Skip to main content

Animal Models of Depression and Neuroplasticity: Assessing Drug Action in Relation to Behavior and Neurogenesis

  • Protocol
  • First Online:
Book cover Psychiatric Disorders

Part of the book series: Methods in Molecular Biology ((MIMB,volume 829))

Abstract

Depression is among the most prevalent forms of mental illness and a major cause of morbidity worldwide. Diagnosis of depression is mainly based on symptomatic criteria, and the heterogeneity of the disease suggests that multiple different biological mechanisms may underlie its etiology. Animal models have been important for recent advances in experimental neuroscience, including modeling of human mood disorders, such as depression and anxiety. Over the past few decades, a number of stress and neurobiochemical models have been developed as primary efficacy measures in depression trials, which are paving the way for the discovery of novel therapeutic targets. Recent data indicates that stress-related mood disorders have influence on neuroplasticity and adult neurogenesis. In this chapter, several currently available animal models are presented as powerful tools for both mechanistic studies into the neurobiology of the antidepressant response and for drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kessler, R.C., Berglund, P., Demler, O., Jin, R., Koretz, D., Merikangas, K.R., Rush, A.J., Walters, E.E. and Wang, P.S. (2003) The epidemiology of major depressive disorder: results from the national comorbidity survey replication (NCS-R). JAMA. 289, 3095–3105.

    Article  PubMed  Google Scholar 

  2. Berton, O. and Nestler, E.J. (2006) New approaches to antidepressant drug discovery: beyond monoamines. Neurosci. 7, 137–151.

    CAS  Google Scholar 

  3. Nestler, E.J., Barrot, M., DiLeone, R.J., Eisch, A.J., Gold, S.J. and Monteggia, L.M. (2002) Neurobiology of depression. Neuron. 34, 13–25.

    Article  PubMed  CAS  Google Scholar 

  4. Duman, R.S. (2002) Structural alterations in depression: cellular mechanisms underlying pathology and treatment of mood disorders. CNS Spectr.7. 140, 144–147.

    Google Scholar 

  5. Akiskal, H.S. (2000) Mood disorders: introduction and overview. In Comprehensive Textbook of Psychiatry. (B.J. Sadock., and V.A. Sadock., ed.), Lippincott, Williams & Wilkins, New York, pp. 1284–1298.

    Google Scholar 

  6. Pollak, D.D., Rey, C.E. and Monje, F.J. (2010) Rodent models in depression research: Classical strategies and new directions. Ann Med. 42, 252–264.

    Article  PubMed  Google Scholar 

  7. Porsolt, R.D., Pichon, M.L.E. and Jalfre, M. (1977) Behavioral despair in mice: a primary screening test for antidepressant. Arch. Int. Pharmacodyn. Ther. 229, 327–336.

    PubMed  CAS  Google Scholar 

  8. Porsolt, R.D., Bertin, A. and Jalfre, M. (1978) Behavioural despair in rats and mice: strain differences and the effects of imipramine. Eur. J. Pharmacol. 51, 291–294.

    Article  PubMed  CAS  Google Scholar 

  9. Steru, L., Chermat, R., Thierry, B. and Simon, P. (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology. 85, 367–370.

    Article  PubMed  CAS  Google Scholar 

  10. Cryan, J.F., Mombereau, C. (2004) In search of a depressed mouse: utility of models for studying depression-related behavior in genetically modified mice. Mol Psychiatry. 9, 326–357.

    Article  PubMed  CAS  Google Scholar 

  11. Machado, D.G., Bettio, L.E.B., Cunha, M.P. Capra, J.C., Dalmarco, J.B., Pizzolatti, M.G. and Rodrigues, A.L. (2009) Antidepressant-like effect of the extract of Rosmarinus officinalis in mice: involvement of the monoaminergic system. Prog Neuropsychopharmacol Biol Psychiatry. 33, 642–650.

    Article  PubMed  CAS  Google Scholar 

  12. Bechtholt, A.J., Hill, T.E. and Lucki, I. (2005) Anxiolytic effect of serotonin depletion in the novelty-induced hypophagia test. Psychopharmacology (Berl). 190, 531–540.

    Article  Google Scholar 

  13. Ovemier, J.B. and Seligman Mep. (1967) Effects of inescapable shock upon subsequent escape and avoidance learning. J. comp Physiol Psychol. 63, 28–33.

    Google Scholar 

  14. Seligman, M.E.P. and Maier, S.F. (1967) Failure to escape traumatic shock. J. Experimental Psychology. 74, 1–9.

    Article  CAS  Google Scholar 

  15. Sherman, A.D., Ailers, G.L., Petty, F. and Henn, F.A. (1979) A neuropharmacologically-relevant animal model of depression. J. europharmacology. 18, 891–893.

    Article  CAS  Google Scholar 

  16. Bidzinska, E.J. (1984) Stress factors in affective diseases. J. Psychiatry. 144, 161–166.

    Article  CAS  Google Scholar 

  17. Breslow, M.F., Fankhauser, M.P., Potter, R.L., Meredith, K.E., Misiaszek, J. and Hope, D.G. (1989) Role of gamma-aminobutyric acid in antipanic drug efficacy. J. Psychiatry. 146, 353–356.

    CAS  Google Scholar 

  18. Xu, Y., Ku, B.S., Cui, L., Li, X.J., Barish, P.A., Foster, T.C. and Ogle, W.O. (2007) Curcumin reverses impaired hippocampal neurogenesis and increases serotonin receptor 1A mRNA and brain-derived neurotrophic factor expression in chronically stressed rats. J. Brain Res. 1162, 9–18.

    Article  CAS  Google Scholar 

  19. Xu, Y., Lin, D., Li, S., Li, G.W., Shyamala, S.G., Barish, P.A., Vernon, M.M., Pan, J.C. and Ogle, W.O. (2009) Curcumin reverses impaired cognition and neuronal plasticity induced by chronic stress. Neuropharmacology. 57, 463–471.

    Article  PubMed  CAS  Google Scholar 

  20. Mizoguchi, K., Yuzurihara, M., Ishige, A., Sasaki, H. and Tabira, T. (2002) Saiko-ka ryukotsu-borei-to, an herbal medicine, prevents chronic stress-induced disruption of glucocorticoid negative feedback in rats. Life Sci. 72, 67–77.

    Article  PubMed  CAS  Google Scholar 

  21. Kennett, G.A., Chaouloff, F., Marcou, M. and Curzon, G. (1986) Female rats are more vulnerable than males in an animal model of depression: the possible role of serotonin. Brain Res. 382, 416–421.

    Article  PubMed  CAS  Google Scholar 

  22. Molina, V.A., Volosin, M., Cancela, L. and Keller, E. (1990) Effect of chronic variable stress on monoamine receptors: influence of imipramine administration. Pharmcol. Biochem. Behav. 35, 335–340.

    Article  CAS  Google Scholar 

  23. Murua, V.S., Gomez, R.A., Andrea, M.E. and Molina, V.A. (1990) Shuttle-box deficits induced by chronic variable stress: reversal by imipramine administration. Pharmacol. Biochem. Behav. 38, 125–130.

    Article  Google Scholar 

  24. Forbes, N.F., Stewart, C.A., Matthews K. and Reid, I.C. (1996) Chronic mild stress and sucrose consumption: validity as a model of depression. Physiol Behav. 60, 1481–1484.

    Article  PubMed  CAS  Google Scholar 

  25. Willner, P. (1997) Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology. 134, 319–329.

    Article  PubMed  CAS  Google Scholar 

  26. Moreau, J.L., Jenck, F., Martin, J.R., Mortas, P. and Haefely, W.E. (1992) Antidepressant treatment prevents chronic unpredictable mild stress-induced anhedonia as assessed by ventral tegmentum self-stimulation behavior in rats. Eur Neuropsychopharmacol. 2, 43–49.

    Article  PubMed  CAS  Google Scholar 

  27. Vollmayr, B. and Henn, F.A. (2003) Stress models of depression. Clin Neurosci Res. 3, 245–251.

    Article  Google Scholar 

  28. Grønli J., Murison R., Fiske, E., Bjorvatn B., Sørensen E. and Portas, C.M. (2005) Effects of chronic mild stress on sexual behavior, locomotor activity and consumption of sucrose and saccharine solutions. Physiol Behav. 84, 571–577.

    Article  PubMed  Google Scholar 

  29. Veena, J., Srikumar, B.N., Raju, T.R. and Shankaranarayana Rao, B.S. (2009) Exposure to enriched environment restores the survival and differentiation of new born cells in the hippocampus and ameliorates depressive symptoms in chronically stressed rats. Neurosci Lett. 455, 178–182.

    Article  PubMed  CAS  Google Scholar 

  30. Haenisch, B., Bilkei-Gorzo, A. and Caron, M.G., Bonisch, H. (2009) Knockout of the norepinephrine transporter and pharmacologically diverse antidepressants prevent behavioral and brain neurotrophin alterations in two chronic stress models of depression. J. Neurochem. 111, 403–416.

    Article  PubMed  CAS  Google Scholar 

  31. Bravo, J.A., Diaz-Veliz, G., Mora, S., Ulloa, J.L., Berthoud, V.M. and Morales, P. (2009) Desipramine prevents stress-induced changes in depressive-like behavior and hippocampal markers of neuroprotection. Behav Pharmacol. 20, 273–285.

    Article  PubMed  Google Scholar 

  32. Melia, K.R., Ryabinin, A.E., Schroeder, R., Bloom, F.E. and Wilson, M.C. (1994) Induction and habituation of immediate early gene expression in rat brain by acute and repeated restraint stress. J. Neurosci. 14, 5929–5938.

    PubMed  CAS  Google Scholar 

  33. Abe, H., Hidaka, N., Kawagoe, C., Odagiri, K., Watanabe, Y. and Ikeda, T., et al. (2007) Prenatal psychological stress causes higher emotionality, depression-like behavior, and elevated activity in the hypothalamo-pituitary-adrenal axis. Neurosci Res. 59, 145–151.

    Article  PubMed  CAS  Google Scholar 

  34. Maccari, S., Darnaudery, M., Morley-Fletcher, S., Zuena, A.R., Cinque, C. and Van Reeth, O. (2003) Prenatal stress and long-term consequences: implications of glucocorticoid hormones. Neurosci Biobehav Rev. 27, 119–127.

    Article  PubMed  CAS  Google Scholar 

  35. Van Waes, V., Enache, M., Berton, O., Vinner, E., Lhermitte, M., Maccari, S. and Darnaudéry, M. (2010) Effect of prenatal stress on alcohol preference and sensitivity to chronic alcohol exposure in male rats. Psychopharmacology (Berl). 17, 8–21.

    Google Scholar 

  36. VanWaes, V., Enache, M., Dutriez, I., Lesage, J., Morley-Fletcher, S.,Vinner, E., Lhermitte, M., Vieau, D., Maccari, S. and Darnaudery, M. (2006) Hyporesponse of the hypothalamic-pituitary-adrenocortical axis after an ethanol challenge in prenatally stressed adolescent male rats. Eur J NeuroSci. 24, 1193–1200.

    Google Scholar 

  37. Van Waes, V., Enache, M., Zuena, A., Mairesse, J., Nicoletti, F., Vinner, E., Lhermitte, M., Maccari, S. and Darnaudery, M. (2009) Ethanol attenuates spatial memory deficits and increases mGlu1a receptor expression in the hippocampus of rats exposed to prenatal stress. Alcohol Clin Exp Res. 33, 1346–1354.

    Article  PubMed  Google Scholar 

  38. Finamore, T.L., Port, R.L. (2000) Developmental stress disrupts habituation but spares prepulse inhibition in young rats. Physiol Behav. 69, 527–530.

    Article  PubMed  CAS  Google Scholar 

  39. Hofer, M.A., Brunelli, S.A. and Shair, H.N. (1994) Potentiation of isolation-induced vocalization by brief exposure of rat pups to maternal cues. Dev Psychobiol. 27, 503–517.

    Article  PubMed  CAS  Google Scholar 

  40. Vazquez, V., Farley, S., Giros B. and Daugé V. (2005) Maternal deprivation increases behavioural reactivity to stressful situations in adulthood: suppression by the CCK2 antagonist L365,260. Psychopharmacology (Berl). 181, 706–713.

    Article  CAS  Google Scholar 

  41. Daniels, W.M., Pietersen, C.Y., Carstens, M.E. and Stein, D.J. (2004) Maternal separation in rats leads to anxiety-like behavior and a blunted ACTH response and altered neurotransmitter levels in response to a subsequent stressor. Metab Brain Dis. 19, 3–14.

    Article  PubMed  CAS  Google Scholar 

  42. Workel, J.O., Oitzl, M.S., Ledeboer, A. and De Kloet, E.R. (1997) The Brown Norway rat displays enhanced stress-induced ACTH reactivity at day 18 after 24-h maternal deprivation at day 3. Brain Res Dev Brain Res. 103, 199–203.

    Article  PubMed  CAS  Google Scholar 

  43. Dulawa, S.C. and Hen, R. (2005) Recent advances in animal models of chronic antidepressant effects: the novelty-induced hypophagia test. Neurosci Biobehav Rev. 29, 771–783.

    Article  PubMed  CAS  Google Scholar 

  44. Cryan, J. F., Markou, A. and Lucki, I. (2002) Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol Sci. 23, 238–245.

    Article  PubMed  CAS  Google Scholar 

  45. Dulawa, S.C. and Hen, R. (2005) Recent advances in animal models of chronic antidepressant effects: the novelty-induced hypophagia test. Neurosci Biobehav Rev. 29, 771–783.

    Article  PubMed  CAS  Google Scholar 

  46. Gur, T.L., Conti, A.C., Holden, J., Bechtholt, A.J., Hill, T.E., Lucki, I., Malberg, J.E. and Blendy, J.A. (2007) cAMP response element-binding protein deficiency allows for increased neurogenesis and a rapid onset of antidepressant response. J. Neurosci. 27, 7860–7868.

    Article  PubMed  CAS  Google Scholar 

  47. Xu Y., Ku, B.S., Yao, H.Y., Lin, Y.H., Ma, X., Zhang, Y.H. and Li, X.J. (2005) Antidepressant effects of curcumin in the forced swim test and olfactory bulbectomy models of depression in rats. Pharmacology Biochemistry and Behavior. 82, 200–206.

    Article  CAS  Google Scholar 

  48. Redmond, A.M., Kelly, J.P. and Leonard, B.E. (1999) The determination of the optimal dose of milnacipran in the olfactory bulbectomized rat model of depression. Pharmacol Biochem Behav. 62, 619–623.

    Article  PubMed  CAS  Google Scholar 

  49. Jesberger, J.A. and Richardson, J.S. (1985) Animal models of depression: parallels and correlates to severe depression in humans. Biol Psychiatry. 20, 764–784.

    Article  PubMed  CAS  Google Scholar 

  50. Cairncross, K.D., Cox, B., Forster, C. and Wren, A.F. (1979) Olfactory projection systems, drugs and behaviour: a review. Psychoneuroendocrinology. 4, 253–272.

    Article  PubMed  CAS  Google Scholar 

  51. Jancsar, S.M. and Leonard, B.E. (1984) Changes in neurotransmitter metabolism following olfactory bulbectomy in the rat. Prog Neuropsychopharmacol Biol Psychiatry. 8, 263–269.

    Article  PubMed  CAS  Google Scholar 

  52. Leonard, B.E. and Tuite, M. (1981) Anatomical, physiological, and behavioral aspects of olfactory bulbectomy in the rat. Int Rev Neurobiol. 22, 251–286.

    Article  PubMed  CAS  Google Scholar 

  53. Lloyd, K.G., Morselli, P.L., Depoortere, H., Fournier, V., Zivkovic, B., Scatton, B., Broekkamp C., Worms P. and Bartholini, G. (1983) The potential use of GABA agonists in psychiatric disorders: evidence from studies with progabide in animal models and clinical trials. Pharmacol Biochem Behav. 18, 957–966.

    Article  PubMed  CAS  Google Scholar 

  54. Nagayama, H., Hintgen, J.N. and Aprison, M.H. (1980) Pre- and postsynaptic serotonergic manipulations in an animal of depression. Pharmacol Biochem Behav. 13, 575–579.

    Article  PubMed  CAS  Google Scholar 

  55. Nagayama, H., Hintgen, J.N. and Aprison, M.H. (1981) Postsynaptic action by four antidepressive drugs in an animal model of depression. Pharmacol Biochem Behav. 15, 125–130.

    Article  PubMed  CAS  Google Scholar 

  56. Corne, S.J., Pickering, R.W. and Warner, B.T. (1963) A method for assessing the effects of drugs on the central actions of 5-hydroxytryptamine. British Journal of Pharmacology. 20, 106–120.

    Google Scholar 

  57. Malick, J.B. (1983) Potentiation of yohimbine-induced lethality in mice: Predictor of antidepressant potential. Drug Dev Res. 3, 357–363.

    Article  CAS  Google Scholar 

  58. Langer, S.Z. (1977) Presynaptic receptors and their role in the regulation of transmitter release. J. Pharmacol. 60, 481–497.

    CAS  Google Scholar 

  59. Xu, Y., Wang, Z.C., You, W.T., Zhang, X.H., Li S., Barish, P.A., Vernon, M.M., Du, X., Li, G.W., Pan, J.C. and Ogle, W.O. (2010) Antidepressant-like effect of trans-resveratrol: involvement of serotonin and noradrenaline system. Eur Neuropsychopharmacol. 20, 405–413.

    Article  PubMed  CAS  Google Scholar 

  60. Puech, A.J., Chermat, R., Poncelet, M., Doaré, L. and Simon, P. (1981) Antagonism of hypothermia and behavioral response to apomorphine: a simple, rapid and discriminating test for screening antidepressants and neuroleptics. Psychopharmacology. 75, 84–91.

    Article  PubMed  CAS  Google Scholar 

  61. Malick, J.B. (1983) Potentiation of yohimbine-induced lethality in mice: Predictor of antidepressant potential. Drug Dev Res. 3, 357–363.

    Article  CAS  Google Scholar 

  62. Hitzemann, R. (2000) Animal models of psychiatric disorders and their relevance to alcoholism. Alcohol Res Health. 24, 149–158.

    PubMed  CAS  Google Scholar 

  63. Vyas, A., Mitra, R., Shankaranarayana Rao, B.S. and Chattarji, S. (2002) Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J. Neurosci. 22, 6810–6818.

    PubMed  CAS  Google Scholar 

  64. Katie, J., McLaughlin., Juan, L. Gomez., Sarah, E. Baran. and Cheryl, D. Conra. (2007) The effects of chronic stress on hippocampal morphology and function: An evaluation of chronic restraint paradigms. Brain Research. 1161, 56–64.

    Google Scholar 

  65. Natalia, E., Alvaro, L., García-García., Susan, T., Nerea, G., Elisabet, V., Maria, J.R., Joaquin, D.R. and Tordera, R.M. (2010) Sustained stress-induced changes in mice as a model for chronic depression. Psychopharmacolog. 3, 393–406.

    Google Scholar 

  66. Verret, L., Jankowsky, J.L., Xu, G.M., Borchelt, D.R. and Rampon, C. (2007) Alzheimer’s-type amyloidosis in transgenic mice impairs survival of newborn neurons derived from adult hippocampal neurogenesis. J Neurosci. 27, 6771–6780.

    Article  PubMed  CAS  Google Scholar 

  67. Kim, S.J., Son, T.G., Park, H.R., Park, M., Kim, M.S., Kim, H.S., Chung, H.Y., Mattson, M.P. and Lee, J. (2008) Curcumin stimulates proliferation of embryonic neural progenitor cells and neurogenesis in the adult hippocampus. J Biol Chem. 2283, 14497–14505.

    Article  Google Scholar 

  68. Li, Y.F., Chen, H.X., Liu Y., Zhang, Y.Z., Liu, Y.Q. and Li J (2006) Agmatine increases proliferation of cultured hippocampal neurogenesis in chronically stressed mice. Acta Pharmacol Sin. 27, 1395–1400.

    Article  PubMed  CAS  Google Scholar 

  69. Titus, A.D.J., Rao, B.S.S., Harsha, H.N., Ramkumar, K., Srikumar, B.N., Singh, S.B., Charrarji, S. and Raju, T.R. (2007) Hypobaric hypoxia-induced dendritic atrophy of hippocampal neurons is associated with cognitive impairment in adult rats. Neuroscience. 145, 265–278.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. O’Donnell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Xu, Y., Barish, P.A., Pan, J., Ogle, W.O., O’Donnell, J.M. (2012). Animal Models of Depression and Neuroplasticity: Assessing Drug Action in Relation to Behavior and Neurogenesis. In: Kobeissy, F. (eds) Psychiatric Disorders. Methods in Molecular Biology, vol 829. Humana Press. https://doi.org/10.1007/978-1-61779-458-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-458-2_6

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-457-5

  • Online ISBN: 978-1-61779-458-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics