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Friedrich Becker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Berg, D., Malinowsky, K., Reischauer, B., Wolff, C., Becker, KF. (2011). Use of Formalin-Fixed and Paraffin-Embedded Tissues for Diagnosis and Therapy in Routine Clinical Settings. In: Korf, U. (eds) Protein Microarrays. Methods in Molecular Biology, vol 785. Humana Press. https://doi.org/10.1007/978-1-61779-286-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-286-1_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-285-4

  • Online ISBN: 978-1-61779-286-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics