Skip to main content

Estimating Heritability from Nuclear Family and Pedigree Data

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 850))

Abstract

Heritability is a measure of familial resemblance. Estimating the heritability of a trait represents one of the first steps in the gene mapping process. This chapter describes how to estimate heritability for quantitative traits from nuclear and pedigree data using the ASSOC program in the Statistical Analysis for Genetic Epidemiology (S.A.G.E.) software package. Estimating heritability rests on the assumption that the total phenotypic variance of a quantitative trait can be partitioned into independent genetic and environmental components. In turn, the genetic variance can be divided into an additive (polygenic) genetic variance, a dominance variance (nonlinear interaction effects between alleles at the same locus), and an epistatic variance (interaction effects between alleles at different loci). The last two are often assumed to be zero. The additive genetic variance represents the average effects of individual alleles on the phenotype and reflects transmissible resemblance between relatives. Heritability in the narrow sense (h 2) refers to the ratio of the additive genetic variance to the total phenotypic variance. Heritability is a dimensionless population-specific parameter. ASSOC estimates association parameters (regression coefficients) and variance components from family data. ASSOC uses a linear regression model in which the total residual variance is partitioned, after regressing on covariates, into the sum of a random additive polygenic component, a random sibship component, random nuclear family components, a random marital component, and an individual-specific random component. Assortative mating, nonrandom ascertainment of families and failure to account for key confounding factors may bias heritability estimates.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Visscher PM, Hill WG, Wray NR (2008) Heritability in the genomics era--concepts and misconceptions. Nat Rev Genet 9: 255–266

    Article  PubMed  CAS  Google Scholar 

  2. Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics. Longman, Harlow, Essex

    Google Scholar 

  3. Ritland K (1996) A marker-based method for inferences about quantitative inheritance in natural populations. Evolution 50: 1062–1073

    Article  Google Scholar 

  4. Thomas SC, Pemberton JM, Hill WG (2000) Estimating variance components in natural populations using inferred relationships. Heredity 84: 427–436

    Article  PubMed  Google Scholar 

  5. Thomas SC (2005) The estimation of genetic relationships using molecular markers and their efficiency in estimating heritability in natural populations. Philos Trans R Soc Lond B Biol Sci 360: 1457–1467

    Article  PubMed  CAS  Google Scholar 

  6. Vogel F, Motulsky AG (1997) Human genetics. Problems and approaches. Springer-Verlag: Berlin

    Google Scholar 

  7. George VT, Elston RC (1987) Testing the association between polymorphic markers and quantitative traits in pedigrees. Genet Epidemiol 4: 193–201

    Article  PubMed  CAS  Google Scholar 

  8. Elston RC, George VT, Severtson F (1992) The Elston-Stewart algorithm for continuous genotypes and environmental factors. Hum Hered 42: 16–27

    Article  PubMed  CAS  Google Scholar 

  9. Gray-McGuire C, et al (2009) Genetic association tests: a method for the joint analysis of family and case–control data. Hum Genomics 4: 2–20

    PubMed  Google Scholar 

  10. George V, Elston RC (1988) Generalized modulus power transformation. Communication in statistics - Theory and Methods 17: 2933–2952

    Article  Google Scholar 

  11. Bochud M, et al (2005) High heritability of ambulatory blood pressure in families of East African descent. Hypertension 45: 445–450

    Article  PubMed  CAS  Google Scholar 

  12. Levy D, et al (2009) Genome-wide association study of blood pressure and hypertension. Nat Genet 41: 677–687

    Article  PubMed  CAS  Google Scholar 

  13. Newton-Cheh C, et al (2009) Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet 41: 666–676

    Article  PubMed  CAS  Google Scholar 

  14. Yang J, et al (2010) Common SNPs explain a large proportion of the heritability for human height. Nat Genet 42: 565–569

    Article  PubMed  CAS  Google Scholar 

  15. Komlos J, Lauderdale BE (2007) The mysterious trend in American heights in the 20th century. Ann Hum Biol 34: 206–215

    Article  PubMed  Google Scholar 

  16. Magnusson PK, Rasmussen F (2002) Familial resemblance of body mass index and familial risk of high and low body mass index. A study of young men in Sweden. Int J Obes Relat Metab Disord 26: 1225–1231

    Article  CAS  Google Scholar 

  17. Bochud M, et al (2005) Heritability of renal function in hypertensive families of African descent in the Seychelles (Indian Ocean). Kidney Int 67: 61–69

    Article  PubMed  Google Scholar 

  18. Heller RF, et al (1988) Lifestyle factors in monozygotic and dizygotic twins. Genet Epidemiol 5: 311–321

    Article  PubMed  CAS  Google Scholar 

  19. Elston RC, Boklage CE (1978) An examination of fundamental assumptions of the twin method. Prog Clin Biol Res 24A: 189–199

    PubMed  CAS  Google Scholar 

  20. Hall JG (2003) Twinning. Lancet 362: 735–743

    Article  PubMed  Google Scholar 

  21. Seidlerova J, et al (2008) Heritability and intrafamilial aggregation of arterial characteristics. J Hypertens 26: 721–728

    Article  PubMed  CAS  Google Scholar 

  22. Bochud M, et al (2009) Ethnic differences in proximal and distal tubular sodium reabsorption are heritable in black and white populations. J Hypertens 27: 606–612

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murielle Bochud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bochud, M. (2012). Estimating Heritability from Nuclear Family and Pedigree Data. In: Elston, R., Satagopan, J., Sun, S. (eds) Statistical Human Genetics. Methods in Molecular Biology, vol 850. Humana Press. https://doi.org/10.1007/978-1-61779-555-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-555-8_10

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-554-1

  • Online ISBN: 978-1-61779-555-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics